lustrec / src / typing.ml @ f22632aa
History | View | Annotate | Download (23.7 KB)
1 |
(* ---------------------------------------------------------------------------- |
---|---|
2 |
* SchedMCore - A MultiCore Scheduling Framework |
3 |
* Copyright (C) 2009-2011, ONERA, Toulouse, FRANCE - LIFL, Lille, FRANCE |
4 |
* |
5 |
* This file is part of Prelude |
6 |
* |
7 |
* Prelude is free software; you can redistribute it and/or |
8 |
* modify it under the terms of the GNU Lesser General Public License |
9 |
* as published by the Free Software Foundation ; either version 2 of |
10 |
* the License, or (at your option) any later version. |
11 |
* |
12 |
* Prelude is distributed in the hope that it will be useful, but |
13 |
* WITHOUT ANY WARRANTY ; without even the implied warranty of |
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
15 |
* Lesser General Public License for more details. |
16 |
* |
17 |
* You should have received a copy of the GNU Lesser General Public |
18 |
* License along with this program ; if not, write to the Free Software |
19 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 |
20 |
* USA |
21 |
*---------------------------------------------------------------------------- *) |
22 |
|
23 |
(** Main typing module. Classic inference algorithm with destructive |
24 |
unification. *) |
25 |
|
26 |
let debug fmt args = () (* Format.eprintf "%a" *) |
27 |
(* Though it shares similarities with the clock calculus module, no code |
28 |
is shared. Simple environments, very limited identifier scoping, no |
29 |
identifier redefinition allowed. *) |
30 |
|
31 |
open Utils |
32 |
(* Yes, opening both modules is dirty as some type names will be |
33 |
overwritten, yet this makes notations far lighter.*) |
34 |
open LustreSpec |
35 |
open Corelang |
36 |
open Types |
37 |
open Format |
38 |
|
39 |
let pp_typing_env fmt env = |
40 |
Env.pp_env print_ty fmt env |
41 |
|
42 |
(** [occurs tvar ty] returns true if the type variable [tvar] occurs in |
43 |
type [ty]. False otherwise. *) |
44 |
let rec occurs tvar ty = |
45 |
let ty = repr ty in |
46 |
match ty.tdesc with |
47 |
| Tvar -> ty=tvar |
48 |
| Tarrow (t1, t2) -> |
49 |
(occurs tvar t1) || (occurs tvar t2) |
50 |
| Ttuple tl -> |
51 |
List.exists (occurs tvar) tl |
52 |
| Tarray (_, t) |
53 |
| Tstatic (_, t) |
54 |
| Tclock t |
55 |
| Tlink t -> occurs tvar t |
56 |
| Tenum _ | Tconst _ | Tunivar | Tint | Treal | Tbool | Trat -> false |
57 |
|
58 |
(** Promote monomorphic type variables to polymorphic type variables. *) |
59 |
(* Generalize by side-effects *) |
60 |
let rec generalize ty = |
61 |
match ty.tdesc with |
62 |
| Tvar -> |
63 |
(* No scopes, always generalize *) |
64 |
ty.tdesc <- Tunivar |
65 |
| Tarrow (t1,t2) -> |
66 |
generalize t1; generalize t2 |
67 |
| Ttuple tlist -> |
68 |
List.iter generalize tlist |
69 |
| Tstatic (d, t) |
70 |
| Tarray (d, t) -> Dimension.generalize d; generalize t |
71 |
| Tclock t |
72 |
| Tlink t -> |
73 |
generalize t |
74 |
| Tenum _ | Tconst _ | Tunivar | Tint | Treal | Tbool | Trat -> () |
75 |
|
76 |
(** Downgrade polymorphic type variables to monomorphic type variables *) |
77 |
let rec instantiate inst_vars inst_dim_vars ty = |
78 |
let ty = repr ty in |
79 |
match ty.tdesc with |
80 |
| Tenum _ | Tconst _ | Tvar | Tint | Treal | Tbool | Trat -> ty |
81 |
| Tarrow (t1,t2) -> |
82 |
{ty with tdesc = |
83 |
Tarrow ((instantiate inst_vars inst_dim_vars t1), (instantiate inst_vars inst_dim_vars t2))} |
