Project

General

Profile

Statistics
| Branch: | Tag: | Revision:

lustrec / src / backends / Horn / horn_backend.ml @ b38ffff3

History | View | Annotate | Download (23.6 KB)

1
(********************************************************************)
2
(*                                                                  *)
3
(*  The LustreC compiler toolset   /  The LustreC Development Team  *)
4
(*  Copyright 2012 -    --   ONERA - CNRS - INPT                    *)
5
(*                                                                  *)
6
(*  LustreC is free software, distributed WITHOUT ANY WARRANTY      *)
7
(*  under the terms of the GNU Lesser General Public License        *)
8
(*  version 2.1.                                                    *)
9
(*                                                                  *)
10
(********************************************************************)
11

    
12
(* The compilation presented here is defined in Garoche, Gurfinkel, Kahsai,
13
   HCSV'14 *)
14

    
15
open Format
16
open LustreSpec
17
open Corelang
18
open Machine_code
19

    
20

    
21
let pp_machine_init_name fmt id = fprintf fmt "%s_init" id
22
let pp_machine_step_name fmt id = fprintf fmt "%s_step" id
23
let pp_machine_stateless_name fmt id = fprintf fmt "%s" id
24

    
25
let pp_type fmt t =
26
  match (Types.repr t).Types.tdesc with
27
  | Types.Tbool           -> Format.fprintf fmt "Bool"
28
  | Types.Tint            -> Format.fprintf fmt "Int"
29
  | Types.Treal           -> Format.fprintf fmt "Real"
30
  | Types.Tclock _
31
  | Types.Tarray _
32
  | Types.Tstatic _
33
  | Types.Tconst _
34
  | Types.Tarrow _
35
  | _                     -> Format.eprintf "internal error: pp_type %a@." 
36
    Types.print_ty t; assert false
37

    
38
let pp_decl_var fmt id = 
39
  Format.fprintf fmt "(declare-var %s %a)"
40
    id.var_id
41
    pp_type id.var_type
42

    
43
let pp_var fmt id = Format.pp_print_string fmt id.var_id
44

    
45

    
46
let pp_conj pp fmt l = 
47
  match l with 
48
    [] -> assert false
49
  | [x] -> pp fmt x
50
  | _ -> fprintf fmt "(and @[<v 0>%a@]@ )" (Utils.fprintf_list ~sep:" " pp) l
51
    
52

    
53

    
54
let concat prefix x = if prefix = "" then x else prefix ^ "." ^ x 
55
let rename f = (fun v -> {v with var_id = f v.var_id } )
56
let rename_machine p = rename (fun n -> concat p n)
57
let rename_machine_list p = List.map (rename_machine p)
58
  
59
let rename_current =  rename (fun n -> n ^ "_c")
60
let rename_current_list = List.map rename_current
61
let rename_next = rename (fun n -> n ^ "_x")
62
let rename_next_list = List.map rename_next
63

    
64

    
65
let get_machine machines node_name = 
66
  List.find (fun m  -> m.mname.node_id = node_name) machines 
67

    
68
let full_memory_vars machines machine =
69
  let rec aux fst prefix m =
70
    (rename_machine_list (if fst then prefix else concat prefix m.mname.node_id) m.mmemory) @
71
      List.fold_left (fun accu (id, (n, _)) -> 
72
	let name = node_name n in 
73
	if name = "_arrow" then accu else
74
	  let machine_n = get_machine machines name in
75
	  ( aux false (concat prefix (if fst then id else concat m.mname.node_id id)) machine_n ) @ accu
76
      ) [] (m.minstances) 
77
  in
78
  aux true machine.mname.node_id machine
79

    
80
let stateless_vars machines m = 
81
  (rename_machine_list m.mname.node_id m.mstep.step_inputs)@
82
    (rename_machine_list m.mname.node_id m.mstep.step_outputs)
83
    
84
let step_vars machines m = 
85
  (stateless_vars machines m)@
86
    (rename_current_list (full_memory_vars machines m)) @ 
87
    (rename_next_list (full_memory_vars machines m)) 
88
    
