lustrec / src / tools / zustre_verifier.ml @ e4edf171
History  View  Annotate  Download (24.7 KB)
1 
open Lustre_types 

2 
open Machine_code_types 
3 
open Machine_code_common 
4 
open Format 
5 
(* open Horn_backend_common 
6 
* open Horn_backend *) 
7  
8 
module HBC = Horn_backend_common 
9 
let machine_step_name = HBC.machine_step_name 
10 
let node_name = HBC.node_name 
11 
let concat = HBC.concat 
12 
let rename_machine = HBC.rename_machine 
13 
let rename_machine_list = HBC.rename_machine_list 
14 
let rename_next = HBC.rename_next 
15 
let rename_current = HBC.rename_current 
16 
let rename_current_list = HBC.rename_current_list 
17 
let rename_mid_list = HBC.rename_mid_list 
18 
let rename_next_list = HBC.rename_next_list 
19 
let full_memory_vars = HBC.full_memory_vars 
20 
let inout_vars = HBC.inout_vars 
21 
let reset_vars = HBC.reset_vars 
22 
let step_vars = HBC.step_vars 
23 
let local_memory_vars = HBC.local_memory_vars 
24 

25 
let machine_reset_name = HBC.machine_reset_name 
26 
let machine_stateless_name = HBC.machine_stateless_name 
27  
28 
let rename_mid = HBC.rename_mid 
29  
30 
let preprocess = Horn_backend.preprocess 
31 

32 
let active = ref false 
33 
let ctx = ref (Z3.mk_context []) 
34 
let fp = ref (Z3.Fixedpoint.mk_fixedpoint !ctx) 
35  
36 
(** Sorts 
37  
38 
A sort is introduced for each basic type and each enumerated type. 
39  
40 
A hashtbl records these and allow easy access to sort values, when 
41 
provided with a enumerated type name. 
42  
43 
*) 
44 

45 
let bool_sort = Z3.Boolean.mk_sort !ctx 
46 
let int_sort = Z3.Arithmetic.Integer.mk_sort !ctx 
47 
let real_sort = Z3.Arithmetic.Real.mk_sort !ctx 
48  
49 
let const_sorts = Hashtbl.create 13 
50 
let const_tags = Hashtbl.create 13 
51 
let sort_elems = Hashtbl.create 13 
52  
53 
let get_const_sort = Hashtbl.find const_sorts 
54 
let get_sort_elems = Hashtbl.find sort_elems 
55 
let get_tag_sort = Hashtbl.find const_tags 
56 

57  
58 

59 
let decl_sorts () = 
60 
Hashtbl.iter (fun typ decl > 
61 
match typ with 
62 
 Tydec_const var > 
63 
(match decl.top_decl_desc with 
64 
 TypeDef tdef > ( 
65 
match tdef.tydef_desc with 
66 
 Tydec_enum tl > 
67 
let new_sort = Z3.Enumeration.mk_sort_s !ctx var tl in 
68 
Hashtbl.add const_sorts var new_sort; 
69 
Hashtbl.add sort_elems new_sort tl; 
70 
List.iter (fun t > Hashtbl.add const_tags t new_sort) tl 
71 

72 
 _ > assert false 
73 
) 
74 
 _ > assert false 
75 
) 
76 
 _ > ()) Corelang.type_table 
77  
78 

79 
let rec type_to_sort t = 
80 
if Types.is_bool_type t then bool_sort else 
81 
if Types.is_int_type t then int_sort else 
82 
if Types.is_real_type t then real_sort else 
83 
match (Types.repr t).Types.tdesc with 
84 
 Types.Tconst ty > get_const_sort ty 
85 
 Types.Tclock t > type_to_sort t 
86 
 Types.Tarray(dim,ty) > Z3.Z3Array.mk_sort !ctx int_sort (type_to_sort ty) 
87 
 Types.Tstatic(d, ty)> type_to_sort ty 
88 
 Types.Tarrow _ 
89 
 _ > Format.eprintf "internal error: pp_type %a@." 
90 
Types.print_ty t; assert false 
91  
92 
(** Func decls 
93  
94 
Similarly fun_decls are registerd, by their name, into a hashtbl. The 
95 
proposed encoding introduces a 0ary fun_decl to model variables 
96 
and fun_decl with arguments to declare reset and step predicates. 
97  
98  
99  
100 
*) 
101 
let decls = Hashtbl.create 13 
102 
let register_fdecl id fd = Hashtbl.add decls id fd 
103 
let get_fdecl id = Hashtbl.find decls id 
104 

