Project

General

Profile

Statistics
| Branch: | Tag: | Revision:

lustrec / src / machine_code.ml @ 990210f3

History | View | Annotate | Download (25.3 KB)

1
(********************************************************************)
2
(*                                                                  *)
3
(*  The LustreC compiler toolset   /  The LustreC Development Team  *)
4
(*  Copyright 2012 -    --   ONERA - CNRS - INPT                    *)
5
(*                                                                  *)
6
(*  LustreC is free software, distributed WITHOUT ANY WARRANTY      *)
7
(*  under the terms of the GNU Lesser General Public License        *)
8
(*  version 2.1.                                                    *)
9
(*                                                                  *)
10
(********************************************************************)
11

    
12
open LustreSpec
13
open Corelang
14
open Clocks
15
open Causality
16

    
17
let print_statelocaltag = true
18
  
19
exception NormalizationError
20

    
21
module OrdVarDecl:Map.OrderedType with type t=var_decl =
22
  struct type t = var_decl;; let compare = compare end
23

    
24
module ISet = Set.Make(OrdVarDecl)
25

    
26
let rec pp_val fmt v =
27
  match v.value_desc with
28
    | Cst c         -> Printers.pp_const fmt c 
29
    | LocalVar v    ->
30
       if print_statelocaltag then
31
	 Format.fprintf fmt "%s(L)" v.var_id
32
       else
33
	 Format.pp_print_string fmt v.var_id
34
	   
35
    | StateVar v    ->
36
       if print_statelocaltag then
37
	 Format.fprintf fmt "%s(S)" v.var_id
38
       else
39
	 Format.pp_print_string fmt v.var_id
40
    | Array vl      -> Format.fprintf fmt "[%a]" (Utils.fprintf_list ~sep:", " pp_val)  vl
41
    | Access (t, i) -> Format.fprintf fmt "%a[%a]" pp_val t pp_val i
42
    | Power (v, n)  -> Format.fprintf fmt "(%a^%a)" pp_val v pp_val n
43
    | Fun (n, vl)   -> Format.fprintf fmt "%s (%a)" n (Utils.fprintf_list ~sep:", " pp_val)  vl
44

    
45
let rec pp_instr fmt i =
46
  match i with
47
    | MLocalAssign (i,v) -> Format.fprintf fmt "%s<-l- %a" i.var_id pp_val v
48
    | MStateAssign (i,v) -> Format.fprintf fmt "%s<-s- %a" i.var_id pp_val v
49
    | MReset i           -> Format.fprintf fmt "reset %s" i
50
    | MNoReset i         -> Format.fprintf fmt "noreset %s" i
51
    | MStep (il, i, vl)  ->
52
      Format.fprintf fmt "%a = %s (%a)"
53
	(Utils.fprintf_list ~sep:", " (fun fmt v -> Format.pp_print_string fmt v.var_id)) il
54
	i
55
	(Utils.fprintf_list ~sep:", " pp_val) vl
56
    | MBranch (g,hl)     ->
57
      Format.fprintf fmt "@[<v 2>case(%a) {@,%a@,}@]"
58
	pp_val g
59
	(Utils.fprintf_list ~sep:"@," pp_branch) hl
60
    | MComment s -> Format.pp_print_string fmt s
61

    
62
and pp_branch fmt (t, h) =
63
  Format.fprintf fmt "@[<v 2>%s:@,%a@]" t (Utils.fprintf_list ~sep:"@," pp_instr) h
64

    
65
and pp_instrs fmt il =
66
  Format.fprintf fmt "@[<v 2>%a@]" (Utils.fprintf_list ~sep:"@," pp_instr) il
67

    
68
type step_t = {
69
  step_checks: (Location.t * value_t) list;
70
  step_inputs: var_decl list;
71
  step_outputs: var_decl list;
72
  step_locals: var_decl list;
73
  step_instrs: instr_t list;
74
  step_asserts: value_t list;
75
}
76

    
77
type static_call = top_decl * (Dimension.dim_expr list)
78

    
79
type machine_t = {
80
  mname: node_desc;
81
  mmemory: var_decl list;
82
  mcalls: (ident * static_call) list; (* map from stateful/stateless instance to node, no internals *)
83
  minstances: (ident * static_call) list; (* sub-map of mcalls, from stateful instance to node *)
84
  minit: instr_t list;
85
  mstatic: var_decl list; (* static inputs only *)
86
  mconst: instr_t list; (* assignments of node constant locals *)
87
  mstep: step_t;
88
  mspec: node_annot option;
89
  mannot: expr_annot list;
90
}
91

    
92
let machine_vars m = m.mstep.step_inputs @ m.mstep.step_locals @ m.mstep.step_outputs @ m.mmemory
93