84 |
| Ttuple tlist -> |
85 |
{ty with tdesc = Ttuple (List.map (instantiate inst_vars inst_dim_vars) tlist)} |
86 |
| Tclock t -> |
87 |
{ty with tdesc = Tclock (instantiate inst_vars inst_dim_vars t)} |
88 |
| Tstatic (d, t) -> |
89 |
{ty with tdesc = Tstatic (Dimension.instantiate inst_dim_vars d, instantiate inst_vars inst_dim_vars t)} |
90 |
| Tarray (d, t) -> |
91 |
{ty with tdesc = Tarray (Dimension.instantiate inst_dim_vars d, instantiate inst_vars inst_dim_vars t)} |
92 |
| Tlink t -> |
93 |
(* should not happen *) |
94 |
{ty with tdesc = Tlink (instantiate inst_vars inst_dim_vars t)} |
95 |
| Tunivar -> |
96 |
try |
97 |
List.assoc ty.tid !inst_vars |
98 |
with Not_found -> |
99 |
let var = new_var () in |
100 |
inst_vars := (ty.tid, var)::!inst_vars; |
101 |
var |
102 |
|
103 |
(* [type_coretype cty] types the type declaration [cty] *) |
104 |
let rec type_coretype type_dim cty = |
105 |
match (*get_repr_type*) cty with |
106 |
| Tydec_any -> new_var () |
107 |
| Tydec_int -> Type_predef.type_int |
108 |
| Tydec_real -> Type_predef.type_real |
109 |
| Tydec_float -> Type_predef.type_real |
110 |
| Tydec_bool -> Type_predef.type_bool |
111 |
| Tydec_clock ty -> Type_predef.type_clock (type_coretype type_dim ty) |
112 |
| Tydec_const c -> Type_predef.type_const c |
113 |
| Tydec_enum tl -> Type_predef.type_enum tl |
114 |
| Tydec_array (d, ty) -> |
115 |
begin |
116 |
type_dim d; |
117 |
Type_predef.type_array d (type_coretype type_dim ty) |
118 |
end |
119 |
|
120 |
(* [coretype_type is the reciprocal of [type_typecore] *) |
121 |
let rec coretype_type ty = |
122 |
match (repr ty).tdesc with |
123 |
| Tvar -> Tydec_any |
124 |
| Tint -> Tydec_int |
125 |
| Treal -> Tydec_real |
126 |
| Tbool -> Tydec_bool |
127 |
| Tconst c -> Tydec_const c |
128 |
| Tclock t -> Tydec_clock (coretype_type t) |
129 |
| Tenum tl -> Tydec_enum tl |
130 |
| Tarray (d, t) -> Tydec_array (d, coretype_type t) |
131 |
| Tstatic (_, t) -> coretype_type t |
132 |
| _ -> assert false |
133 |
|
134 |
let get_type_definition tname = |
135 |
try |
136 |
type_coretype (fun d -> ()) (Hashtbl.find type_table (Tydec_const tname)) |
137 |
with Not_found -> raise (Error (Location.dummy_loc, Unbound_type tname)) |
138 |
|
139 |
(** [unify env t1 t2] unifies types [t1] and [t2]. Raises [Unify |
140 |
(t1,t2)] if the types are not unifiable.*) |
141 |
(* Standard destructive unification *) |
142 |
let rec unify t1 t2 = |
143 |
let t1 = repr t1 in |
144 |
let t2 = repr t2 in |
145 |
if t1=t2 then |
146 |
() |
147 |
else |
148 |
(* No type abbreviations resolution for now *) |
149 |
match t1.tdesc,t2.tdesc with |
150 |
(* This case is not mandory but will keep "older" types *) |
151 |
| Tvar, Tvar -> |
152 |
if t1.tid < t2.tid then |
153 |
t2.tdesc <- Tlink t1 |
154 |
else |
155 |
t1.tdesc <- Tlink t2 |
156 |
| (Tvar, _) when (not (occurs t1 t2)) -> |
157 |
t1.tdesc <- Tlink t2 |
158 |
| (_,Tvar) when (not (occurs t2 t1)) -> |
159 |
t2.tdesc <- Tlink t1 |
160 |
| Tarrow (t1,t2), Tarrow (t1',t2') -> |
161 |
begin |
162 |
unify t1 t1'; |
163 |
unify t2 t2' |
164 |
end |
165 |
| Ttuple tlist1, Ttuple tlist2 -> |
166 |
if (List.length tlist1) <> (List.length tlist2) then |
167 |
raise (Unify (t1, t2)) |
168 |
else |
169 |
List.iter2 unify tlist1 tlist2 |
170 |
| Tclock _, Tstatic _ |
171 |
| Tstatic _, Tclock _ -> raise (Unify (t1, t2)) |
172 |