105 
let decl_var id = 
106 
let fdecl = Z3.FuncDecl.mk_func_decl_s !ctx id.var_id [] (type_to_sort id.var_type) in 
107 
register_fdecl id.var_id fdecl; 
108 
fdecl 
109  
110 
let decl_rel name args = 
111 
(*verifier ce qui est construit. On veut un declarerel *) 
112 
let args_sorts = List.map (fun v > type_to_sort v.var_type) args in 
113 
let fdecl = Z3.FuncDecl.mk_func_decl_s !ctx name args_sorts bool_sort in 
114 
register_fdecl name fdecl; 
115 
fdecl 
116 

117  
118  
119 
(** Conversion functions 
120  
121 
The following is similar to the Horn backend. Each printing function 
122 
is rephrased from pp_xx to xx_to_expr and produces a Z3 value. 
123  
124 
*) 
125  
126  
127 
(* Returns the f_decl associated to the variable v *) 
128 
let horn_var_to_expr v = 
129 
Z3.Expr.mk_const_f !ctx (get_fdecl v.var_id) 
130  
131  
132  
133  
134 
(* Used to print boolean constants *) 
135 
let horn_tag_to_expr t = 
136 
if t = Corelang.tag_true then 
137 
Z3.Boolean.mk_true !ctx 
138 
else if t = Corelang.tag_false then 
139 
Z3.Boolean.mk_false !ctx 
140 
else 
141 
(* Finding the associated sort *) 
142 
let sort = get_tag_sort t in 
143 
let elems = get_sort_elems sort in 
144 
let res : Z3.Expr.expr option = 
145 
List.fold_left2 (fun res cst expr > 
146 
match res with 
147 
 Some _ > res 
148 
 None > if t = cst then Some (expr:Z3.Expr.expr) else None 
149 
) None elems (Z3.Enumeration.get_consts sort) 
150 
in 
151 
match res with None > assert false  Some s > s 
152 

153 
(* Prints a constant value *) 
154 
let rec horn_const_to_expr c = 
155 
match c with 
156 
 Const_int i > Z3.Arithmetic.Integer.mk_numeral_i !ctx i 
157 
 Const_real (_,_,s) > Z3.Arithmetic.Real.mk_numeral_i !ctx 0 
158 
 Const_tag t > horn_tag_to_expr t 
159 
 _ > assert false 
160  
161  
162  
163 
(* Default value for each type, used when building arrays. Eg integer array 
164 
[2;7] is defined as (store (store (0) 1 7) 0 2) where 0 is this default value 
165 
for the type integer (arrays). 
166 
*) 
167 
let rec horn_default_val t = 
168 
let t = Types.dynamic_type t in 
169 
if Types.is_bool_type t then Z3.Boolean.mk_true !ctx else 
170 
if Types.is_int_type t then Z3.Arithmetic.Integer.mk_numeral_i !ctx 0 else 
171 
if Types.is_real_type t then Z3.Arithmetic.Real.mk_numeral_i !ctx 0 else 
172 
(* match (Types.dynamic_type t).Types.tdesc with 
173 
*  Types.Tarray(dim, l) > (\* TODO PL: this strange code has to be (heavily) checked *\) 
174 
* let valt = Types.array_element_type t in 
175 
* fprintf fmt "((as const (Array Int %a)) %a)" 
176 
* pp_type valt 
177 
* pp_default_val valt 
178 
*  Types.Tstruct(l) > assert false 
179 
*  Types.Ttuple(l) > assert false 
180 
* _ > *) assert false 
181  
182 
(* Conversion of basic library functions *) 
183 

