Project

General

Profile

Statistics
| Branch: | Tag: | Revision:

lustrec / src / mutation.ml @ b7c3790e

History | View | Annotate | Download (26.3 KB)

1

    
2
(* Comments in function fold_mutate
3

    
4
 TODO: check if we can generate more cases. The following lines were
5
	     cylcing and missing to detect that the enumaration was complete,
6
	     leading to a non terminating process. The current setting is harder
7
	     but may miss enumerating some cases. To be checked! 
8
	
9

    
10
*)
11

    
12

    
13
open LustreSpec
14
open Corelang
15
open Log
16
open Format
17

    
18
let random_seed = ref 0
19
let threshold_delay = 95
20
let threshold_inc_int = 97
21
let threshold_dec_int = 97
22
let threshold_random_int = 96
23
let threshold_switch_int = 100 (* not implemented yet *)
24
let threshold_random_float = 100 (* not used yet *)
25
let threshold_negate_bool_var = 95
26
let threshold_arith_op = 95
27
let threshold_rel_op = 95
28
let threshold_bool_op = 95
29

    
30
let int_consts = ref []
31

    
32
let rename_app id =
33
  let node = Corelang.node_from_name id in
34
  let is_imported =
35
    match node.top_decl_desc with
36
    | ImportedNode _ -> true
37
    | _ -> false
38
  in
39
  if !Options.no_mutation_suffix || is_imported then
40
    id
41
  else
42
    id ^ "_mutant"
43

    
44
(************************************************************************************)
45
(*                    Gathering constants in the code                               *)
46
(************************************************************************************)
47

    
48
module IntSet = Set.Make (struct type t = int let compare = compare end)
49
module OpCount = Mmap.Make (struct type t = string let compare = compare end)
50

    
51
type records = {
52
  consts: IntSet.t;
53
  nb_consts: int;
54
  nb_boolexpr: int;
55
  nb_pre: int;
56
  nb_op: int OpCount.t;
57
}
58

    
59
let arith_op = ["+" ; "-" ; "*" ; "/"] 
60
let bool_op = ["&&"; "||"; "xor";  "impl"] 
61
let rel_op = ["<" ; "<=" ; ">" ; ">=" ; "!=" ; "=" ] 
62
let ops = arith_op @ bool_op @ rel_op
63
let all_ops = "not" :: ops
64

    
65
let empty_records = 
66
  {consts=IntSet.empty; nb_consts=0; nb_boolexpr=0; nb_pre=0; nb_op=OpCount.empty}
67

    
68
let records = ref empty_records
69

    
70
let merge_records records_list = 
71
  let merge_record r1 r2 =
72
    {
73
      consts = IntSet.union r1.consts r2.consts;
74

    
75
      nb_consts = r1.nb_consts + r2.nb_consts;
76
      nb_boolexpr = r1.nb_boolexpr + r2.nb_boolexpr;
77
      nb_pre = r1.nb_pre + r2.nb_pre;
78

    
79
      nb_op = OpCount.merge (fun op r1opt r2opt ->
80
	match r1opt, r2opt with
81
	| None, _ -> r2opt
82
	| _, None -> r1opt
83
	| Some x, Some y -> Some (x+y)
84
      ) r1.nb_op r2.nb_op 
85
    }
86
  in
87
  List.fold_left merge_record empty_records records_list
88
  
89
let compute_records_const_value c =
90
  match c with
91
  | Const_int i -> {empty_records with consts = IntSet.singleton i; nb_consts = 1}
92
  | _ -> empty_records
93

    
94
let rec compute_records_expr expr =
95
  let boolexpr = 
96
    if Types.is_bool_type expr.expr_type then
97
      {empty_records with nb_boolexpr = 1}
98
    else
99
      empty_records
100
  in
101
  let subrec = 
102
    match expr.expr_desc with
103
    | Expr_const c -> compute_records_const_value c
104
    | Expr_tuple l -> merge_records (List.map compute_records_expr l)
105
    | Expr_ite (i,t,e) -> 
106
      merge_records (List.map compute_records_expr [i;t;e])
107
    | Expr_arrow (e1, e2) ->       
108
      merge_records (List.map compute_records_expr [e1;e2])
109
    | Expr_pre e -> 
110
      merge_records (
111
	({empty_records with nb_pre = 1})
112
	::[compute_records_expr e])
113
    | Expr_appl (op_id, args, r) -> 
114
      if List.mem op_id ops then
115
	merge_records (
116
	  ({empty_records with nb_op = OpCount.singleton op_id 1})
117
	  ::[compute_records_expr args])
118
      else
119
	compute_records_expr args
120
    | _ -> empty_records
121
  in
122
  merge_records [boolexpr;subrec]
123

