Project

General

Profile

Statistics
| Branch: | Tag: | Revision:

lustrec / lib / dimension.ml @ 9b0432bc

History | View | Annotate | Download (10.9 KB)

1
(********************************************************************)
2
(*                                                                  *)
3
(*  The LustreC compiler toolset   /  The LustreC Development Team  *)
4
(*  Copyright 2012 -    --   ONERA - CNRS - INPT                    *)
5
(*                                                                  *)
6
(*  LustreC is free software, distributed WITHOUT ANY WARRANTY      *)
7
(*  under the terms of the GNU Lesser General Public License        *)
8
(*  version 2.1.                                                    *)
9
(*                                                                  *)
10
(********************************************************************)
11

    
12
open Format
13

    
14
type dim_expr =
15
  {mutable dim_desc: dim_desc;
16
   dim_loc: Location.t;
17
   dim_id: int}
18

    
19
and dim_desc =
20
| Dbool of bool
21
| Dint  of int
22
| Dident of Utils.ident
23
| Dappl of Utils.ident * dim_expr list
24
| Dite of dim_expr * dim_expr * dim_expr
25
| Dlink of dim_expr
26
| Dvar
27
| Dunivar
28
[@@deriving show]
29

    
30

    
31
exception Unify of dim_expr * dim_expr
32
exception InvalidDimension
33

    
34
let new_id = ref (-1)
35

    
36
let mkdim loc dim =
37
  incr new_id;
38
  { dim_loc = loc;
39
    dim_id = !new_id;
40
    dim_desc = dim;}
41

    
42
let mkdim_var () =
43
  incr new_id;
44
  { dim_loc = Location.dummy_loc;
45
    dim_id = !new_id;
46
    dim_desc = Dvar;}
47

    
48
let mkdim_ident loc id =
49
  incr new_id;
50
  { dim_loc = loc;
51
    dim_id = !new_id;
52
    dim_desc = Dident id;}
53

    
54
let mkdim_bool loc b =
55
  incr new_id;
56
  { dim_loc = loc;
57
    dim_id = !new_id;
58
    dim_desc = Dbool b;}
59

    
60
let mkdim_int loc i =
61
  incr new_id;
62
  { dim_loc = loc;
63
    dim_id = !new_id;
64
    dim_desc = Dint i;}
65

    
66
let mkdim_appl loc f args =
67
  incr new_id;
68
  { dim_loc = loc;
69
    dim_id = !new_id;
70
    dim_desc = Dappl (f, args);}
71

    
72
let mkdim_ite loc i t e =
73
  incr new_id;
74
  { dim_loc = loc;
75
    dim_id = !new_id;
76
    dim_desc = Dite (i, t, e);}
77

    
78
let rec pp_dimension fmt dim =
79
(*fprintf fmt "<%d>" (Obj.magic dim: int);*)
80
 match dim.dim_desc with
81
 | Dident id       ->
82
     fprintf fmt "%s" id
83
 | Dint i          ->
84
     fprintf fmt "%d" i
85
 | Dbool b         ->
86
     fprintf fmt "%B" b
87
 | Dite (i, t, e)  ->
88
     fprintf fmt "if %a then %a else %a"
89
       pp_dimension i pp_dimension t pp_dimension e
90
 | Dappl (f, [arg]) ->
91
     fprintf fmt "(%s%a)" f pp_dimension arg
92
 | Dappl (f, [arg1; arg2]) ->
93
     fprintf fmt "(%a%s%a)" pp_dimension arg1 f pp_dimension arg2
94
 | Dappl (_, _) -> assert false
95
 | Dlink dim' -> fprintf fmt "%a" pp_dimension dim'
96
 | Dvar       -> fprintf fmt "_%s" (Utils.name_of_dimension dim.dim_id)
97
 | Dunivar    -> fprintf fmt "'%s" (Utils.name_of_dimension dim.dim_id)
98

    
99
let rec multi_dimension_product loc dim_list =
100
 match dim_list with
101
 | []   -> mkdim_int loc 1
102
 | [d]  -> d
103
 | d::q -> mkdim_appl loc "*" [d; multi_dimension_product loc q]
104