| Tclock t1', _ -> unify t1' t2 |
173 |
| _, Tclock t2' -> unify t1 t2' |
174 |
| Tint, Tint | Tbool, Tbool | Trat, Trat |
175 |
| Tunivar, _ | _, Tunivar -> () |
176 |
| (Tconst t, _) -> |
177 |
let def_t = get_type_definition t in |
178 |
unify def_t t2 |
179 |
| (_, Tconst t) -> |
180 |
let def_t = get_type_definition t in |
181 |
unify t1 def_t |
182 |
| Tenum tl, Tenum tl' when tl == tl' -> () |
183 |
| Tstatic (e1, t1'), Tstatic (e2, t2') |
184 |
| Tarray (e1, t1'), Tarray (e2, t2') -> |
185 |
begin |
186 |
unify t1' t2'; |
187 |
Dimension.eval Basic_library.eval_env (fun c -> None) e1; |
188 |
Dimension.eval Basic_library.eval_env (fun c -> None) e1; |
189 |
Dimension.unify e1 e2; |
190 |
end |
191 |
| _,_ -> raise (Unify (t1, t2)) |
192 |
|
193 |
let try_unify ty1 ty2 loc = |
194 |
try |
195 |
unify ty1 ty2 |
196 |
with |
197 |
| Unify _ -> |
198 |
raise (Error (loc, Type_clash (ty1,ty2))) |
199 |
| Dimension.Unify _ -> |
200 |
raise (Error (loc, Type_clash (ty1,ty2))) |
201 |
|
202 |
let rec type_const loc c = |
203 |
match c with |
204 |
| Const_int _ -> Type_predef.type_int |
205 |
| Const_real _ -> Type_predef.type_real |
206 |
| Const_float _ -> Type_predef.type_real |
207 |
| Const_array ca -> let d = Dimension.mkdim_int loc (List.length ca) in |
208 |
let ty = new_var () in |
209 |
List.iter (fun e -> try_unify (type_const loc e) ty loc) ca; |
210 |
Type_predef.type_array d ty |
211 |
| Const_tag t -> |
212 |
if Hashtbl.mem tag_table t |
213 |
then type_coretype (fun d -> ()) (Hashtbl.find tag_table t) |
214 |
else raise (Error (loc, Unbound_value ("enum tag " ^ t))) |
215 |
|
216 |
(* The following typing functions take as parameter an environment [env] |
217 |
and whether the element being typed is expected to be constant [const]. |
218 |
[env] is a pair composed of: |
219 |
- a map from ident to type, associating to each ident, i.e. |
220 |
variables, constants and (imported) nodes, its type including whether |
221 |
it is constant or not. This latter information helps in checking constant |
222 |
propagation policy in Lustre. |
223 |
- a vdecl list, in order to modify types of declared variables that are |
224 |
later discovered to be clocks during the typing process. |
225 |
*) |
226 |
let check_constant loc const_expected const_real = |
227 |
if const_expected && not const_real |
228 |
then raise (Error (loc, Not_a_constant)) |
229 |
|
230 |
let rec type_standard_args env in_main const expr_list = |
231 |
let ty_list = List.map (fun e -> dynamic_type (type_expr env in_main const e)) expr_list in |
232 |
let ty_res = new_var () in |
233 |
List.iter2 (fun e ty -> try_unify ty_res ty e.expr_loc) expr_list ty_list; |
234 |
ty_res |
235 |
|
236 |
(* emulates a subtyping relation between types t and (d : t), |
237 |
used during node application only *) |
238 |
and type_subtyping_arg env in_main ?(sub=true) const real_arg formal_type = |
239 |
let loc = real_arg.expr_loc in |
240 |
let const = const || (Types.get_static_value formal_type <> None) in |
241 |
let real_type = type_expr env in_main const real_arg in |
242 |
let real_type = |
243 |
if const |
244 |
then let d = |
245 |
if is_dimension_type real_type |
246 |
then dimension_of_expr real_arg |
247 |
else Dimension.mkdim_var () in |
248 |
let eval_const id = Types.get_static_value (Env.lookup_value (fst env) id) in |
249 |
Dimension.eval Basic_library.eval_env eval_const d; |
250 |