    
124
let compute_records_eq eq = compute_records_expr eq.eq_rhs
125

    
126
let compute_records_node nd =
127
  let eqs, auts = get_node_eqs nd in
128
  assert (auts=[]); (* Automaton should be expanded by now *)
129
  merge_records (List.map compute_records_eq eqs)
130

    
131
let compute_records_top_decl td =
132
  match td.top_decl_desc with
133
  | Node nd -> compute_records_node nd
134
  | Const cst -> compute_records_const_value cst.const_value
135
  | _ -> empty_records
136

    
137
let compute_records prog = 
138
  merge_records (List.map compute_records_top_decl prog)
139

    
140
(*****************************************************************)
141
(*                  Random mutation                              *)
142
(*****************************************************************)
143

    
144
let check_mut e1 e2 =
145
  let rec eq e1 e2 =
146
    match e1.expr_desc, e2.expr_desc with
147
    | Expr_const c1, Expr_const c2 -> c1 = c2
148
    | Expr_ident id1, Expr_ident id2 -> id1 = id2
149
    | Expr_tuple el1, Expr_tuple el2 -> List.length el1 = List.length el2 && List.for_all2 eq el1 el2
150
    | Expr_ite (i1, t1, e1), Expr_ite (i2, t2, e2) -> eq i1 i2 && eq t1 t2 && eq e1 e2
151
    | Expr_arrow (x1, y1), Expr_arrow (x2, y2) -> eq x1 x2 && eq y1 y2
152
    | Expr_pre e1, Expr_pre e2 -> eq e1 e2
153
    | Expr_appl (id1, e1, _), Expr_appl (id2, e2, _) -> id1 = id2 && eq e1 e2
154
  | _ -> false
155
  in
156
  if not (eq e1 e2) then
157
    Some (e1, e2)
158
  else
159
    None
160

    
161
let mk_cst_expr c = mkexpr Location.dummy_loc (Expr_const c)
162

    
163
let rdm_mutate_int i = 
164
  if Random.int 100 > threshold_inc_int then
165
    i+1
166
  else if Random.int 100 > threshold_dec_int then
167
    i-1
168
  else if Random.int 100 > threshold_random_int then
169
    Random.int 10
170
  else if Random.int 100 > threshold_switch_int then
171
    let idx = Random.int (List.length !int_consts) in
172
    List.nth !int_consts idx
173
  else
174
    i
175
  
176
let rdm_mutate_real r =
177
  if Random.int 100 > threshold_random_float then
178
    (* interval [0, bound] for random values *)
179
    let bound = 10 in
180
    (* max number of digits after comma *)
181
    let digits = 5 in
182
    (* number of digits after comma *)
183
    let shift = Random.int (digits + 1) in
184
    let eshift = 10. ** (float_of_int shift) in
185
    let i = Random.int (1 + bound * (int_of_float eshift)) in
186
    let f = float_of_int i /. eshift in
187
    (Num.num_of_int i, shift, string_of_float f)
188
  else 
189
    r
190

    
191
let rdm_mutate_op op = 
192
match op with
193
| "+" | "-" | "*" | "/" when Random.int 100 > threshold_arith_op ->
194
  let filtered = List.filter (fun x -> x <> op) ["+"; "-"; "*"; "/"] in
195
  List.nth filtered (Random.int 3)
196
| "&&" | "||" | "xor" | "impl" when Random.int 100 > threshold_bool_op ->
197
  let filtered = List.filter (fun x -> x <> op) ["&&"; "||"; "xor"; "impl"] in
198
  List.nth filtered (Random.int 3)
199
| "<" | "<=" | ">" | ">=" | "!=" | "=" when Random.int 100 > threshold_rel_op ->
200
  let filtered = List.filter (fun x -> x <> op) ["<"; "<="; ">"; ">="; "!="; "="] in
201
  List.nth filtered (Random.int 5)
202
| _ -> op
203

    
204

    
205
let rdm_mutate_var expr =
206
  if Types.is_bool_type expr.expr_type then
207
    (* if Random.int 100 > threshold_negate_bool_var then *)
208
    let new_e = mkpredef_call expr.expr_loc "not" [expr] in
209
    Some (expr, new_e), new_e
210
    (* else  *)
211
  (*   expr *)
212
  else
213
    None, expr
214
    
215
let rdm_mutate_pre orig_expr = 
216
  let new_e = Expr_pre orig_expr in
217
  Some (orig_expr, {orig_expr with expr_desc = new_e}), new_e
218