    
105
(* Builds a dimension expr representing 0<=d *)
106
let check_bound loc d =
107
 mkdim_appl loc "<=" [mkdim_int loc 0; d]
108

    
109
(* Builds a dimension expr representing 0<=i<d *)
110
let check_access loc d i =
111
 mkdim_appl loc "&&"
112
   [mkdim_appl loc "<=" [mkdim_int loc 0; i];
113
    mkdim_appl loc "<"  [i; d]]
114

    
115
let rec repr dim =
116
 match dim.dim_desc with
117
 | Dlink dim' -> repr dim'
118
 | _          -> dim
119

    
120
let rec is_eq_dimension d1 d2 =
121
  let d1 = repr d1 in
122
  let d2 = repr d2 in
123
  d1.dim_id = d2.dim_id ||
124
  match d1.dim_desc, d2.dim_desc with
125
  | Dappl (f1, args1), Dappl (f2, args2) ->
126
    f1 = f2 && List.length args1 = List.length args2 && List.for_all2 is_eq_dimension args1 args2
127
  | Dite (c1, t1, e1), Dite (c2, t2, e2) ->
128
    is_eq_dimension c1 c2 && is_eq_dimension t1 t2 && is_eq_dimension e1 e2
129
  | Dint i1   , Dint i2    -> i1 = i2
130
  | Dbool b1  , Dbool b2   -> b1 = b2
131
  | Dident id1, Dident id2 -> id1 = id2
132
  | _                      -> false
133

    
134
let is_dimension_const dim =
135
 match (repr dim).dim_desc with
136
 | Dint _
137
 | Dbool _ -> true
138
 | _       -> false
139

    
140
let size_const_dimension dim =
141
  match (repr dim).dim_desc with
142
 | Dint i  -> i
143
 | Dbool b -> if b then 1 else 0
144
 | _       -> (Format.eprintf "internal error: size_const_dimension %a@." pp_dimension dim; assert false)
145

    
146
let rec is_polymorphic dim =
147
  match dim.dim_desc with
148
  | Dident _
149
  | Dint _
150
  | Dbool _
151
  | Dvar             -> false
152
  | Dite (i, t, e)   ->
153
      is_polymorphic i || is_polymorphic t || is_polymorphic e
154
  | Dappl (_, args) -> List.exists is_polymorphic args
155
  | Dlink dim' -> is_polymorphic dim'
156
  | Dunivar    -> true
157

    
158
(* Normalizes a dimension expression, i.e. canonicalize all polynomial
159
   sub-expressions, where unsupported operations (eg. '/') are treated
160
   as variables.
161
*)
162

    
163
let rec factors dim =
164
  match dim.dim_desc with
165
  | Dappl (f, args) when f = "*" -> List.flatten (List.map factors args)
166
  | _                            -> [dim]
167

    
168
let rec factors_constant fs =
169
  match fs with
170
  | []   -> 1
171
  | f::q ->
172
    match f.dim_desc with
173
    | Dint i -> i * (factors_constant q)
174
    | _      -> factors_constant q
175

    
176
let norm_factors fs =
177
  let k = factors_constant fs in
178
  let nk = List.filter (fun d -> not (is_dimension_const d)) fs in
179
  (k, List.sort compare nk)
180

    
181
let rec terms dim =
182
 match dim.dim_desc with
183
 | Dappl (f, args) when f = "+" -> List.flatten (List.map terms args)
184
 | _                            -> [dim]
185