184 
let horn_basic_app i val_to_expr vl = 
185 
match i, vl with 
186 
 "ite", [v1; v2; v3] > 
187 
Z3.Boolean.mk_ite 
188 
!ctx 
189 
(val_to_expr v1) 
190 
(val_to_expr v2) 
191 
(val_to_expr v3) 
192  
193 
 "uminus", [v] > 
194 
Z3.Arithmetic.mk_unary_minus 
195 
!ctx 
196 
(val_to_expr v) 
197 
 "not", [v] > 
198 
Z3.Boolean.mk_not 
199 
!ctx 
200 
(val_to_expr v) 
201 
 "=", [v1; v2] > 
202 
Z3.Boolean.mk_eq 
203 
!ctx 
204 
(val_to_expr v1) 
205 
(val_to_expr v2) 
206 
 "&&", [v1; v2] > 
207 
Z3.Boolean.mk_and 
208 
!ctx 
209 
[val_to_expr v1; 
210 
val_to_expr v2] 
211 
 "", [v1; v2] > 
212 
Z3.Boolean.mk_or 
213 
!ctx 
214 
[val_to_expr v1; 
215 
val_to_expr v2] 
216  
217 
 "impl", [v1; v2] > 
218 
Z3.Boolean.mk_implies 
219 
!ctx 
220 
(val_to_expr v1) 
221 
(val_to_expr v2) 
222 
 "mod", [v1; v2] > 
223 
Z3.Arithmetic.Integer.mk_mod 
224 
!ctx 
225 
(val_to_expr v1) 
226 
(val_to_expr v2) 
227 
 "equi", [v1; v2] > 
228 
Z3.Boolean.mk_eq 
229 
!ctx 
230 
(val_to_expr v1) 
231 
(val_to_expr v2) 
232 
 "xor", [v1; v2] > 
233 
Z3.Boolean.mk_xor 
234 
!ctx 
235 
(val_to_expr v1) 
236 
(val_to_expr v2) 
237 
 "!=", [v1; v2] > 
238 
Z3.Boolean.mk_not 
239 
!ctx 
240 
( 
241 
Z3.Boolean.mk_eq 
242 
!ctx 
243 
(val_to_expr v1) 
244 
(val_to_expr v2) 
245 
) 
246 
 "/", [v1; v2] > 
247 
Z3.Arithmetic.mk_div 
248 
!ctx 
249 
(val_to_expr v1) 
250 
(val_to_expr v2) 
251  
252 
(*  _, [v1; v2] > Z3.Boolean.mk_and 
253 
* !ctx 
254 
* (val_to_expr v1) 
255 
* (val_to_expr v2) 
256 
* 
257 
* Format.fprintf fmt "(%s %a %a)" i val_to_exprr v1 val_to_expr v2 *) 
258 
 _ > ( 
259 
Format.eprintf 
260 
"internal error: zustre unkown function %s@." i; 
261 
assert false) 
262  
263 

264 
(* Convert a value expression [v], with internal function calls only. 
265 
[pp_var] is a printer for variables (typically [pp_c_var_read]), 
266 
but an offset suffix may be added for array variables 
267 
*) 
268 
let rec horn_val_to_expr ?(is_lhs=false) self v = 
269 
match v.value_desc with 
270 
 Cst c > horn_const_to_expr c 
271  
272 
(* Code specific for arrays *) 
273 
 Array il > 
274 
(* An array definition: 
275 
(store ( 
276 
... 
277 
(store ( 
278 
store ( 
279 
default_val 
280 
) 
281 
idx_n val_n 
282 
) 
283 
idx_n1 val_n1) 
284 
... 
285 
idx_1 val_1 
286 
) *) 
287 
let rec build_array (tab, x) = 
288 
match tab with 
289 
 [] > horn_default_val v.value_type(* (get_type v) *) 
290 
 h::t > 
291 
Z3.Z3Array.mk_store 
292 
!ctx 
293 
(build_array (t, (x+1))) 
294 
(Z3.Arithmetic.Integer.mk_numeral_i !ctx x) 
295 
(horn_val_to_expr ~is_lhs:is_lhs self h) 
296 
in 
297 
build_array (il, 0) 
298 

299 
 Access(tab,index) > 
300 
Z3.Z3Array.mk_select !ctx 
301 
(horn_val_to_expr ~is_lhs:is_lhs self tab) 
302 
(horn_val_to_expr ~is_lhs:is_lhs self index) 
303  
304 
(* Code specific for arrays *) 
305 