    
219

    
220
let rdm_mutate_const_value c =
221
  match c with
222
  | Const_int i -> Const_int (rdm_mutate_int i)
223
  | Const_real (n, i, s) -> let (n', i', s') = rdm_mutate_real (n, i, s) in Const_real (n', i', s')
224
  | Const_array _
225
  | Const_string _
226
  | Const_struct _
227
  | Const_tag _ -> c
228

    
229
let rdm_mutate_const c =
230
  let new_const = rdm_mutate_const_value c.const_value in
231
  let mut = check_mut (mk_cst_expr c.const_value) (mk_cst_expr new_const) in
232
  mut, { c with const_value = new_const }
233

    
234

    
235
let select_in_list list rdm_mutate_elem = 
236
  let selected = Random.int (List.length list) in
237
  let mutation_opt, new_list, _ = 
238
    List.fold_right
239
      (fun elem (mutation_opt, res, cpt) -> if cpt = selected then 
240
	  let mutation, new_elem = rdm_mutate_elem elem in
241
	  Some mutation, new_elem::res, cpt+1  else mutation_opt, elem::res, cpt+1)
242
      list 
243
      (None, [], 0)
244
  in
245
  match mutation_opt with
246
  | Some mut -> mut, new_list
247
  | _ -> assert false
248

    
249

    
250
let rec rdm_mutate_expr expr =
251
  let mk_e d = { expr with expr_desc = d } in
252
  match expr.expr_desc with
253
  | Expr_ident id -> rdm_mutate_var expr
254
  | Expr_const c -> 
255
    let new_const = rdm_mutate_const_value c in 
256
    let mut = check_mut (mk_cst_expr c) (mk_cst_expr new_const) in
257
    mut, mk_e (Expr_const new_const)
258
  | Expr_tuple l -> 
259
    let mut, l' = select_in_list l rdm_mutate_expr in
260
    mut, mk_e (Expr_tuple l')
261
  | Expr_ite (i,t,e) -> (
262
    let mut, l = select_in_list [i; t; e] rdm_mutate_expr in
263
    match l with
264
    | [i'; t'; e'] -> mut, mk_e (Expr_ite (i', t', e'))
265
    | _ -> assert false
266
  )
267
  | Expr_arrow (e1, e2) -> (
268
    let mut, l = select_in_list [e1; e2] rdm_mutate_expr in
269
    match l with
270
    | [e1'; e2'] -> mut, mk_e (Expr_arrow (e1', e2'))
271
    | _ -> assert false
272
  )
273
  | Expr_pre e -> 
274
    let select_pre = Random.bool () in
275
    if select_pre then
276
      let mut, new_expr = rdm_mutate_pre expr in
277
      mut, mk_e new_expr
278
    else
279
      let mut, e' = rdm_mutate_expr e in
280
      mut, mk_e (Expr_pre e')
281
  | Expr_appl (op_id, args, r) -> 
282
    let select_op = Random.bool () in
283
    if select_op then
284
      let new_op_id = rdm_mutate_op op_id in
285
      let new_e = mk_e (Expr_appl (new_op_id, args, r)) in
286
      let mut = check_mut expr new_e in
287
      mut, new_e
288
    else
289
      let mut, new_args = rdm_mutate_expr args in
290
      mut, mk_e (Expr_appl (op_id, new_args, r))
291
  (* Other constructs are kept.
292
  | Expr_fby of expr * expr
293
  | Expr_array of expr list
294
  | Expr_access of expr * Dimension.dim_expr
295
  | Expr_power of expr * Dimension.dim_expr
296
  | Expr_when of expr * ident * label
297
  | Expr_merge of ident * (label * expr) list
298
  | Expr_uclock of expr * int
299
  | Expr_dclock of expr * int
300
  | Expr_phclock of expr * rat *)
301
   | _ -> None, expr
302
  
303

    
304
let rdm_mutate_eq eq =
305
  let mutation, new_rhs = rdm_mutate_expr eq.eq_rhs in
306
  mutation, { eq with eq_rhs = new_rhs }
307

    
308
let rnd_mutate_stmt stmt =
309
  match stmt with
310
  | Eq eq   -> let mut, new_eq = rdm_mutate_eq eq in
311
		 report ~level:1 
312
		   (fun fmt -> fprintf fmt "mutation: %a becomes %a@ " 
313
		     Printers.pp_node_eq eq
314
		     Printers.pp_node_eq new_eq);
315
		 mut, Eq new_eq 
316
  | Aut aut -> assert false
317