let real_static_type = Type_predef.type_static d (Types.dynamic_type real_type) in |
251 |
(match Types.get_static_value real_type with |
252 |
| None -> () |
253 |
| Some d' -> try_unify real_type real_static_type loc); |
254 |
real_static_type |
255 |
else real_type in |
256 |
(*Format.eprintf "subtyping const %B real %a:%a vs formal %a@." const Printers.pp_expr real_arg Types.print_ty real_type Types.print_ty formal_type;*) |
257 |
match (repr real_type).tdesc, (repr formal_type).tdesc with |
258 |
| Tstatic _ , Tstatic _ when sub -> try_unify formal_type real_type loc |
259 |
| Tstatic (r_d, r_ty), _ when sub -> try_unify formal_type r_ty loc |
260 |
| _ -> try_unify formal_type real_type loc |
261 |
|
262 |
and type_ident env in_main loc const id = |
263 |
type_expr env in_main const (expr_of_ident id loc) |
264 |
|
265 |
(* typing an application implies: |
266 |
- checking that const formal parameters match real const (maybe symbolic) arguments |
267 |
- checking type adequation between formal and real arguments |
268 |
*) |
269 |
and type_appl env in_main loc const f args = |
270 |
let tfun = type_ident env in_main loc const f in |
271 |
let tins, touts = split_arrow tfun in |
272 |
let tins = type_list_of_type tins in |
273 |
let args = expr_list_of_expr args in |
274 |
List.iter2 (type_subtyping_arg env in_main const) args tins; |
275 |
touts |
276 |
|
277 |
(** [type_expr env in_main expr] types expression [expr] in environment |
278 |
[env], expecting it to be [const] or not. *) |
279 |
and type_expr env in_main const expr = |
280 |
let res = |
281 |
match expr.expr_desc with |
282 |
| Expr_const c -> |
283 |
let ty = type_const expr.expr_loc c in |
284 |
let ty = Type_predef.type_static (Dimension.mkdim_var ()) ty in |
285 |
expr.expr_type <- ty; |
286 |
ty |
287 |
| Expr_ident v -> |
288 |
let tyv = |
289 |
try |
290 |
Env.lookup_value (fst env) v |
291 |
with Not_found -> |
292 |
Format.eprintf "Failure in typing expr %a@." Printers.pp_expr expr; |
293 |
raise (Error (expr.expr_loc, Unbound_value ("identifier " ^ v))) |
294 |
in |
295 |
let ty = instantiate (ref []) (ref []) tyv in |
296 |
let ty' = |
297 |
if const |
298 |
then Type_predef.type_static (Dimension.mkdim_var ()) (new_var ()) |
299 |
else new_var () in |
300 |
try_unify ty ty' expr.expr_loc; |
301 |
expr.expr_type <- ty; |
302 |
ty |
303 |
| Expr_array elist -> |
304 |
let ty_elt = type_standard_args env in_main const elist in |
305 |
let d = Dimension.mkdim_int expr.expr_loc (List.length elist) in |
306 |
let ty = Type_predef.type_array d ty_elt in |
307 |
expr.expr_type <- ty; |
308 |
ty |
309 |
| Expr_access (e1, d) -> |
310 |
type_subtyping_arg env in_main true (expr_of_dimension d) Type_predef.type_int; |
311 |
let ty_elt = new_var () in |
312 |
let d = Dimension.mkdim_var () in |
313 |
type_subtyping_arg env in_main const e1 (Type_predef.type_array d ty_elt); |
314 |
expr.expr_type <- ty_elt; |
315 |
ty_elt |
316 |
| Expr_power (e1, d) -> |
317 |
let eval_const id = Types.get_static_value (Env.lookup_value (fst env) id) in |
318 |
type_subtyping_arg env in_main true (expr_of_dimension d) Type_predef.type_int; |
319 |
Dimension.eval Basic_library.eval_env eval_const d; |
320 |
let ty_elt = type_standard_args env in_main const [e1] in |
321 |
let ty = Type_predef.type_array d ty_elt in |
322 |
expr.expr_type <- ty; |
323 |
ty |
324 |
| Expr_tuple elist -> |
325 |
let ty = new_ty (Ttuple (List.map (type_expr env in_main const) elist)) in |