306 
 Power (v, n) > assert false 
307 
 LocalVar v > 
308 
horn_var_to_expr 
309 
(rename_machine 
310 
self 
311 
v) 
312 
 StateVar v > 
313 
if Types.is_array_type v.var_type 
314 
then assert false 
315 
else horn_var_to_expr (rename_machine self ((if is_lhs then rename_next else rename_current) (* self *) v)) 
316 
 Fun (n, vl) > horn_basic_app n (horn_val_to_expr self) vl 
317  
318 
let no_reset_to_exprs machines m i = 
319 
let (n,_) = List.assoc i m.minstances in 
320 
let target_machine = List.find (fun m > m.mname.node_id = (Corelang.node_name n)) machines in 
321  
322 
let m_list = 
323 
rename_machine_list 
324 
(concat m.mname.node_id i) 
325 
(rename_mid_list (full_memory_vars machines target_machine)) 
326 
in 
327 
let c_list = 
328 
rename_machine_list 
329 
(concat m.mname.node_id i) 
330 
(rename_current_list (full_memory_vars machines target_machine)) 
331 
in 
332 
match c_list, m_list with 
333 
 [chd], [mhd] > 
334 
let expr = 
335 
Z3.Boolean.mk_eq !ctx 
336 
(horn_var_to_expr mhd) 
337 
(horn_var_to_expr chd) 
338 
in 
339 
[expr] 
340 
 _ > ( 
341 
let exprs = 
342 
List.map2 (fun mhd chd > 
343 
Z3.Boolean.mk_eq !ctx 
344 
(horn_var_to_expr mhd) 
345 
(horn_var_to_expr chd) 
346 
) 
347 
m_list 
348 
c_list 
349 
in 
350 
exprs 
351 
) 
352  
353 
let instance_reset_to_exprs machines m i = 
354 
let (n,_) = List.assoc i m.minstances in 
355 
let target_machine = List.find (fun m > m.mname.node_id = (Corelang.node_name n)) machines in 
356 
let vars = 
357 
( 
358 
(rename_machine_list 
359 
(concat m.mname.node_id i) 
360 
(rename_current_list (full_memory_vars machines target_machine)) 
361 
) 
362 
@ 
363 
(rename_machine_list 
364 
(concat m.mname.node_id i) 
365 
(rename_mid_list (full_memory_vars machines target_machine)) 
366 
) 
367 
) 
368 
in 
369 
let expr = 
370 
Z3.Expr.mk_app 
371 
!ctx 
372 
(get_fdecl (machine_reset_name (Corelang.node_name n))) 
373 
(List.map (horn_var_to_expr) vars) 
374 
in 
375 
[expr] 
376  
377 
let instance_call_to_exprs machines reset_instances m i inputs outputs = 
378 
let self = m.mname.node_id in 
379 
try (* stateful node instance *) 
380 
begin 
381 
let (n,_) = List.assoc i m.minstances in 
382 
let target_machine = List.find (fun m > m.mname.node_id = Corelang.node_name n) machines in 
383  
384 
(* Checking whether this specific instances has been reset yet *) 
385 
let reset_exprs = 
386 
if not (List.mem i reset_instances) then 
387 
(* If not, declare mem_m = mem_c *) 
388 
no_reset_to_exprs machines m i 
389 
else 
390 
[] (* Nothing to add yet *) 
391 
in 
392 

393 
let mems = full_memory_vars machines target_machine in 
394 
let rename_mems f = rename_machine_list (concat m.mname.node_id i) (f mems) in 
395 
let mid_mems = rename_mems rename_mid_list in 
396 
let next_mems = rename_mems rename_next_list in 
397  
398 
let call_expr = 
399 
match Corelang.node_name n, inputs, outputs, mid_mems, next_mems with 
400 
 "_arrow", [i1; i2], [o], [mem_m], [mem_x] > begin 
401 
let stmt1 = (* out = ite mem_m then i1 else i2 *) 
402 
Z3.Boolean.mk_eq !ctx 
403 
( (* output var *) 
404 
horn_val_to_expr 
405 
~is_lhs:true 
406 
self 
407 
(mk_val (LocalVar o) o.var_type) 
408 
) 
409 
( 
410 
Z3.Boolean.mk_ite !ctx 
411 
(horn_var_to_expr mem_m) 
412 
(horn_val_to_expr self i1) 
413 
(horn_val_to_expr self i2) 
414 
) 
415 
in 
416 
let stmt2 = (* mem_X = false *) 
417 
Z3.Boolean.mk_eq !ctx 
418 
(horn_var_to_expr mem_x) 
419 
(Z3.Boolean.mk_false !ctx) 
420 
in 
421 
[stmt1; stmt2] 
422 
end 
423  
424 
 node_name_n > 
425 
let expr = 
426 
Z3.Expr.mk_app 
427 
!ctx 
428 
(get_fdecl (machine_step_name (node_name n))) 
429 
( (* Arguments are input, output, mid_mems, next_mems *) 
430 
( 
431 
List.map (horn_val_to_expr self) ( 
432 
inputs @ 
433 
(List.map (fun v > mk_val (LocalVar v) v.var_type) outputs) 
434 
) 
435 
) @ ( 
436 
List.map (horn_var_to_expr) (mid_mems@next_mems) 
437 
) 
438 
) 
439 
in 
440 
[expr] 
441 
in 
442  
443 
reset_exprs@call_expr 
444 
end 
445 
with Not_found > ( (* stateless node instance *) 
446 
let (n,_) = List.assoc i m.mcalls in 
447 
let expr = 
448 
Z3.Expr.mk_app 
449 
!ctx 
450 
(get_fdecl (machine_stateless_name (node_name n))) 
451 
((* Arguments are inputs, outputs *) 
452 
List.map (horn_val_to_expr self) 
453 
( 
454 
inputs @ (List.map (fun v > mk_val (LocalVar v) v.var_type) outputs) 
455 
) 
456 
) 
457 
in 
458 
[expr] 
459 
) 
460  
461  
462 