    
318
let rdm_mutate_node nd = 
319
  let mutation, new_node_stmts =       
320
    select_in_list 
321
      nd.node_stmts rnd_mutate_stmt
322
  in
323
  mutation, { nd with node_stmts = new_node_stmts }
324

    
325
let rdm_mutate_top_decl td =
326
  match td.top_decl_desc with
327
  | Node nd -> 
328
    let mutation, new_node = rdm_mutate_node nd in 
329
    mutation, { td with top_decl_desc = Node new_node}
330
  | Const cst -> 
331
    let mut, new_cst = rdm_mutate_const cst in
332
    mut, { td with top_decl_desc = Const new_cst }
333
  | _ -> None, td
334
    
335
(* Create a single mutant with the provided random seed *)
336
let rdm_mutate_prog prog = 
337
  select_in_list prog rdm_mutate_top_decl
338

    
339
let rdm_mutate nb prog = 
340
  let rec iterate nb res =
341
    incr random_seed;
342
    if nb <= 0 then
343
      res
344
    else (
345
      Random.init !random_seed;
346
      let mutation, new_mutant = rdm_mutate_prog prog in
347
      match mutation with
348
	None -> iterate nb res 
349
      | Some mutation -> ( 
350
	if List.mem_assoc mutation res then (
351
	  iterate nb res
352
	)
353
	else (
354
	  report ~level:1 (fun fmt -> fprintf fmt "%i mutants remaining@ " nb); 
355
	  iterate (nb-1) ((mutation, new_mutant)::res)
356
	)
357
      )
358
    )
359
  in
360
  iterate nb []
361

    
362

    
363
(*****************************************************************)
364
(*                  Random mutation                              *)
365
(*****************************************************************)
366

    
367
type mutant_t = Boolexpr of int | Pre of int | Op of string * int * string | IncrIntCst of int | DecrIntCst of int | SwitchIntCst of int * int 
368

    
369
(* Denotes the parent node, the equation lhs and the location of the mutation *)
370
type mutation_loc = ident * ident list * Location.t
371
let target : mutant_t option ref = ref None
372

    
373
let mutation_info : mutation_loc option ref = ref None
374
let current_node: ident option ref = ref None 
375
let current_eq_lhs : ident list option ref = ref None
376
let current_loc : Location.t option ref = ref None
377
  
378
let set_mutation_loc () =
379
  target := None;
380
  match !current_node, !current_eq_lhs, !current_loc with
381
  | Some n, Some elhs, Some l ->  mutation_info := Some (n, elhs, l)
382
  | _ -> assert false (* Those global vars should be defined during the
383
			   visitor pattern execution *)
384

    
385
let print_directive fmt d =
386
  match d with
387
  | Pre n -> Format.fprintf fmt "pre %i" n
388
  | Boolexpr n -> Format.fprintf fmt "boolexpr %i" n
389
  | Op (o, i, d) -> Format.fprintf fmt "%s %i -> %s" o i d
390
  | IncrIntCst n ->  Format.fprintf fmt "incr int cst %i" n
391
  | DecrIntCst n ->  Format.fprintf fmt "decr int cst %i" n
392
  | SwitchIntCst (n, m) ->  Format.fprintf fmt "switch int cst %i -> %i" n m
393

    
394
let print_directive_json fmt d =
395
  match d with
396
  | Pre _ -> Format.fprintf fmt "\"mutation\": \"pre\""
397
  | Boolexpr _ -> Format.fprintf fmt "\"mutation\": \"not\"" 
398
  | Op (o, _, d) -> Format.fprintf fmt "\"mutation\": \"op_conv\", \"from\": \"%s\", \"to\": \"%s\"" o d
399
  | IncrIntCst n ->  Format.fprintf fmt "\"mutation\": \"cst_incr\""
400
  | DecrIntCst n ->  Format.fprintf fmt "\"mutation\": \"cst_decr\""
401
  | SwitchIntCst (n, m) ->  Format.fprintf fmt "\"mutation\": \"cst_switch\", \"to_cst\": \"%i\"" m
402
  
403
let print_loc_json fmt (n,eqlhs, l) =
404
  Format.fprintf fmt "\"node_id\": \"%s\", \"eq_lhs\": [%a], \"loc_line\": \"%i\""
405
    n
406
    (Utils.fprintf_list ~sep:", " (fun fmt s -> Format.fprintf fmt "\"%s\"" s)) eqlhs
407
    (Location.loc_line l)
408
    