89
let init_vars machines m = 
90
  (stateless_vars machines m) @ (rename_next_list (full_memory_vars machines m)) 
91
    
92
(********************************************************************************************)
93
(*                    Instruction Printing functions                                        *)
94
(********************************************************************************************)
95

    
96
let pp_horn_var m fmt id =
97
  if Types.is_array_type id.var_type
98
  then
99
    assert false (* no arrays in Horn output *)
100
  else
101
    Format.fprintf fmt "%s" id.var_id
102

    
103

    
104
(* Used to print boolean constants *)
105
let pp_horn_tag fmt t =
106
  pp_print_string fmt (if t = tag_true then "true" else if t = tag_false then "false" else t)
107

    
108
(* Prints a constant value *)
109
let rec pp_horn_const fmt c =
110
  match c with
111
    | Const_int i    -> pp_print_int fmt i
112
    | Const_real r   -> pp_print_string fmt r
113
    | Const_float r  -> pp_print_float fmt r
114
    | Const_tag t    -> pp_horn_tag fmt t
115
    | _              -> assert false
116

    
117
(* Prints a value expression [v], with internal function calls only.
118
   [pp_var] is a printer for variables (typically [pp_c_var_read]),
119
   but an offset suffix may be added for array variables
120
*)
121
let rec pp_horn_val ?(is_lhs=false) self pp_var fmt v =
122
  match v with
123
    | Cst c         -> pp_horn_const fmt c
124
    | Array _      
125
    | Access _ -> assert false (* no arrays *)
126
    | Power (v, n)  -> assert false
127
    | LocalVar v    -> pp_var fmt (rename_machine self v)
128
    | StateVar v    ->
129
      if Types.is_array_type v.var_type
130
      then assert false 
131
      else pp_var fmt (rename_machine self ((if is_lhs then rename_next else rename_current) (* self *) v))
132
    | Fun (n, vl)   -> Format.fprintf fmt "%a" (Basic_library.pp_horn n (pp_horn_val self pp_var)) vl
133

    
134
(* Prints a [value] indexed by the suffix list [loop_vars] *)
135
let rec pp_value_suffix self pp_value fmt value =
136
 match value with
137
 | Fun (n, vl)  ->
138
   Basic_library.pp_horn n (pp_value_suffix self pp_value) fmt vl
139
 |  _            ->
140
   pp_horn_val self pp_value fmt value
141

    
142
(* type_directed assignment: array vs. statically sized type
143
   - [var_type]: type of variable to be assigned
144
   - [var_name]: name of variable to be assigned
145
   - [value]: assigned value
146
   - [pp_var]: printer for variables
147
*)
148
let pp_assign m self pp_var fmt var_type var_name value =
149
  fprintf fmt "(= %a %a)" (pp_horn_val ~is_lhs:true self pp_var) var_name (pp_value_suffix self pp_var) value
150
  
151
let pp_instance_call 
152
    machines ?(init=false) m self fmt i (inputs: value_t list) (outputs: var_decl list) =
153
  try (* stateful node instance *) 
154
    begin
155
      let (n,_) = List.assoc i m.minstances in
156
      match node_name n, inputs, outputs with
157
      | "_arrow", [i1; i2], [o] -> begin
158
        if init then
159
          pp_assign
160
   	    m
161
   	    self
162
   	    (pp_horn_var m) 
163
	    fmt
164
   	    o.var_type (LocalVar o) i1
165
        else
166
          pp_assign
167
   	    m self (pp_horn_var m) fmt
168
   	    o.var_type (LocalVar o) i2
169
	    