    
94
let pp_step fmt s =
95
  Format.fprintf fmt "@[<v>inputs : %a@ outputs: %a@ locals : %a@ checks : %a@ instrs : @[%a@]@ asserts : @[%a@]@]@ "
96
    (Utils.fprintf_list ~sep:", " Printers.pp_var) s.step_inputs
97
    (Utils.fprintf_list ~sep:", " Printers.pp_var) s.step_outputs
98
    (Utils.fprintf_list ~sep:", " Printers.pp_var) s.step_locals
99
    (Utils.fprintf_list ~sep:", " (fun fmt (_, c) -> pp_val fmt c)) s.step_checks
100
    (Utils.fprintf_list ~sep:"@ " pp_instr) s.step_instrs
101
    (Utils.fprintf_list ~sep:", " pp_val) s.step_asserts
102

    
103

    
104
let pp_static_call fmt (node, args) =
105
 Format.fprintf fmt "%s<%a>"
106
   (node_name node)
107
   (Utils.fprintf_list ~sep:", " Dimension.pp_dimension) args
108

    
109
let pp_machine fmt m =
110
  Format.fprintf fmt
111
    "@[<v 2>machine %s@ mem      : %a@ instances: %a@ init     : %a@ const    : %a@ step     :@   @[<v 2>%a@]@ @  spec : @[%t@]@  annot : @[%a@]@]@ "
112
    m.mname.node_id
113
    (Utils.fprintf_list ~sep:", " Printers.pp_var) m.mmemory
114
    (Utils.fprintf_list ~sep:", " (fun fmt (o1, o2) -> Format.fprintf fmt "(%s, %a)" o1 pp_static_call o2)) m.minstances
115
    (Utils.fprintf_list ~sep:"@ " pp_instr) m.minit
116
    (Utils.fprintf_list ~sep:"@ " pp_instr) m.mconst
117
    pp_step m.mstep
118
    (fun fmt -> match m.mspec with | None -> () | Some spec -> Printers.pp_spec fmt spec)
119
    (Utils.fprintf_list ~sep:"@ " Printers.pp_expr_annot) m.mannot
120

    
121
let pp_machines fmt ml =
122
  Format.fprintf fmt "@[<v 0>%a@]" (Utils.fprintf_list ~sep:"@," pp_machine) ml
123

    
124
  
125
let rec is_const_value v =
126
  match v.value_desc with
127
  | Cst _          -> true
128
  | Fun (id, args) -> Basic_library.is_value_internal_fun v && List.for_all is_const_value args
129
  | _              -> false
130

    
131
(* Returns the declared stateless status and the computed one. *)
132
let get_stateless_status m =
133
 (m.mname.node_dec_stateless, Utils.desome m.mname.node_stateless)
134

    
135
let is_input m id =
136
  List.exists (fun o -> o.var_id = id.var_id) m.mstep.step_inputs
137

    
138
let is_output m id =
139
  List.exists (fun o -> o.var_id = id.var_id) m.mstep.step_outputs
140

    
141
let is_memory m id =
142
  List.exists (fun o -> o.var_id = id.var_id) m.mmemory
143

    
144
let conditional c t e =
145
  MBranch(c, [ (tag_true, t); (tag_false, e) ])
146

    
147
let dummy_var_decl name typ =
148
  {
149
    var_id = name;
150
    var_orig = false;
151
    var_dec_type = dummy_type_dec;
152
    var_dec_clock = dummy_clock_dec;
153
    var_dec_const = false;
154
    var_dec_value = None;
155
    var_type =  typ;
156
    var_clock = Clocks.new_ck Clocks.Cvar true;
157
    var_loc = Location.dummy_loc
158
  }
159

    
160
let arrow_id = "_arrow"
161

    
162
let arrow_typ = Types.new_ty Types.Tunivar
163

    
164
let arrow_desc =
165
  {
166
    node_id = arrow_id;
167
    node_type = Type_predef.type_bin_poly_op;
168
    node_clock = Clock_predef.ck_bin_univ;
169
    node_inputs= [dummy_var_decl "_in1" arrow_typ; dummy_var_decl "_in2" arrow_typ];
170
    node_outputs= [dummy_var_decl "_out" arrow_typ];
171
    node_locals= [];
172
    node_gencalls = [];
173
    node_checks = [];
174
    node_asserts = [];
175
    node_stmts= [];
176
    node_dec_stateless = false;
177
    node_stateless = Some false;
178
    node_spec = None;
179
    node_annot = [];  }
180

    
181
let arrow_top_decl =
182
  {
183
    top_decl_desc = Node arrow_desc;
184
    top_decl_owner = (Options.core_dependency "arrow");
185
    top_decl_itf = false;
186
    top_decl_loc = Location.dummy_loc
187
  }
188