409
let fold_mutate_int i = 
410
  if Random.int 100 > threshold_inc_int then
411
    i+1
412
  else if Random.int 100 > threshold_dec_int then
413
    i-1
414
  else if Random.int 100 > threshold_random_int then
415
    Random.int 10
416
  else if Random.int 100 > threshold_switch_int then
417
    try
418
	let idx = Random.int (List.length !int_consts) in
419
        List.nth !int_consts idx
420
    with _ -> i
421
  else
422
    i
423
  
424
let fold_mutate_float f =
425
  if Random.int 100 > threshold_random_float then
426
    Random.float 10.
427
  else 
428
    f
429

    
430
let fold_mutate_op op = 
431
(* match op with *)
432
(* | "+" | "-" | "*" | "/" when Random.int 100 > threshold_arith_op -> *)
433
(*   let filtered = List.filter (fun x -> x <> op) ["+"; "-"; "*"; "/"] in *)
434
(*   List.nth filtered (Random.int 3) *)
435
(* | "&&" | "||" | "xor" | "impl" when Random.int 100 > threshold_bool_op -> *)
436
(*   let filtered = List.filter (fun x -> x <> op) ["&&"; "||"; "xor"; "impl"] in *)
437
(*   List.nth filtered (Random.int 3) *)
438
(* | "<" | "<=" | ">" | ">=" | "!=" | "=" when Random.int 100 > threshold_rel_op -> *)
439
(*   let filtered = List.filter (fun x -> x <> op) ["<"; "<="; ">"; ">="; "!="; "="] in *)
440
(*   List.nth filtered (Random.int 5) *)
441
(* | _ -> op *)
442
  match !target with
443
  | Some (Op(op_orig, 0, op_new)) when op_orig = op -> (
444
    set_mutation_loc ();
445
    op_new
446
  )
447
  | Some (Op(op_orig, n, op_new)) when op_orig = op -> (
448
    target := Some (Op(op_orig, n-1, op_new));
449
    op
450
  )
451
  | _ -> if List.mem op Basic_library.internal_funs then op else rename_app op
452

    
453

    
454
let fold_mutate_var expr = 
455
  (* match (Types.repr expr.expr_type).Types.tdesc with  *)
456
  (* | Types.Tbool -> *)
457
  (*     (\* if Random.int 100 > threshold_negate_bool_var then *\) *)
458
  (*     mkpredef_unary_call Location.dummy_loc "not" expr *)
459
  (*   (\* else  *\) *)
460
  (*   (\*   expr *\) *)
461
  (* | _ -> 
462
 *)expr
463

    
464
let fold_mutate_boolexpr expr =
465
  match !target with
466
  | Some (Boolexpr 0) -> (
467
     set_mutation_loc ();
468

    
469
    mkpredef_call expr.expr_loc "not" [expr]
470
  )
471
  | Some (Boolexpr n) ->
472
      (target := Some (Boolexpr (n-1)); expr)
473
  | _ -> expr
474
    
475
let fold_mutate_pre orig_expr e = 
476
  match !target with
477
    Some (Pre 0) -> (
478
      set_mutation_loc ();
479
      Expr_pre ({orig_expr with expr_desc = Expr_pre e}) 
480
    )
481
  | Some (Pre n) -> (
482
    target := Some (Pre (n-1));
483
    Expr_pre e
484
  )
485
  | _ -> Expr_pre e
486
    
487
let fold_mutate_const_value c = 
488
match c with
489
| Const_int i -> (
490
  match !target with
491
  | Some (IncrIntCst 0) -> (set_mutation_loc (); Const_int (i+1))
492
  | Some (DecrIntCst 0) -> (set_mutation_loc (); Const_int (i-1))
493
  | Some (SwitchIntCst (0, id)) ->
494
     (set_mutation_loc (); Const_int id) 
495
  | Some (IncrIntCst n) -> (target := Some (IncrIntCst (n-1)); c)
496
  | Some (DecrIntCst n) -> (target := Some (DecrIntCst (n-1)); c)
497
  | Some (SwitchIntCst (n, id)) -> (target := Some (SwitchIntCst (n-1, id)); c)
498
  | _ -> c)
499
| _ -> c
500

    
501
(*
502
  match c with
503
  | Const_int i -> Const_int (fold_mutate_int i)
504
  | Const_real s -> Const_real s (* those are string, let's leave them *)
505
  | Const_float f -> Const_float (fold_mutate_float f)
506
  | Const_array _
507
  | Const_tag _ -> c
508
TODO
509

    
510
				  *)
511
let fold_mutate_const c =
512
  { c with const_value = fold_mutate_const_value c.const_value }
513