170
      end
171
      | name, _, _ ->  
172
	begin
173
	  let target_machine = List.find (fun m  -> m.mname.node_id = name) machines in
174
	  if init then
175
	    Format.fprintf fmt "(%a %a%t%a%t%a)"
176
	      pp_machine_init_name (node_name n) 
177
	      (* inputs *)
178
	      (Utils.fprintf_list ~sep:" " (pp_horn_val self (pp_horn_var m))) 
179
	      inputs
180
	      (Utils.pp_final_char_if_non_empty " " inputs) 
181
	      (* outputs *)
182
	      (Utils.fprintf_list ~sep:" " (pp_horn_val self (pp_horn_var m))) 
183
	      (List.map (fun v -> LocalVar v) outputs)
184
	      (Utils.pp_final_char_if_non_empty " " outputs)
185
	      (* memories (next) *)
186
	      (Utils.fprintf_list ~sep:" " pp_var) (
187
  		rename_machine_list 
188
		  (concat m.mname.node_id i) 
189
		  (rename_next_list (full_memory_vars machines target_machine)
190
		  ) 
191
	       )
192
	  else
193
	    Format.fprintf fmt "(%a %a%t%a%t%a)"
194
	      pp_machine_step_name (node_name n) 
195
	      (Utils.fprintf_list ~sep:" " (pp_horn_val self (pp_horn_var m))) inputs
196
	      (Utils.pp_final_char_if_non_empty " " inputs) 
197
	      (Utils.fprintf_list ~sep:" " (pp_horn_val self (pp_horn_var m))) 
198
	      (List.map (fun v -> LocalVar v) outputs)
199
	      (Utils.pp_final_char_if_non_empty " " outputs)
200
	      (Utils.fprintf_list ~sep:" " pp_var) (
201
		(rename_machine_list 
202
		   (concat m.mname.node_id i) 
203
		   (rename_current_list (full_memory_vars machines target_machine))
204
		) @ 
205
		  (rename_machine_list 
206
		     (concat m.mname.node_id i) 
207
		     (rename_next_list (full_memory_vars machines target_machine))
208
		  ) 
209
	       )
210
	    
211
	end
212
    end
213
    with Not_found -> ( (* stateless node instance *)
214
      let (n,_) = List.assoc i m.mcalls in
215
      Format.fprintf fmt "(%s %a%t%a)"
216
	(node_name n)
217
	(Utils.fprintf_list ~sep:" " (pp_horn_val self (pp_horn_var m))) 
218
	inputs
219
	(Utils.pp_final_char_if_non_empty " " inputs) 
220
	(Utils.fprintf_list ~sep:" " (pp_horn_val self (pp_horn_var m))) 
221
	(List.map (fun v -> LocalVar v) outputs)
222
    )
223

    
224
let pp_machine_init (m: machine_t) self fmt inst =
225
  let (node, static) = List.assoc inst m.minstances in
226
  fprintf fmt "(%a %a%t%s->%s)"
227
    pp_machine_init_name (node_name node)
228
    (Utils.fprintf_list ~sep:" " Dimension.pp_dimension) static
229
    (Utils.pp_final_char_if_non_empty " " static)
230
    self inst
231

    
232
(* TODO *)
233
let rec pp_conditional machines ?(init=false)  (m: machine_t) self fmt c tl el =
234
  fprintf fmt "@[<v 2>if (%a) {%t%a@]@,@[<v 2>} else {%t%a@]@,}"
235
    (pp_horn_val self (pp_horn_var m)) c
236
    (Utils.pp_newline_if_non_empty tl)
237
    (Utils.fprintf_list ~sep:"@," (pp_machine_instr machines ~init:init  m self)) tl
238
    (Utils.pp_newline_if_non_empty el)
239
    (Utils.fprintf_list ~sep:"@," (pp_machine_instr machines ~init:init  m self)) el
240

    
241
and pp_machine_instr machines ?(init=false) (m: machine_t) self fmt instr =
242
  match instr with 
243
  | MReset i ->
244
    pp_machine_init m self fmt i
245
  | MLocalAssign (i,v) ->
246
    pp_assign
247
      m self (pp_horn_var m) fmt
248
      i.var_type (LocalVar i) v
249
  | MStateAssign (i,v) ->
250
    pp_assign
251
      m self (pp_horn_var m) fmt
252
      i.var_type (StateVar i) v
253
  | MStep ([i0], i, vl) when Basic_library.is_internal_fun i  -> 
254
    assert false (* This should not happen anymore *)
255
  | MStep (il, i, vl) ->
256
    pp_instance_call machines ~init:init m self fmt i vl il
257
  | MBranch (g,hl) ->
258
    if hl <> [] && let t = fst (List.hd hl) in t = tag_true || t = tag_false
259
    then (* boolean case, needs special treatment in C because truth value is not unique *)
260
      (* may disappear if we optimize code by replacing last branch test with default *)
261
      let tl = try List.assoc tag_true  hl with Not_found -> [] in
262
      let el = try List.assoc tag_false hl with Not_found -> [] in
263
      pp_conditional machines ~init:init m self fmt g tl el
264
    else assert false (* enum type case *)
265