326 |
expr.expr_type <- ty; |
327 |
ty |
328 |
| Expr_ite (c, t, e) -> |
329 |
type_subtyping_arg env in_main const c Type_predef.type_bool; |
330 |
let ty = type_standard_args env in_main const [t; e] in |
331 |
expr.expr_type <- ty; |
332 |
ty |
333 |
| Expr_appl (id, args, r) -> |
334 |
(* application of non internal function is not legal in a constant |
335 |
expression *) |
336 |
(match r with |
337 |
| None -> () |
338 |
| Some (x, l) -> |
339 |
check_constant expr.expr_loc const false; |
340 |
let expr_x = expr_of_ident x expr.expr_loc in |
341 |
let typ_l = |
342 |
Type_predef.type_clock |
343 |
(type_const expr.expr_loc (Const_tag l)) in |
344 |
type_subtyping_arg env in_main ~sub:false const expr_x typ_l); |
345 |
let touts = type_appl env in_main expr.expr_loc const id args in |
346 |
expr.expr_type <- touts; |
347 |
touts |
348 |
| Expr_fby (e1,e2) |
349 |
| Expr_arrow (e1,e2) -> |
350 |
(* fby/arrow is not legal in a constant expression *) |
351 |
check_constant expr.expr_loc const false; |
352 |
let ty = type_standard_args env in_main const [e1; e2] in |
353 |
expr.expr_type <- ty; |
354 |
ty |
355 |
| Expr_pre e -> |
356 |
(* pre is not legal in a constant expression *) |
357 |
check_constant expr.expr_loc const false; |
358 |
let ty = type_standard_args env in_main const [e] in |
359 |
expr.expr_type <- ty; |
360 |
ty |
361 |
| Expr_when (e1,c,l) -> |
362 |
(* when is not legal in a constant expression *) |
363 |
check_constant expr.expr_loc const false; |
364 |
let typ_l = Type_predef.type_clock (type_const expr.expr_loc (Const_tag l)) in |
365 |
let expr_c = expr_of_ident c expr.expr_loc in |
366 |
type_subtyping_arg env in_main ~sub:false const expr_c typ_l; |
367 |
update_clock env in_main c expr.expr_loc typ_l; |
368 |
let ty = type_standard_args env in_main const [e1] in |
369 |
expr.expr_type <- ty; |
370 |
ty |
371 |
| Expr_merge (c,hl) -> |
372 |
(* merge is not legal in a constant expression *) |
373 |
check_constant expr.expr_loc const false; |
374 |
let typ_in, typ_out = type_branches env in_main expr.expr_loc const hl in |
375 |
let expr_c = expr_of_ident c expr.expr_loc in |
376 |
let typ_l = Type_predef.type_clock typ_in in |
377 |
type_subtyping_arg env in_main ~sub:false const expr_c typ_l; |
378 |
update_clock env in_main c expr.expr_loc typ_l; |
379 |
expr.expr_type <- typ_out; |
380 |
typ_out |
381 |
| Expr_uclock (e,k) | Expr_dclock (e,k) -> |
382 |
let ty = type_expr env in_main const e in |
383 |
expr.expr_type <- ty; |
384 |
ty |
385 |
| Expr_phclock (e,q) -> |
386 |
let ty = type_expr env in_main const e in |
387 |
expr.expr_type <- ty; |
388 |
ty |
389 |
in (*Format.eprintf "typing %B %a at %a = %a@." const Printers.pp_expr expr Location.pp_loc expr.expr_loc Types.print_ty res;*) res |
390 |
|
391 |
and type_branches env in_main loc const hl = |
392 |
let typ_in = new_var () in |
393 |
let typ_out = new_var () in |
394 |
try |
395 |
let used_labels = |
396 |
List.fold_left (fun accu (t, h) -> |
397 |
unify typ_in (type_const loc (Const_tag t)); |
398 |
type_subtyping_arg env in_main const h typ_out; |
399 |
if List.mem t accu |
400 |
then raise (Error (loc, Already_bound t)) |
401 |
else t :: accu) [] hl in |
402 |
let type_labels = get_enum_type_tags (coretype_type typ_in) in |
403 |
if List.sort compare used_labels <> List.sort compare type_labels |
404 |
then let unbound_tag = List.find (fun t -> not (List.mem t used_labels)) type_labels in |