    
514
let rec fold_mutate_expr expr =
515
  current_loc := Some expr.expr_loc;
516
  let new_expr = 
517
    match expr.expr_desc with
518
    | Expr_ident id -> fold_mutate_var expr
519
    | _ -> (
520
      let new_desc = match expr.expr_desc with
521
	| Expr_const c -> Expr_const (fold_mutate_const_value c)
522
	| Expr_tuple l -> Expr_tuple (List.fold_right (fun e res -> (fold_mutate_expr e)::res) l [])
523
	| Expr_ite (i,t,e) -> Expr_ite (fold_mutate_expr i, fold_mutate_expr t, fold_mutate_expr e)
524
	| Expr_arrow (e1, e2) -> Expr_arrow (fold_mutate_expr e1, fold_mutate_expr e2)
525
	| Expr_pre e -> fold_mutate_pre expr (fold_mutate_expr e)
526
	| Expr_appl (op_id, args, r) -> Expr_appl (fold_mutate_op op_id, fold_mutate_expr args, r)
527
  (* Other constructs are kept.
528
  | Expr_fby of expr * expr
529
  | Expr_array of expr list
530
  | Expr_access of expr * Dimension.dim_expr
531
  | Expr_power of expr * Dimension.dim_expr
532
  | Expr_when of expr * ident * label
533
  | Expr_merge of ident * (label * expr) list
534
  | Expr_uclock of expr * int
535
  | Expr_dclock of expr * int
536
  | Expr_phclock of expr * rat *)
537
  | _ -> expr.expr_desc
538
    
539
      in
540
      { expr with expr_desc = new_desc }
541
    )
542
  in
543
  if Types.is_bool_type expr.expr_type then
544
    fold_mutate_boolexpr new_expr  
545
  else
546
    new_expr
547

    
548
let fold_mutate_eq eq =
549
  current_eq_lhs := Some eq.eq_lhs;
550
  { eq with eq_rhs = fold_mutate_expr eq.eq_rhs }
551

    
552
let fold_mutate_stmt stmt =
553
  match stmt with
554
  | Eq eq   -> Eq (fold_mutate_eq eq)
555
  | Aut aut -> assert false
556

    
557
let fold_mutate_node nd =
558
  current_node := Some nd.node_id;
559
  { nd with 
560
    node_stmts = 
561
      List.fold_right (fun stmt res -> (fold_mutate_stmt stmt)::res) nd.node_stmts [];
562
    node_id = rename_app nd.node_id
563
  }
564

    
565
let fold_mutate_top_decl td =
566
  match td.top_decl_desc with
567
  | Node nd   -> { td with top_decl_desc = Node  (fold_mutate_node nd)}
568
  | Const cst -> { td with top_decl_desc = Const (fold_mutate_const cst)}
569
  | _ -> td
570
    
571
(* Create a single mutant with the provided random seed *)
572
let fold_mutate_prog prog = 
573
  List.fold_right (fun e res -> (fold_mutate_top_decl e)::res) prog []
574

    
575
let create_mutant prog directive =  
576
  target := Some directive; 
577
  let prog' = fold_mutate_prog prog in
578
  let mutation_info = match !target , !mutation_info with
579
    | None, Some mi -> mi
580
    | _ -> (
581
      Format.eprintf "Failed when creating mutant for directive %a@.@?" print_directive directive;
582
      let _ = match !target with Some dir' -> Format.eprintf "New directive %a@.@?" print_directive dir' | _ -> () in
583
      assert false (* The mutation has not been performed. *)
584
    )
585
     
586
  in
587
(*  target := None; (* should happen only if no mutation occured during the
588
    visit *)*)
589
  prog', mutation_info
590
  
591

    
592
let op_mutation op = 
593
  let res =
594
    let rem_op l = List.filter (fun e -> e <> op) l in
595
  if List.mem op arith_op then rem_op arith_op else 
596
    if List.mem op bool_op then rem_op bool_op else 
597
      if List.mem op rel_op then rem_op rel_op else 
598
	(Format.eprintf "Failing with op %s@." op;
599
	  assert false
600
	)
601
  in
602
  (* Format.eprintf "Mutation op %s to [%a]@." op (Utils.fprintf_list ~sep:"," Format.pp_print_string) res; *)
603
  res
604

    
605
let rec remains select list =
606
  match list with 
607
    [] -> []
608
  | hd::tl -> if select hd then tl else remains select tl
609
      