    
186
let rec normalize dim =
187
 dim
188
(*
189
let rec unnormalize loc l =
190
  let l = List.sort (fun (k, l) (k', l') -> compare l l') (List.map (fun (k, l) -> (k, List.sort compare l)) l) in
191
  match l with
192
  | []   -> mkdim_int loc 0
193
  | t::q -> 
194
 List.fold_left (fun res (k, l) -> mkdim_appl loc "+" res (mkdim_appl loc "*" (mkdim_int loc k) l)) t q
195
*)
196
let copy copy_dim_vars dim =
197
  let rec cp dim =
198
  match dim.dim_desc with
199
  | Dbool _
200
  | Dint _    -> dim
201
  | Dident id -> mkdim_ident dim.dim_loc id
202
  | Dite (c, t, e) -> mkdim_ite dim.dim_loc (cp c) (cp t) (cp e)
203
  | Dappl (id, args) -> mkdim_appl dim.dim_loc id (List.map cp args)
204
  | Dlink dim' -> cp dim'
205
  | Dunivar -> assert false
206
  | Dvar      ->
207
    try
208
      List.assoc dim.dim_id !copy_dim_vars
209
    with Not_found ->
210
      let var = mkdim dim.dim_loc Dvar in
211
      copy_dim_vars := (dim.dim_id, var)::!copy_dim_vars;
212
      var
213
  in cp dim
214

    
215
(* Partially evaluates a 'simple' dimension expr [dim], i.e. an expr containing only int and bool 
216
   constructs, with conditionals. [eval_const] is a typing environment for static values. [eval_op] is an evaluation env for basic operators. The argument [dim] is modified in-place. 
217
*)
218
let rec eval eval_op eval_const dim =
219
  match dim.dim_desc with
220
  | Dbool _
221
  | Dint _    -> ()
222
  | Dident id ->
223
    (match eval_const id with
224
    | Some val_dim -> dim.dim_desc <- Dlink val_dim
225
    | None         -> (Format.eprintf "invalid %a@." pp_dimension dim; raise InvalidDimension))
226
  | Dite (c, t, e) ->
227
    begin
228
      eval eval_op eval_const c;
229
      eval eval_op eval_const t;
230
      eval eval_op eval_const e;
231
      match (repr c).dim_desc with
232
      | Dbool b -> dim.dim_desc <- Dlink (if b then t else e)
233
      | _       -> ()
234
       end
235
  | Dappl (id, args) ->
236
    begin
237
      List.iter (eval eval_op eval_const) args;
238
      if List.for_all is_dimension_const args
239
      then dim.dim_desc <- Env.lookup_value eval_op id (List.map (fun d -> (repr d).dim_desc) args)
240
    end
241
  | Dlink dim' ->
242
    begin
243
      eval eval_op eval_const dim';
244
      dim.dim_desc <- Dlink (repr dim')
245
    end
246
  | Dvar -> ()
247
  | Dunivar -> assert false
248

    
249
let uneval const univar =
250
  let univar = repr univar in
251
  match univar.dim_desc with
252
  | Dunivar -> univar.dim_desc <- Dident const
253
  | _       -> assert false
254

    
255
(** [occurs dvar dim] returns true if the dimension variable [dvar] occurs in
256
    dimension expression [dim]. False otherwise. *)
257
let rec occurs dvar dim =
258
  let dim = repr dim in
259
  match dim.dim_desc with
260
  | Dvar  -> dim.dim_id = dvar.dim_id
261
  | Dident _
262
  | Dint _
263
  | Dbool _
264
  | Dunivar          -> false
265
  | Dite (i, t, e)   ->
266
      occurs dvar i || occurs dvar t || occurs dvar e
267
  | Dappl (_, args) -> List.exists (occurs dvar) args
268
  | Dlink _ -> assert false
269

    
270
(* Promote monomorphic dimension variables to polymorphic variables.
271
   Generalize by side-effects *)
272
let rec generalize dim =
273
  match dim.dim_desc with
274
  | Dvar -> dim.dim_desc <- Dunivar
275
  | Dident _
276
  | Dint _
277
  | Dbool _
278
  | Dunivar          -> ()
279
  | Dite (i, t, e)   ->
280
      generalize i; generalize t; generalize e
281
  | Dappl (_, args) -> List.iter generalize args
282
  | Dlink dim' -> generalize dim'
283