    
266

    
267
(**************************************************************)
268
   
269
let is_stateless m = m.minstances = [] && m.mmemory = [] 
270

    
271
(* Print the machine m: 
272
   two functions: m_init and m_step
273
   - m_init is a predicate over m memories
274
   - m_step is a predicate over old_memories, inputs, new_memories, outputs
275
   We first declare all variables then the two /rules/.
276
*)
277
let print_machine machines fmt m = 
278
  let pp_instr init = pp_machine_instr machines ~init:init m in
279
  if m.mname.node_id = arrow_id then 
280
    (* We don't print arrow function *)
281
    ()
282
  else 
283
    begin 
284
      Format.fprintf fmt "; %s@." m.mname.node_id;
285

    
286
   (* Printing variables *)
287
   Utils.fprintf_list ~sep:"@." pp_decl_var fmt 
288
     ((step_vars machines m)@
289
	 (rename_machine_list m.mname.node_id m.mstep.step_locals));
290
   Format.pp_print_newline fmt ();
291

    
292
   
293
   
294
   if is_stateless m then
295
     begin
296
       (* Declaring single predicate *)
297
       Format.fprintf fmt "(declare-rel %a (%a))@."
298
	 pp_machine_stateless_name m.mname.node_id
299
	 (Utils.fprintf_list ~sep:" " pp_type) 
300
	 (List.map (fun v -> v.var_type) (stateless_vars machines m));
301
       
302
       (* Rule for single predicate *)
303
       Format.fprintf fmt "@[<v 2>(rule (=> @ %a@ (%a %a)@]@.))@.@."
304
	 (pp_conj (pp_instr 
305
		     true (* In this case, the boolean init can be set to true or false. 
306
			     The node is stateless. *)
307
		     m.mname.node_id)
308
	 )
309
	 m.mstep.step_instrs
310
	 pp_machine_stateless_name m.mname.node_id
311
	 (Utils.fprintf_list ~sep:" " pp_var) (stateless_vars machines m);
312
     end
313
   else 
314
     begin
315
       (* Declaring predicate *)
316
       Format.fprintf fmt "(declare-rel %a (%a))@."
317
	 pp_machine_init_name m.mname.node_id
318
	 (Utils.fprintf_list ~sep:" " pp_type) 
319
	 (List.map (fun v -> v.var_type) (init_vars machines m));
320
       
321
       Format.fprintf fmt "(declare-rel %a (%a))@."
322
	 pp_machine_step_name m.mname.node_id
323
	 (Utils.fprintf_list ~sep:" " pp_type) 
324
	 (List.map (fun v -> v.var_type) (step_vars machines m));
325
       
326
       Format.pp_print_newline fmt ();
327

    
328
       (* Rule for init *)
329
       Format.fprintf fmt "@[<v 2>(rule (=> @ %a@ (%a %a)@]@.))@.@."
330
	 (pp_conj (pp_instr true m.mname.node_id)) m.mstep.step_instrs
331
	 pp_machine_init_name m.mname.node_id
332
	 (Utils.fprintf_list ~sep:" " pp_var) (init_vars machines m);
333

    
334
       (* Rule for step *)
335
       Format.fprintf fmt "@[<v 2>(rule (=> @ %a@ (%a %a)@]@.))@.@."
336
	 (pp_conj (pp_instr false m.mname.node_id)) m.mstep.step_instrs
337
	 pp_machine_step_name m.mname.node_id
338
	 (Utils.fprintf_list ~sep:" " pp_var) (step_vars machines m);
339