610
let next_change m =
611
  let res = 
612
  let rec first_op () = 
613
    try
614
      let min_binding = OpCount.min_binding !records.nb_op in
615
      Op (fst min_binding, 0, List.hd (op_mutation (fst min_binding)))
616
    with Not_found -> first_boolexpr () 
617
  and first_boolexpr () =
618
    if !records.nb_boolexpr > 0 then 
619
      Boolexpr 0 
620
    else first_pre ()
621
  and first_pre () = 
622
    if !records.nb_pre > 0 then 
623
      Pre 0 
624
    else
625
      first_op ()
626
  and first_intcst () =
627
    if IntSet.cardinal !records.consts > 0 then
628
      IncrIntCst 0
629
    else
630
      first_boolexpr ()
631
  in
632
  match m with
633
  | Boolexpr n -> 
634
    if n+1 >= !records.nb_boolexpr then 
635
      first_pre ()
636
    else
637
      Boolexpr (n+1)
638
  | Pre n -> 
639
    if n+1 >= !records.nb_pre then 
640
      first_op ()
641
    else Pre (n+1)
642
  | Op (orig, id, mut_op) -> (
643
    match remains (fun x -> x = mut_op) (op_mutation orig) with
644
    | next_op::_ -> Op (orig, id, next_op)
645
    | [] -> if id+1 >= OpCount.find orig !records.nb_op then (
646
      match remains (fun (k1, _) -> k1 = orig) (OpCount.bindings !records.nb_op) with
647
      | [] -> first_intcst ()
648
      | hd::_ -> Op (fst hd, 0, List.hd (op_mutation (fst hd)))
649
    ) else
650
	Op(orig, id+1, List.hd (op_mutation orig))
651
  )
652
  | IncrIntCst n ->
653
    if n+1 >= IntSet.cardinal !records.consts then
654
      DecrIntCst 0
655
    else IncrIntCst (n+1)
656
  | DecrIntCst n ->
657
    if n+1 >= IntSet.cardinal !records.consts then
658
      SwitchIntCst (0, 0)
659
    else DecrIntCst (n+1)
660
  | SwitchIntCst (n, m) ->
661
    if m+1 > -1 + IntSet.cardinal !records.consts then
662
      SwitchIntCst (n, m+1)
663
    else if n+1 >= IntSet.cardinal !records.consts then
664
      SwitchIntCst (n+1, 0)
665
    else first_boolexpr ()
666

    
667
  in
668
   (* Format.eprintf "from: %a to: %a@." print_directive m print_directive res;  *)
669
  res
670

    
671
let fold_mutate nb prog = 
672
  incr random_seed;
673
  Random.init !random_seed;
674
  (* Local references to keep track of generated directives *)
675

    
676
  (* build a set of integer 0, 1, ... n-1 for input n *)
677
  let cpt_to_intset cpt =
678
    let arr = Array.init cpt (fun x -> x) in
679
    Array.fold_right IntSet.add arr IntSet.empty
680
  in
681
  
682
  let possible_const_id = cpt_to_intset !records.nb_consts in
683
  (* let possible_boolexpr_id = cpt_to_intset !records.nb_boolexpr in *)
684
  (* let possible_pre_id = cpt_to_intset !records.nb_pre in *)
685
  
686
  let incremented_const_id = ref IntSet.empty in
687
  let decremented_const_id = ref IntSet.empty in
688
  
689
  let create_new_incr_decr registered build =
690
    let possible = IntSet.diff possible_const_id !registered |> IntSet.elements in
691
    let len = List.length possible in
692
    if len <= 0 then
693
      false, build (-1) (* Should not be stored *)
694
    else
695
      let picked = List.nth possible (Random.int (List.length possible)) in
696
      registered := IntSet.add picked !registered;
697
      true, build picked
698
  in
699

    
700

    
701
  let module DblIntSet = Set.Make (struct type t = int * int let compare = compare end) in
702
  let switch_const_id = ref DblIntSet.empty in
703
  let switch_set =
704
    if IntSet.cardinal !records.consts <= 1 then
705
      DblIntSet.empty
706
    else
707
      (* First element is cst id (the ith cst) while second is the
708
		       ith element of the set of gathered constants
709
		       !record.consts *)
710
      IntSet.fold (fun cst_id set ->
711
	IntSet.fold (fun ith_cst set ->
712
	  DblIntSet.add (cst_id, ith_cst) set
713
	) !records.consts set
714
      ) possible_const_id DblIntSet.empty 
715
  in
716

    
717
  let create_new_switch registered build =
718
    let possible = DblIntSet.diff switch_set !registered |> DblIntSet.elements in
719
    let len = List.length possible in
720
    if len <= 0 then
721
      false, build (-1,-1) (* Should not be stored *)
722
    else
723
      let picked = List.nth possible (Random.int (List.length possible)) in
724
      registered := DblIntSet.add picked !registered;
725
      true, build picked
726
  in
727
  