463 
(* (\* Prints a [value] indexed by the suffix list [loop_vars] *\) *) 
464 
(* let rec value_suffix_to_expr self value = *) 
465 
(* match value.value_desc with *) 
466 
(*  Fun (n, vl) > *) 
467 
(* horn_basic_app n (horn_val_to_expr self) (value_suffix_to_expr self vl) *) 
468 

469 
(*  _ > *) 
470 
(* horn_val_to_expr self value *) 
471  
472  
473 
(* type_directed assignment: array vs. statically sized type 
474 
 [var_type]: type of variable to be assigned 
475 
 [var_name]: name of variable to be assigned 
476 
 [value]: assigned value 
477 
 [pp_var]: printer for variables 
478 
*) 
479 
let assign_to_exprs m var_name value = 
480 
let self = m.mname.node_id in 
481 
let e = 
482 
Z3.Boolean.mk_eq 
483 
!ctx 
484 
(horn_val_to_expr ~is_lhs:true self var_name) 
485 
(horn_val_to_expr self value) 
486 
(* was: TODO deal with array accesses (value_suffix_to_expr self value) *) 
487 
in 
488 
[e] 
489  
490 

491 
(* Convert instruction to Z3.Expr and update the set of reset instances *) 
492 
let rec instr_to_exprs machines reset_instances (m: machine_t) instr : Z3.Expr.expr list * ident list = 
493 
match Corelang.get_instr_desc instr with 
494 
 MComment _ > [], reset_instances 
495 
 MNoReset i > (* we assign middle_mem with mem_m. And declare i as reset *) 
496 
no_reset_to_exprs machines m i, 
497 
i::reset_instances 
498 
 MReset i > (* we assign middle_mem with reset: reset(mem_m) *) 
499 
instance_reset_to_exprs machines m i, 
500 
i::reset_instances 
501 
 MLocalAssign (i,v) > 
502 
assign_to_exprs 
503 
m 
504 
(mk_val (LocalVar i) i.var_type) v, 
505 
reset_instances 
506 
 MStateAssign (i,v) > 
507 
assign_to_exprs 
508 
m 
509 
(mk_val (StateVar i) i.var_type) v, 
510 
reset_instances 
511 
 MStep ([i0], i, vl) when Basic_library.is_internal_fun i (List.map (fun v > v.value_type) vl) > 
512 
assert false (* This should not happen anymore *) 
513 
 MStep (il, i, vl) > 
514 
(* if reset instance, just print the call over mem_m , otherwise declare mem_m = 
515 
mem_c and print the call to mem_m *) 
516 
instance_call_to_exprs machines reset_instances m i vl il, 
517 
reset_instances (* Since this instance call will only happen once, we 
518 
don't have to update reset_instances *) 
519  
520 
 MBranch (g,hl) > (* (g = tag1 => expr1) and (g = tag2 => expr2) ... 
521 
should not be produced yet. Later, we will have to 
522 
compare the reset_instances of each branch and 
523 
introduced the mem_m = mem_c for branches to do not 
524 
address it while other did. Am I clear ? *) 
525 
(* For each branch we obtain the logical encoding, and the information 
526 
whether a sub node has been reset or not. If a node has been reset in one 
527 
of the branch, then all others have to have the mem_m = mem_c 
528 
statement. *) 
529 
let self = m.mname.node_id in 
530 
let branch_to_expr (tag, instrs) = 
531 
let branch_def, branch_resets = instrs_to_expr machines reset_instances m instrs in 
532 
let e = 
533 
Z3.Boolean.mk_implies !ctx 
534 
(Z3.Boolean.mk_eq !ctx 
535 
(horn_val_to_expr self g) 
536 
(horn_tag_to_expr tag)) 
537 
branch_def in 
538  
539 
[e], branch_resets 
540 