    
340
       (* Adding assertions *)
341
       (match m.mstep.step_asserts with
342
       | [] -> ()
343
       | assertsl -> begin
344
	 let pp_val = pp_horn_val ~is_lhs:true m.mname.node_id pp_var in
345
	 
346
	 Format.fprintf fmt "; Asserts@.";
347
	 Format.fprintf fmt "(assert @[<v 2>%a@]@ )@.@.@."
348
	   (pp_conj pp_val) assertsl;
349
	 
350
	 (** TEME: the following code is the one we described. But it generates a segfault in z3 
351
	 Format.fprintf fmt "; Asserts for init@.";
352
	 Format.fprintf fmt "@[<v 2>(assert (=> @ (and @[<v 0>%a@]@ (%a %a))@ %a@]@.))@.@.@."
353
	   (Utils.fprintf_list ~sep:"@ " (pp_instr true m.mname.node_id)) m.mstep.step_instrs
354
	   pp_machine_init_name m.mname.node_id
355
	   (Utils.fprintf_list ~sep:" " pp_var) (init_vars machines m)
356
	   (pp_conj pp_val) assertsl; 
357
	  
358
	 Format.fprintf fmt "; Asserts for step@.";
359
	 Format.fprintf fmt "@[<v 2>(assert (=> @ (and @[<v 0>%a@]@ (%a %a))@ %a@]@.))@.@."
360
	   (Utils.fprintf_list ~sep:"@ " (pp_instr false m.mname.node_id)) m.mstep.step_instrs
361

    
362
	   pp_machine_step_name m.mname.node_id
363
	   (Utils.fprintf_list ~sep:" " pp_var) (step_vars machines m)
364
	   (pp_conj pp_val) assertsl
365
      	 *)
366
       end
367
       );
368
       
369
(*
370
       match m.mspec with
371
	 None -> () (* No node spec; we do nothing *)
372
       | Some {requires = []; ensures = [EnsuresExpr e]; behaviors = []} -> 
373
	 ( 
374
       (* For the moment, we only deal with simple case: single ensures, no other parameters *)
375
	   ()
376
	     
377
	 )
378
       | _ -> () (* Other cases give nothing *)
379
*)      
380
     end
381
    end
382

    
383

    
384

    
385
let collecting_semantics machines fmt node machine =
386
    Format.fprintf fmt "; Collecting semantics for node %s@.@." node;
387
    (* We print the types of the main node "memory tree" TODO: add the output *)
388
    let main_output =
389
     rename_machine_list machine.mname.node_id machine.mstep.step_outputs
390
    in
391
    let main_output_dummy = 
392
     rename_machine_list ("dummy" ^ machine.mname.node_id) machine.mstep.step_outputs
393
    in
394
    let main_memory_next = 
395
      (rename_next_list (* machine.mname.node_id *) (full_memory_vars machines machine)) @
396
      main_output
397
    in
398
    let main_memory_current = 
399
      (rename_current_list (* machine.mname.node_id *) (full_memory_vars machines machine)) @
400
      main_output_dummy
401
    in
402

    
403
    (* Special case when the main node is stateless *)
404
    let init_name, step_name = 
405
      if is_stateless machine then
406
	pp_machine_stateless_name, pp_machine_stateless_name
407
      else
408
	pp_machine_init_name, pp_machine_step_name
409
    in
410

    
411
    Format.fprintf fmt "(declare-rel MAIN (%a))@."
412
      (Utils.fprintf_list ~sep:" " pp_type) 
413
      (List.map (fun v -> v.var_type) main_memory_next);
414
    
415
    Format.fprintf fmt "; Initial set@.";
416
    Format.fprintf fmt "(declare-rel INIT_STATE ())@.";
417
    Format.fprintf fmt "(rule INIT_STATE)@.";
418
    Format.fprintf fmt "@[<v 2>(rule (=> @ (and @[<v 0>INIT_STATE@ (@[<v 0>%a %a@])@]@ )@ (MAIN %a)@]@.))@.@."
419
      init_name node
420
      (Utils.fprintf_list ~sep:" " pp_var) (init_vars machines machine)
421
      (Utils.fprintf_list ~sep:" " pp_var) main_memory_next ;
422