405 |
raise (Error (loc, Unbound_value ("branching tag " ^ unbound_tag))) |
406 |
else (typ_in, typ_out) |
407 |
with Unify (t1, t2) -> |
408 |
raise (Error (loc, Type_clash (t1,t2))) |
409 |
|
410 |
and update_clock env in_main id loc typ = |
411 |
(*Log.report ~level:1 (fun fmt -> Format.fprintf fmt "update_clock %s with %a@ " id print_ty typ);*) |
412 |
try |
413 |
let vdecl = List.find (fun v -> v.var_id = id) (snd env) |
414 |
in vdecl.var_type <- typ |
415 |
with |
416 |
Not_found -> |
417 |
raise (Error (loc, Unbound_value ("clock " ^ id))) |
418 |
|
419 |
(** [type_eq env eq] types equation [eq] in environment [env] *) |
420 |
let type_eq env in_main undefined_vars eq = |
421 |
(* Check undefined variables, type lhs *) |
422 |
let expr_lhs = expr_of_expr_list eq.eq_loc (List.map (fun v -> expr_of_ident v eq.eq_loc) eq.eq_lhs) in |
423 |
let ty_lhs = type_expr env in_main false expr_lhs in |
424 |
(* Check multiple variable definitions *) |
425 |
let define_var id uvars = |
426 |
try |
427 |
ignore(IMap.find id uvars); |
428 |
IMap.remove id uvars |
429 |
with Not_found -> |
430 |
raise (Error (eq.eq_loc, Already_defined id)) |
431 |
in |
432 |
let undefined_vars = |
433 |
List.fold_left (fun uvars v -> define_var v uvars) undefined_vars eq.eq_lhs in |
434 |
(* Type rhs wrt to lhs type with subtyping, i.e. a constant rhs value may be assigned |
435 |
to a (always non-constant) lhs variable *) |
436 |
type_subtyping_arg env in_main false eq.eq_rhs ty_lhs; |
437 |
undefined_vars |
438 |
|
439 |
|
440 |
(* [type_coreclock env ck id loc] types the type clock declaration [ck] |
441 |
in environment [env] *) |
442 |
let type_coreclock env ck id loc = |
443 |
match ck.ck_dec_desc with |
444 |
| Ckdec_any | Ckdec_pclock (_,_) -> () |
445 |
| Ckdec_bool cl -> |
446 |
let dummy_id_expr = expr_of_ident id loc in |
447 |
let when_expr = |
448 |
List.fold_left |
449 |
(fun expr (x, l) -> |
450 |
{expr_tag = new_tag (); |
451 |
expr_desc= Expr_when (expr,x,l); |
452 |
expr_type = new_var (); |
453 |
expr_clock = Clocks.new_var true; |
454 |
expr_delay = Delay.new_var (); |
455 |
expr_loc=loc; |
456 |
expr_annot = None}) |
457 |
dummy_id_expr cl |
458 |
in |
459 |
Format.eprintf "yiihii@."; |
460 |
ignore (type_expr env false false when_expr) |
461 |
|
462 |
let rec check_type_declaration loc cty = |
463 |
match cty with |
464 |
| Tydec_clock ty |
465 |
| Tydec_array (_, ty) -> check_type_declaration loc ty |
466 |
| Tydec_const tname -> |
467 |
if not (Hashtbl.mem type_table cty) |
468 |
then raise (Error (loc, Unbound_type tname)); |
469 |
| _ -> () |
470 |
|
471 |
let type_var_decl vd_env env vdecl = |
472 |
check_type_declaration vdecl.var_loc vdecl.var_dec_type.ty_dec_desc; |
473 |
let eval_const id = Types.get_static_value (Env.lookup_value env id) in |
474 |
let type_dim d = |
475 |
begin |
476 |
type_subtyping_arg (env, vd_env) false true (expr_of_dimension d) Type_predef.type_int; |
477 |
Dimension.eval Basic_library.eval_env eval_const d; |
478 |
end in |
479 |
let ty = type_coretype type_dim vdecl.var_dec_type.ty_dec_desc in |
480 |
let ty_status = |
481 |
if vdecl.var_dec_const |
482 |
then Type_predef.type_static (Dimension.mkdim_var ()) ty |
483 |
else ty in |
484 |
let new_env = Env.add_value env vdecl.var_id ty_status in |
485 |
type_coreclock (new_env,vd_env) vdecl.var_dec_clock vdecl.var_id vdecl.var_loc; |
486 |