541 
in 
542 
List.fold_left (fun (instrs, resets) b > 
543 
let b_instrs, b_resets = branch_to_expr b in 
544 
instrs@b_instrs, resets@b_resets 
545 
) ([], reset_instances) hl 
546  
547 
and instrs_to_expr machines reset_instances m instrs = 
548 
let instr_to_exprs rs i = instr_to_exprs machines rs m i in 
549 
let e_list, rs = 
550 
match instrs with 
551 
 [x] > instr_to_exprs reset_instances x 
552 
 _::_ > (* TODO: check whether we should compuyte a AND on the exprs (expr list) built here. It was performed in the printer setting but seems to be useless here since the output is a list of exprs *) 
553 

554 
List.fold_left (fun (exprs, rs) i > 
555 
let exprs_i, rs_i = instr_to_exprs rs i in 
556 
exprs@exprs_i, rs@rs_i 
557 
) 
558 
([], reset_instances) instrs 
559 

560 

561 
 [] > [], reset_instances 
562 
in 
563 
let e = 
564 
match e_list with 
565 
 [e] > e 
566 
 [] > Z3.Boolean.mk_true !ctx 
567 
 _ > Z3.Boolean.mk_and !ctx e_list 
568 
in 
569 
e, rs 
570  
571 

572 
let machine_reset machines m = 
573 
let locals = local_memory_vars machines m in 
574 

575 
(* print "x_m = x_c" for each local memory *) 
576 
let mid_mem_def = 
577 
List.map (fun v > 
578 
Z3.Boolean.mk_eq !ctx 
579 
(horn_var_to_expr (rename_mid v)) 
580 
(horn_var_to_expr (rename_current v)) 
581 
) locals 
582 
in 
583  
584 
(* print "child_reset ( associated vars _ {c,m} )" for each subnode. 
585 
Special treatment for _arrow: _first = true 
586 
*) 
587  
588 
let reset_instances = 
589 

590 
List.map (fun (id, (n, _)) > 
591 
let name = node_name n in 
592 
if name = "_arrow" then ( 
593 
Z3.Boolean.mk_eq !ctx 
594 
( 
595 
let vdecl = get_fdecl ((concat m.mname.node_id id) ^ "._arrow._first_m") in 
596 
Z3.Expr.mk_const_f !ctx vdecl 
597 
) 
598 
(Z3.Boolean.mk_true !ctx) 
599 

600 
) else ( 
601 
let machine_n = get_machine machines name in 
602 

603 
Z3.Expr.mk_app 
604 
!ctx 
605 
(get_fdecl (name ^ "_reset")) 
606 
(List.map (horn_var_to_expr) 
607 
(rename_machine_list (concat m.mname.node_id id) (reset_vars machines machine_n)) 
608 
) 
609 

610 
) 
611 
) m.minstances 
612 

613 

614 
in 
615 

616 
Z3.Boolean.mk_and !ctx (mid_mem_def @ reset_instances) 
617 

618 

619  
620 
(* TODO: empty list means true statement *) 
621 
let decl_machine machines m = 
622 
if m.mname.node_id = Arrow.arrow_id then 
623 
(* We don't do arrow function *) 
624 
() 
625 
else 
626 
begin 
627 
let vars = 
628 
List.map decl_var 
629 
( 
630 
(inout_vars machines m)@ 
631 
(rename_current_list (full_memory_vars machines m)) @ 
632 
(rename_mid_list (full_memory_vars machines m)) @ 
633 
(rename_next_list (full_memory_vars machines m)) @ 
634 
(rename_machine_list m.mname.node_id m.mstep.step_locals) 
635 
) 
636 
in 
637 