    
284
(* Instantiate polymorphic dimension variables to monomorphic variables.
285
   Also duplicates the whole term structure (but the constant sub-terms).
286
*)
287
let rec instantiate inst_dim_vars dim =
288
  let dim = repr dim in
289
  match dim.dim_desc with
290
  | Dvar
291
  | Dident _
292
  | Dint _
293
  | Dbool _ -> dim
294
  | Dite (i, t, e)   ->
295
      mkdim_ite dim.dim_loc
296
	(instantiate inst_dim_vars i)
297
	(instantiate inst_dim_vars t)
298
	(instantiate inst_dim_vars e)
299
  | Dappl (f, args) -> mkdim_appl dim.dim_loc f (List.map (instantiate inst_dim_vars) args)
300
  | Dlink dim' -> assert false (*mkdim dim.dim_loc (Dlink (instantiate inst_dim_vars dim'))*)
301
  | Dunivar ->
302
      try
303
        List.assoc dim.dim_id !inst_dim_vars
304
      with Not_found ->
305
        let var = mkdim dim.dim_loc Dvar in
306
	inst_dim_vars := (dim.dim_id, var)::!inst_dim_vars;
307
	var
308

    
309
(** destructive unification of [dim1] and [dim2].
310
   Raises [Unify (t1,t2)] if the types are not unifiable.
311
   if [semi] unification is required,
312
   [dim1] should furthermore be an instance of [dim2] *)
313
let unify ?(semi=false) dim1 dim2 =
314
  let rec unif dim1 dim2 =
315
    let dim1 = repr dim1 in
316
    let dim2 = repr dim2 in
317
    if dim1.dim_id = dim2.dim_id then () else
318
      match dim1.dim_desc, dim2.dim_desc with
319
      | Dunivar, _
320
      | _      , Dunivar -> assert false
321
      | Dvar   , Dvar    ->
322
	if dim1.dim_id < dim2.dim_id
323
	then dim2.dim_desc <- Dlink dim1
324
	else dim1.dim_desc <- Dlink dim2
325
      | Dvar   , _ when (not semi) && not (occurs dim1 dim2) ->
326
	dim1.dim_desc <- Dlink dim2
327
      | _      , Dvar when not (occurs dim2 dim1) ->
328
	dim2.dim_desc <- Dlink dim1
329
      | Dite(i1, t1, e1), Dite(i2, t2, e2) ->
330
	begin
331
          unif i1 i2;
332
	  unif t1 t2;
333
	  unif e1 e2
334
	end
335
      | Dappl(f1, args1), Dappl(f2, args2) when f1 = f2 && List.length args1 = List.length args2 ->
336
	List.iter2 unif args1 args2
337
      | Dbool b1, Dbool b2 when b1 = b2 -> ()
338
      | Dint i1 , Dint i2 when i1 = i2 -> ()
339
      | Dident id1, Dident id2 when id1 = id2 -> ()
340
      | _ -> raise (Unify (dim1, dim2))
341
  in unif dim1 dim2
342

    
343
let rec rename fnode fvar e = 
344
 { e with dim_desc = expr_replace_var_desc fnode fvar e.dim_desc }
345
and expr_replace_var_desc fnode fvar e =
346
  let re = rename fnode fvar in
347
  match e with
348
  | Dvar
349
  | Dunivar
350
  | Dbool _
351
  | Dint _ -> e
352
  | Dident v -> Dident (fvar v)
353
  | Dappl (id, el) -> Dappl (fnode id, List.map re el)
354
  | Dite (g,t,e) -> Dite (re g, re t, re e)
355
  | Dlink e -> Dlink (re e)
356

    
357
let rec expr_replace_expr fvar e = 
358
 { e with dim_desc = expr_replace_expr_desc fvar e.dim_desc }
359
and expr_replace_expr_desc fvar e =
360
  let re = expr_replace_expr fvar in
361
  match e with
362
  | Dvar
363
  | Dunivar
364
  | Dbool _
365
  | Dint _ -> e
366
  | Dident v -> (fvar v).dim_desc
367
  | Dappl (id, el) -> Dappl (id, List.map re el)
368
  | Dite (g,t,e) -> Dite (re g, re t, re e)
369
  | Dlink e -> Dlink (re e)