vdecl.var_type <- ty_status; |
487 |
new_env |
488 |
|
489 |
let type_var_decl_list vd_env env l = |
490 |
List.fold_left (type_var_decl vd_env) env l |
491 |
|
492 |
let type_of_vlist vars = |
493 |
let tyl = List.map (fun v -> v.var_type) vars in |
494 |
type_of_type_list tyl |
495 |
|
496 |
let add_vdecl vd_env vdecl = |
497 |
if List.exists (fun v -> v.var_id = vdecl.var_id) vd_env |
498 |
then raise (Error (vdecl.var_loc, Already_bound vdecl.var_id)) |
499 |
else vdecl::vd_env |
500 |
|
501 |
let check_vd_env vd_env = |
502 |
ignore (List.fold_left add_vdecl [] vd_env) |
503 |
|
504 |
(** [type_node env nd loc] types node [nd] in environment env. The |
505 |
location is used for error reports. *) |
506 |
let type_node env nd loc = |
507 |
let is_main = nd.node_id = !Options.main_node in |
508 |
let vd_env_ol = nd.node_outputs@nd.node_locals in |
509 |
let vd_env = nd.node_inputs@vd_env_ol in |
510 |
check_vd_env vd_env; |
511 |
let init_env = env in |
512 |
let delta_env = type_var_decl_list vd_env init_env nd.node_inputs in |
513 |
let delta_env = type_var_decl_list vd_env delta_env nd.node_outputs in |
514 |
let delta_env = type_var_decl_list vd_env delta_env nd.node_locals in |
515 |
let new_env = Env.overwrite env delta_env in |
516 |
let undefined_vars_init = |
517 |
List.fold_left |
518 |
(fun uvs v -> IMap.add v.var_id () uvs) |
519 |
IMap.empty vd_env_ol in |
520 |
let undefined_vars = |
521 |
List.fold_left (type_eq (new_env, vd_env) is_main) undefined_vars_init nd.node_eqs |
522 |
in |
523 |
(* check that table is empty *) |
524 |
if (not (IMap.is_empty undefined_vars)) then |
525 |
raise (Error (loc, Undefined_var undefined_vars)); |
526 |
let ty_ins = type_of_vlist nd.node_inputs in |
527 |
let ty_outs = type_of_vlist nd.node_outputs in |
528 |
let ty_node = new_ty (Tarrow (ty_ins,ty_outs)) in |
529 |
generalize ty_node; |
530 |
(* TODO ? Check that no node in the hierarchy remains polymorphic ? *) |
531 |
nd.node_type <- ty_node; |
532 |
Env.add_value env nd.node_id ty_node |
533 |
|
534 |
let type_imported_node env nd loc = |
535 |
let new_env = type_var_decl_list nd.nodei_inputs env nd.nodei_inputs in |
536 |
let vd_env = nd.nodei_inputs@nd.nodei_outputs in |
537 |
check_vd_env vd_env; |
538 |
ignore(type_var_decl_list vd_env new_env nd.nodei_outputs); |
539 |
let ty_ins = type_of_vlist nd.nodei_inputs in |
540 |
let ty_outs = type_of_vlist nd.nodei_outputs in |
541 |
let ty_node = new_ty (Tarrow (ty_ins,ty_outs)) in |
542 |
generalize ty_node; |
543 |
(* |
544 |
if (is_polymorphic ty_node) then |
545 |
raise (Error (loc, Poly_imported_node nd.nodei_id)); |
546 |
*) |
547 |
let new_env = Env.add_value env nd.nodei_id ty_node in |
548 |
nd.nodei_type <- ty_node; |
549 |
new_env |
550 |
|
551 |
let type_imported_fun env nd loc = |
552 |
let new_env = type_var_decl_list nd.fun_inputs env nd.fun_inputs in |
553 |
let vd_env = nd.fun_inputs@nd.fun_outputs in |
554 |
check_vd_env vd_env; |
555 |
ignore(type_var_decl_list vd_env new_env nd.fun_outputs); |
556 |
let ty_ins = type_of_vlist nd.fun_inputs in |
557 |
let ty_outs = type_of_vlist nd.fun_outputs in |
558 |
let ty_node = new_ty (Tarrow (ty_ins,ty_outs)) in |
559 |
generalize ty_node; |
560 |
(* |
561 |
if (is_polymorphic ty_node) then |
562 |
raise (Error (loc, Poly_imported_node nd.fun_id)); |
563 |
*) |
564 |
let new_env = Env.add_value env nd.fun_id ty_node in |
565 |
nd.fun_type <- ty_node; |
566 |