638 
if is_stateless m then 
639 
begin 
640 
(* Declaring single predicate *) 
641 
let _ = decl_rel (machine_stateless_name m.mname.node_id) (inout_vars machines m) in 
642 
let horn_body, _ (* don't care for reset here *) = 
643 
instrs_to_expr 
644 
machines 
645 
([] (* No reset info for stateless nodes *) ) 
646 
m 
647 
m.mstep.step_instrs 
648 
in 
649 
let horn_head = 
650 
Z3.Expr.mk_app 
651 
!ctx 
652 
(get_fdecl (machine_stateless_name m.mname.node_id)) 
653 
(List.map (horn_var_to_expr) (inout_vars machines m)) 
654 
in 
655 
match m.mstep.step_asserts with 
656 
 [] > 
657 
begin 
658 
(* Rule for single predicate : "; Stateless step rule @." *) 
659 
Z3.Fixedpoint.add_rule !fp 
660 
(Z3.Boolean.mk_implies !ctx horn_body horn_head) 
661 
None 
662 
end 
663 
 assertsl > 
664 
begin 
665 
(*Rule for step "; Stateless step rule with Assertions @.";*) 
666 
let body_with_asserts = 
667 
Z3.Boolean.mk_and !ctx (horn_body :: List.map (horn_val_to_expr m.mname.node_id) assertsl) 
668 
in 
669 
Z3.Fixedpoint.add_rule !fp 
670 
(Z3.Boolean.mk_implies !ctx body_with_asserts horn_head) 
671 
None 
672 
end 
673 
end 
674 
else 
675 
begin 
676 
(* Declaring predicate *) 
677 
let _ = decl_rel (machine_reset_name m.mname.node_id) (reset_vars machines m) in 
678 
let _ = decl_rel (machine_step_name m.mname.node_id) (step_vars machines m) in 
679  
680 
(* Rule for reset *) 
681  
682 
let horn_reset_body = machine_reset machines m in 
683 
let horn_reset_head = 
684 
Z3.Expr.mk_app 
685 
!ctx 
686 
(get_fdecl (machine_reset_name m.mname.node_id)) 
687 
(List.map (horn_var_to_expr) (reset_vars machines m)) 
688 
in 
689 

690 
let _ = 
691 
Z3.Fixedpoint.add_rule !fp 
692 
(Z3.Boolean.mk_implies !ctx horn_reset_body horn_reset_head) 
693 
None 
694 
in 
695  
696 
(* Rule for step*) 
697 
let horn_step_body, _ (* don't care for reset here *) = 
698 
instrs_to_expr 
699 
machines 
700 
[] 
701 
m 
702 
m.mstep.step_instrs 
703 
in 
704 
let horn_step_head = 
705 
Z3.Expr.mk_app 
706 
!ctx 
707 
(get_fdecl (machine_step_name m.mname.node_id)) 
708 
(List.map (horn_var_to_expr) (step_vars machines m)) 
709 
in 
710 
match m.mstep.step_asserts with 
711 
 [] > 
712 
begin 
713 
(* Rule for single predicate *) 
714 
Z3.Fixedpoint.add_rule !fp 
715 
(Z3.Boolean.mk_implies !ctx horn_step_body horn_step_head) 
716 
None 
717 
end 
718 
 assertsl > 
719 
begin 
720 
(* Rule for step Assertions @.; *) 
721 
let body_with_asserts = 
722 
Z3.Boolean.mk_and !ctx 
723 
(horn_step_body :: List.map (horn_val_to_expr m.mname.node_id) assertsl) 
724 
in 
725 
Z3.Fixedpoint.add_rule !fp 
726 
(Z3.Boolean.mk_implies !ctx body_with_asserts horn_step_head) 
727 
None 
728 
end 
729 

730 
end 
731 
end 
732  
733 
let param_stat = ref false 
734 
let param_eldarica = ref false 
735 
let param_utvpi = ref false 
736 
let param_tosmt = ref false 
737 
let param_pp = ref false 
738 