    
423
    Format.fprintf fmt "; Inductive def@.";
424
    (Utils.fprintf_list ~sep:" " (fun fmt v -> Format.fprintf fmt "%a@." pp_decl_var v)) fmt main_output_dummy;
425
    Format.fprintf fmt 
426
      "@[<v 2>(rule (=> @ (and @[<v 0>(MAIN %a)@ (@[<v 0>%a %a@])@]@ )@ (MAIN %a)@]@.))@.@."
427
      (Utils.fprintf_list ~sep:" " pp_var) main_memory_current
428
      step_name node
429
      (Utils.fprintf_list ~sep:" " pp_var) (step_vars machines machine)
430
      (Utils.fprintf_list ~sep:" " pp_var) main_memory_next 
431

    
432
let check_prop machines fmt node machine =
433
  let main_output =
434
    rename_machine_list machine.mname.node_id machine.mstep.step_outputs
435
  in
436
  let main_memory_next = 
437
    (rename_next_list (full_memory_vars machines machine)) @ main_output
438
  in
439
  Format.fprintf fmt "; Property def@.";
440
  Format.fprintf fmt "(declare-rel ERR ())@.";
441
  Format.fprintf fmt "@[<v 2>(rule (=> @ (and @[<v 0>(not %a)@ (MAIN %a)@])@ ERR))@."
442
    (pp_conj pp_var) main_output
443
    (Utils.fprintf_list ~sep:" " pp_var) main_memory_next
444
    ;
445
  if !Options.horn_queries then
446
    Format.fprintf fmt "(query ERR)@."
447

    
448

    
449
let cex_computation machines fmt node machine =
450
    Format.fprintf fmt "; CounterExample computation for node %s@.@." node;
451
    (* We print the types of the cex node "memory tree" TODO: add the output *)
452
    let cex_input =
453
     rename_machine_list machine.mname.node_id machine.mstep.step_inputs
454
    in
455
    let cex_input_dummy = 
456
     rename_machine_list ("dummy" ^ machine.mname.node_id) machine.mstep.step_inputs
457
    in
458
    let cex_output =
459
     rename_machine_list machine.mname.node_id machine.mstep.step_outputs
460
    in
461
    let cex_output_dummy = 
462
     rename_machine_list ("dummy" ^ machine.mname.node_id) machine.mstep.step_outputs
463
    in
464
    let cex_memory_next = 
465
      cex_input @ (rename_next_list (full_memory_vars machines machine)) @ cex_output
466
    in
467
    let cex_memory_current = 
468
      cex_input_dummy @ (rename_current_list (full_memory_vars machines machine)) @ cex_output_dummy
469
    in
470

    
471
    (* Special case when the cex node is stateless *)
472
    let init_name, step_name = 
473
      if is_stateless machine then
474
	pp_machine_stateless_name, pp_machine_stateless_name
475
      else
476
	pp_machine_init_name, pp_machine_step_name
477
    in
478

    
479
    Format.fprintf fmt "(declare-rel CEX (Int %a))@.@."
480
      (Utils.fprintf_list ~sep:" " pp_type) 
481
      (List.map (fun v -> v.var_type) cex_memory_next);
482
    
483
    Format.fprintf fmt "; Initial set@.";
484
    Format.fprintf fmt "@[<v 2>(rule (=> @ (and @[<v 0>INIT_STATE@ (@[<v 0>%a %a@])@]@ )@ (CEX 0 %a)@]@.))@.@."
485
      init_name node
486
      (Utils.fprintf_list ~sep:" " pp_var) (init_vars machines machine)
487
      (Utils.fprintf_list ~sep:" " pp_var) cex_memory_next ;
488