new_env |
567 |
|
568 |
let type_top_consts env clist = |
569 |
List.fold_left (fun env cdecl -> |
570 |
let ty = type_const cdecl.const_loc cdecl.const_value in |
571 |
let d = |
572 |
if is_dimension_type ty |
573 |
then dimension_of_const cdecl.const_loc cdecl.const_value |
574 |
else Dimension.mkdim_var () in |
575 |
let ty = Type_predef.type_static d ty in |
576 |
let new_env = Env.add_value env cdecl.const_id ty in |
577 |
cdecl.const_type <- ty; |
578 |
new_env) env clist |
579 |
|
580 |
let type_top_decl env decl = |
581 |
match decl.top_decl_desc with |
582 |
| Node nd -> |
583 |
type_node env nd decl.top_decl_loc |
584 |
| ImportedNode nd -> |
585 |
type_imported_node env nd decl.top_decl_loc |
586 |
| ImportedFun nd -> |
587 |
type_imported_fun env nd decl.top_decl_loc |
588 |
| Consts clist -> |
589 |
type_top_consts env clist |
590 |
| Open _ -> env |
591 |
|
592 |
let type_prog env decls = |
593 |
try |
594 |
List.fold_left type_top_decl env decls |
595 |
with Failure _ as exc -> raise exc |
596 |
|
597 |
(* Once the Lustre program is fully typed, |
598 |
we must get back to the original description of dimensions, |
599 |
with constant parameters, instead of unifiable internal variables. *) |
600 |
|
601 |
(* The following functions aims at 'unevaluating' dimension expressions occuring in array types, |
602 |
i.e. replacing unifiable second_order variables with the original static parameters. |
603 |
Once restored in this formulation, dimensions may be meaningfully printed. |
604 |
*) |
605 |
(* |
606 |
let uneval_vdecl_generics vdecl ty = |
607 |
if vdecl.var_dec_const |
608 |
then |
609 |
match get_static_value ty with |
610 |
| None -> (Format.eprintf "internal error: %a@." Types.print_ty vdecl.var_type; assert false) |
611 |
| Some d -> Dimension.unify d (Dimension.mkdim_ident vdecl.var_loc vdecl.var_id) |
612 |
|
613 |
let uneval_node_generics vdecls = |
614 |
let inst_typ_vars = ref [] in |
615 |
let inst_dim_vars = ref [] in |
616 |
let inst_ty_list = List.map (fun v -> instantiate inst_typ_vars inst_dim_vars v.var_type) vdecls in |
617 |
List.iter2 (fun v ty -> uneval_vdecl_generics v ty) vdecls inst_ty_list; |
618 |
List.iter2 (fun v ty -> generalize ty; v.var_type <- ty) vdecls inst_ty_list |
619 |
*) |
620 |
let uneval_vdecl_generics vdecl = |
621 |
if vdecl.var_dec_const |
622 |
then |
623 |
match get_static_value vdecl.var_type with |
624 |
| None -> (Format.eprintf "internal error: %a@." Types.print_ty vdecl.var_type; assert false) |
625 |
| Some d -> Dimension.uneval vdecl.var_id d |
626 |
|
627 |
let uneval_node_generics vdecls = |
628 |
List.iter uneval_vdecl_generics vdecls |
629 |
|
630 |
let uneval_top_generics decl = |
631 |
match decl.top_decl_desc with |
632 |
| Node nd -> |
633 |
uneval_node_generics (nd.node_inputs @ nd.node_outputs) |
634 |
| ImportedNode nd -> |
635 |
uneval_node_generics (nd.nodei_inputs @ nd.nodei_outputs) |
636 |
| ImportedFun nd -> |
637 |
() |
638 |
| Consts clist -> () |
639 |
| Open _ -> () |
640 |
|
641 |
let uneval_prog_generics prog = |
642 |
List.iter uneval_top_generics prog |
643 |
|
644 |
let check_env_compat declared computed = |
645 |
Env.iter declared (fun k decl_type_k -> |
646 |
let computed_t = Env.lookup_value computed k in |
647 |
try_unify decl_type_k computed_t Location.dummy_loc |
648 |
) |
649 |
|
650 |
(* Local Variables: *) |
651 |
(* compile-command:"make -C .." *) |
652 |
(* End: *) |