739 
module Verifier = 
740 
(struct 
741 
include VerifierType.Default 
742 
let name = "zustre" 
743 
let options = [ 
744 
"stat", Arg.Set param_stat, "print statistics"; 
745 
"eldarica", Arg.Set param_eldarica, "deactivate fixedpoint extensions when printing rules"; 
746 
"no_utvpi", Arg.Set param_utvpi, "Deactivate UTVPI strategy"; 
747 
"tosmt", Arg.Set param_tosmt, "Print lowlevel (possibly unreadable) SMT2 statements"; 
748 
"nopp", Arg.Set param_pp, "No preprocessing (inlining and slicing)"; 
749 
] 
750 

751 
let activate () = ( 
752 
active := true; 
753 
Options.output := "horn"; 
754 
) 
755 
let is_active () = !active 
756  
757 
let get_normalization_params () = 
758 
(* make sure the output is "Horn" *) 
759 
assert(!Options.output = "horn"); 
760 
Backends.get_normalization_params () 
761  
762 
let setup_solver () = 
763 
fp := Z3.Fixedpoint.mk_fixedpoint !ctx; 
764 
(* let help = Z3.Fixedpoint.get_help fp in 
765 
* Format.eprintf "Fp help : %s@." help; 
766 
* 
767 
* let solver =Z3.Solver.mk_solver !ctx None in 
768 
* let help = Z3.Solver.get_help solver in 
769 
* Format.eprintf "Z3 help : %s@." help; *) 
770 

771 
let module P = Z3.Params in 
772 
let module S = Z3.Symbol in 
773 
let mks = S.mk_string !ctx in 
774 
let params = P.mk_params !ctx in 
775  
776 
(* self.fp.set (engine='spacer') *) 
777 
P.add_symbol params (mks "engine") (mks "spacer"); 
778 

779 
(* #z3.set_option(rational_to_decimal=True) *) 
780 
(* #self.fp.set('precision',30) *) 
781 
if !param_stat then 
782 
(* self.fp.set('print_statistics',True) *) 
783 
P.add_bool params (mks "print_statistics") true; 
784  
785 
(* Dont know where to find this parameter *) 
786 
(* if !param_spacer_verbose then 
787 
* if self.args.spacer_verbose: 
788 
* z3.set_option (verbose=1) *) 
789  
790 
(* The option is not recogined*) 
791 
(* self.fp.set('use_heavy_mev',True) *) 
792 
(* P.add_bool params (mks "use_heavy_mev") true; *) 
793 

794 
(* self.fp.set('pdr.flexible_trace',True) *) 
795 
P.add_bool params (mks "pdr.flexible_trace") true; 
796  
797 
(* self.fp.set('reset_obligation_queue',False) *) 
798 
P.add_bool params (mks "spacer.reset_obligation_queue") false; 
799  
800 
(* self.fp.set('spacer.elim_aux',False) *) 
801 
P.add_bool params (mks "spacer.elim_aux") false; 
802  
803 
(* if self.args.eldarica: 
804 
* self.fp.set('print_fixedpoint_extensions', False) *) 
805 
if !param_eldarica then 
806 
P.add_bool params (mks "print_fixedpoint_extensions") false; 
807 

808 
(* if self.args.utvpi: self.fp.set('pdr.utvpi', False) *) 
809 
if !param_utvpi then 
810 
P.add_bool params (mks "pdr.utvpi") false; 
811  
812 
(* if self.args.tosmt: 
813 
* self.log.info("Setting low level printing") 
814 
* self.fp.set ('print.low_level_smt2',True) *) 
815 
if !param_tosmt then 
816 
P.add_bool params (mks "print.low_level_smt2") true; 
817  
818 
(* if not self.args.pp: 
819 
* self.log.info("No preprocessing") 
820 
* self.fp.set ('xform.slice', False) 
821 
* self.fp.set ('xform.inline_linear',False) 
822 
* self.fp.set ('xform.inline_eager',False) *\) *) 
823 
if !param_pp then ( 
824 
P.add_bool params (mks "xform.slice") false; 
825 
P.add_bool params (mks "xform.inline_linear") false; 
826 
P.add_bool params (mks "xform.inline_eager") false 
827 
); 
828 
Z3.Fixedpoint.set_parameters !fp params 
829 

830 

831 
let run basename prog machines = 
832 
let machines = Machine_code_common.arrow_machine::machines in 
833 
let machines = preprocess machines in 
834 
setup_solver (); 
835 
decl_sorts (); 
836 
List.iter (decl_machine machines) (List.rev machines); 
837 
() 
838 

839 

840  
841 
end: VerifierType.S) 
842 