    
489
    Format.fprintf fmt "; Inductive def@.";
490
    (* Declare dummy inputs. Outputs should have been declared previously with collecting sem *)
491
    (Utils.fprintf_list ~sep:" " (fun fmt v -> Format.fprintf fmt "%a@." pp_decl_var v)) fmt cex_input_dummy;
492
    Format.fprintf fmt "(declare-var cexcpt Int)@.";
493
    Format.fprintf fmt 
494
      "@[<v 2>(rule (=> @ (and @[<v 0>(CEX cexcpt %a)@ (@[<v 0>%a %a@])@]@ )@ (CEX (+ 1 cexcpt) %a)@]@.))@.@."
495
      (Utils.fprintf_list ~sep:" " pp_var) cex_memory_current
496
      step_name node
497
      (Utils.fprintf_list ~sep:" " pp_var) (step_vars machines machine)
498
      (Utils.fprintf_list ~sep:" " pp_var) cex_memory_next 
499

    
500
let get_cex machines fmt node machine =
501
    let cex_input =
502
     rename_machine_list machine.mname.node_id machine.mstep.step_inputs
503
    in
504
    let cex_output =
505
     rename_machine_list machine.mname.node_id machine.mstep.step_outputs
506
    in
507
  let cex_memory_next = 
508
    cex_input @ (rename_next_list (full_memory_vars machines machine)) @ cex_output
509
  in
510
  Format.fprintf fmt "; Property def@.";
511
  Format.fprintf fmt "(declare-rel CEXTRACE ())@.";
512
  Format.fprintf fmt "@[<v 2>(rule (=> @ (and @[<v 0>(not %a)@ (CEX cexcpt %a)@])@ CEXTRACE))@."
513
    (pp_conj pp_var) cex_output
514
    (Utils.fprintf_list ~sep:" " pp_var) cex_memory_next
515
    ;
516
  if !Options.horn_queries then
517
    Format.fprintf fmt "(query CEXTRACE)@."
518

    
519

    
520
let main_print machines fmt = 
521
if !Options.main_node <> "" then 
522
  begin
523
    let node = !Options.main_node in
524
    let machine = get_machine machines node in
525

    
526

    
527
    collecting_semantics machines fmt node machine;
528
    check_prop machines fmt node machine;
529
    if !Options.horn_cex then(
530
      cex_computation machines fmt node machine;
531
      get_cex machines fmt node machine)
532
end
533

    
534

    
535
let translate fmt basename prog machines =
536
  List.iter (print_machine machines fmt) (List.rev machines);
537
  
538
  main_print machines fmt 
539

    
540

    
541
let traces_file fmt basename prog machines =
542
  Format.fprintf fmt 
543
    "; Horn code traceability generated by %s@.; SVN version number %s@.@."
544
    (Filename.basename Sys.executable_name) 
545
    Version.number;
546

    
547
  (* We extract the annotation dealing with traceability *)
548
  let machines_traces = List.map (fun m -> 
549
    let traces : (ident * expr) list= 
550
      let all_annots = List.flatten (List.map (fun ann -> ann.annots) m.mannot) in
551
      let filtered = 
552
	List.filter (fun (kwds, _) -> kwds = ["horn_backend";"trace"]) all_annots 
553
      in
554
      let content = List.map snd filtered in
555
      (* Elements are supposed to be a pair (tuple): variable, expression *)
556
      List.map (fun ee -> 
557
	match ee.eexpr_quantifiers, ee.eexpr_qfexpr.expr_desc with 
558
	| [], Expr_tuple [v;e] -> (
559
	  match v.expr_desc with 
560
	  | Expr_ident vid -> vid, e 
561
	  | _ -> assert false )
562
	| _ -> assert false)
563
	content
564
    in
565
    
566
    m, traces
567

    
568
  ) machines
569
  in
570

    
571
  (* Compute memories associated to each machine *)
572
  let compute_mems m =
573
    let rec aux fst prefix m =
574
      (List.map (fun mem -> (prefix, mem)) m.mmemory) @
575
	List.fold_left (fun accu (id, (n, _)) -> 
576
	  let name = node_name n in 
577
	  if name = "_arrow" then accu else
578
	    let machine_n = get_machine machines name in
579
	    ( aux false ((id,machine_n)::prefix) machine_n ) 
580
	    @ accu
581
	) [] m.minstances 
582
    in
583
    aux true [] m
584
  in
585