728
  let find_next_new mutants mutant =
729
    let rec find_next_new init current =
730
      if init = current || List.mem current mutants then raise Not_found else
731

    
732
	(* TODO: check if we can generate more cases. The following lines were
733
	   cylcing and missing to detect that the enumaration was complete,
734
	   leading to a non terminating process. The current setting is harder
735
	   but may miss enumerating some cases. To be checked! *)
736
	
737
	(* if List.mem current mutants then *)
738
	(*   find_next_new init (next_change current) *)
739
	(* else *)
740
	current
741
    in
742
    find_next_new mutant (next_change mutant) 
743
  in
744
  (* Creating list of nb elements of mutants *)
745
  let rec create_mutants_directives rnb mutants = 
746
    if rnb <= 0 then mutants 
747
    else
748
      (* Initial list of transformation *)
749
      let rec init_list x = if x <= 0 then [0] else x::(init_list (x-1)) in
750
      let init_list = init_list 5 in
751
      (* We generate a random permutation of the list: the first item is the
752
	 transformation, the rest of the list act as fallback choices to make
753
	 sure we produce something *)
754
      let shuffle l =
755
	let nd = List.map (fun c -> Random.bits (), c) l in
756
	let sond = List.sort compare nd in
757
	List.map snd sond
758
      in
759
      let transforms = shuffle init_list in
760
      let rec apply_transform transforms =
761
	let f id = 
762
	  match id with
763
	  | 5 -> create_new_incr_decr incremented_const_id (fun x -> IncrIntCst x)
764
	  | 4 -> create_new_incr_decr decremented_const_id (fun x -> DecrIntCst x)
765
	  | 3 -> create_new_switch switch_const_id (fun (x,y) -> SwitchIntCst(x, y))
766
	  | 2 -> !records.nb_pre >0, Pre (try Random.int !records.nb_pre with _ -> 0)
767
	  | 1 -> !records.nb_boolexpr > 0, Boolexpr (try Random.int !records.nb_boolexpr with _ -> 0)
768
	  | 0 -> let bindings = OpCount.bindings !records.nb_op in
769
		 let bindings_len = List.length bindings in
770
		 let op, nb_op = List.nth bindings (try Random.int (List.length bindings) with _ -> 0) in
771
		 let new_op = List.nth (op_mutation op) (try Random.int (List.length (op_mutation op)) with _ -> 0) in
772
	         bindings_len > 0, Op (op, (try Random.int nb_op with _ -> 0), new_op)
773
	  | _ -> assert false
774
	in
775
	match transforms with
776
	| [] -> assert false
777
	| [hd] -> f hd
778
	| hd::tl -> let ok, random_mutation = f hd in
779
		    if ok then
780
		      ok, random_mutation
781
		    else
782
		      apply_transform tl
783
      in
784
      let ok, random_mutation = apply_transform transforms in
785
      let stop_process () =
786
	report ~level:1 (fun fmt -> fprintf fmt
787
	  "Only %i mutants directives generated out of %i expected@ "
788
	  (nb-rnb)
789
	  nb); 
790
	mutants
791
      in
792
      if not ok then
793
	stop_process ()
794
      else if List.mem random_mutation mutants then
795
	try
796
	  let new_mutant = (find_next_new mutants random_mutation) in
797
	  report ~level:2 (fun fmt -> fprintf fmt " %i mutants directive generated out of %i expected@ " (nb-rnb) nb);
798
	  create_mutants_directives (rnb-1) (new_mutant::mutants) 
799
	with Not_found -> (
800
	  stop_process ()
801
	)
802
      else (
803
	create_mutants_directives (rnb-1) (random_mutation::mutants)
804
      )
805
  in
806
  let mutants_directives = create_mutants_directives nb [] in
807
  List.map (fun d ->
808
    let mutant, loc = create_mutant prog d in
809
    d, loc, mutant ) mutants_directives 
810
  
811

    
812
let mutate nb prog =
813
  records := compute_records prog;
814
  (* Format.printf "Records: %i pre, %i boolexpr" (\* , %a ops *\) *)
815
  (*   !records.nb_pre *)
816
(*     !records.nb_boolexpr *)
817
(*     (\* !records.op *\) *)
818
(* ;  *)   
819
  fold_mutate nb prog 
820

    
821

    
822

    
823

    
824
(* Local Variables: *)
825
(* compile-command:"make -C .." *)
826
(* End: *)
827

    
828