    
586
  List.iter (fun m ->
587
    Format.fprintf fmt "; Node %s@." m.mname.node_id;
588
    
589
    let memories_old = 
590
      List.map (fun (p, v) -> 
591
	let machine = match p with | [] -> m | (_,m')::_ -> m' in
592
	let traces = List.assoc machine machines_traces in
593
	if List.mem_assoc v.var_id traces then
594
	  (* We take the expression associated to variable v in the trace info *)
595
	  p, List.assoc v.var_id traces
596
	else
597
	  (* We keep the variable as is: we create an expression v *)
598
	  p, mkexpr Location.dummy_loc (Expr_ident v.var_id)
599
	    
600
      ) (compute_mems m) 
601
    in
602
    let memories_next = (* We remove the topest pre in each expression *)
603
      List.map 
604
	(fun (prefix, ee) -> 
605
	  match ee.expr_desc with 
606
	  | Expr_pre e -> prefix, e 
607
	  | _ -> Format.eprintf 
608
	    "Mem Failure: (prefix: %a, eexpr: %a)@.@?" 
609
	    (Utils.fprintf_list ~sep:"," 
610
	       (fun fmt (id,n) -> fprintf fmt "(%s,%s)" id n.mname.node_id )) 
611
	    (List.rev prefix) 
612
	    Printers.pp_expr ee; 
613
	    assert false)
614
	memories_old
615
    in
616

    
617
    let pp_prefix_rev fmt prefix =
618
      Utils.fprintf_list ~sep:"." (fun fmt (id,n) -> fprintf fmt "(%s,%s)" id n.mname.node_id) fmt (List.rev prefix)
619
    in
620

    
621
    Format.fprintf fmt "; Init predicate@.";
622

    
623
    Format.fprintf fmt "; horn encoding@.";
624
    Format.fprintf fmt "(%a %a)@."
625
      pp_machine_init_name m.mname.node_id
626
      (Utils.fprintf_list ~sep:" " pp_var) (init_vars machines m);
627

    
628
    Format.fprintf fmt "; original expressions@.";
629
    Format.fprintf fmt "(%a %a%t%a)@."
630
      pp_machine_init_name m.mname.node_id
631
      (Utils.fprintf_list ~sep:" " pp_var) (m.mstep.step_inputs@m.mstep.step_outputs)
632
      (fun fmt -> match memories_next with [] -> () | _ -> fprintf fmt " ")
633
      (Utils.fprintf_list ~sep:" " (fun fmt (prefix, ee) -> fprintf fmt "%a(%a)" pp_prefix_rev prefix Printers.pp_expr ee)) memories_next;
634

    
635
    Format.pp_print_newline fmt ();
636
    Format.fprintf fmt "; Step predicate@.";
637

    
638
    Format.fprintf fmt "; horn encoding@.";
639
    Format.fprintf fmt "(%a %a)@."
640
      pp_machine_step_name m.mname.node_id
641
      (Utils.fprintf_list ~sep:" " pp_var) (step_vars machines m);
642
    Format.fprintf fmt "; original expressions@.";
643
    Format.fprintf fmt "(%a %a%t%a)@."
644
      pp_machine_step_name m.mname.node_id
645
      (Utils.fprintf_list ~sep:" " pp_var) (m.mstep.step_inputs@m.mstep.step_outputs)
646
      (fun fmt -> match memories_old with [] -> () | _ -> fprintf fmt " ")
647
      (Utils.fprintf_list ~sep:" " (fun fmt (prefix,ee) -> fprintf fmt "%a(%a)" pp_prefix_rev prefix Printers.pp_expr ee)) (memories_old@memories_next);
648
    Format.pp_print_newline fmt ();    
649
  ) (List.rev machines);
650
  
651

    
652
(* Local Variables: *)
653
(* compile-command:"make -C .." *)
654
(* End: *)