    
189
let mk_val v t = { value_desc = v; 
190
		   value_type = t; 
191
		   value_annot = None }
192

    
193
let arrow_machine =
194
  let state = "_first" in
195
  let var_state = dummy_var_decl state (Types.new_ty Types.Tbool) in
196
  let var_input1 = List.nth arrow_desc.node_inputs 0 in
197
  let var_input2 = List.nth arrow_desc.node_inputs 1 in
198
  let var_output = List.nth arrow_desc.node_outputs 0 in
199
  let cst b = mk_val (Cst (const_of_bool b)) Type_predef.type_bool in
200
  let t_arg = Types.new_univar () in (* TODO Xavier: c'est bien la bonne def ? *)
201
  {
202
    mname = arrow_desc;
203
    mmemory = [var_state];
204
    mcalls = [];
205
    minstances = [];
206
    minit = [MStateAssign(var_state, cst true)];
207
    mstatic = [];
208
    mconst = [];
209
    mstep = {
210
      step_inputs = arrow_desc.node_inputs;
211
      step_outputs = arrow_desc.node_outputs;
212
      step_locals = [];
213
      step_checks = [];
214
      step_instrs = [conditional (mk_val (StateVar var_state) Type_predef.type_bool)
215
			         [MStateAssign(var_state, cst false);
216
                                  MLocalAssign(var_output, mk_val (LocalVar var_input1) t_arg)]
217
                                 [MLocalAssign(var_output, mk_val (LocalVar var_input2) t_arg)] ];
218
      step_asserts = [];
219
    };
220
    mspec = None;
221
    mannot = [];
222
  }
223

    
224
let empty_desc =
225
  {
226
    node_id = arrow_id;
227
    node_type = Types.bottom;
228
    node_clock = Clocks.bottom;
229
    node_inputs= [];
230
    node_outputs= [];
231
    node_locals= [];
232
    node_gencalls = [];
233
    node_checks = [];
234
    node_asserts = [];
235
    node_stmts= [];
236
    node_dec_stateless = true;
237
    node_stateless = Some true;
238
    node_spec = None;
239
    node_annot = [];  }
240

    
241
let empty_machine =
242
  {
243
    mname = empty_desc;
244
    mmemory = [];
245
    mcalls = [];
246
    minstances = [];
247
    minit = [];
248
    mstatic = [];
249
    mconst = [];
250
    mstep = {
251
      step_inputs = [];
252
      step_outputs = [];
253
      step_locals = [];
254
      step_checks = [];
255
      step_instrs = [];
256
      step_asserts = [];
257
    };
258
    mspec = None;
259
    mannot = [];
260
  }
261

    
262
let new_instance =
263
  let cpt = ref (-1) in
264
  fun caller callee tag ->
265
    begin
266
      let o =
267
	if Stateless.check_node callee then
268
	  node_name callee
269
	else
270
	  Printf.sprintf "ni_%d" (incr cpt; !cpt) in
271
      let o =
272
	if !Options.ansi && is_generic_node callee
273
	then Printf.sprintf "%s_inst_%d" o (Utils.position (fun e -> e.expr_tag = tag) caller.node_gencalls)
274
	else o in
275
      o
276
    end
277

    
278

    
279
(* translate_<foo> : node -> context -> <foo> -> machine code/expression *)
280
(* the context contains  m : state aka memory variables  *)
281
(*                      si : initialization instructions *)
282
(*                       j : node aka machine instances  *)
283
(*                       d : local variables             *)
284
(*                       s : step instructions           *)
285
let translate_ident node (m, si, j, d, s) id =
286
  try (* id is a node var *)
287
    let var_id = get_node_var id node in
288
    if ISet.exists (fun v -> v.var_id = id) m
289
    then mk_val (StateVar var_id) var_id.var_type
290
    else mk_val (LocalVar var_id) var_id.var_type
291
  with Not_found ->
292
    try (* id is a constant *)
293
      let vdecl = (Corelang.var_decl_of_const (const_of_top (Hashtbl.find Corelang.consts_table id))) in
294
      mk_val (LocalVar vdecl) vdecl.var_type
295
    with Not_found ->
296
      (* id is a tag *)
297
      (* DONE construire une liste des enum declar├ęs et alors chercher dedans la liste
298
	 qui contient id *)
299
      try
300
        let typ = (typedef_of_top (Hashtbl.find Corelang.tag_table id)).tydef_id in
301
        mk_val (Cst (Const_tag id)) (Type_predef.type_const typ)
302
      with Not_found -> (Format.eprintf "internal error: Machine_code.translate_ident %s" id;
303
                         assert false)
304

    
305
let rec control_on_clock node ((m, si, j, d, s) as args) ck inst =
306
 match (Clocks.repr ck).cdesc with
307
 | Con    (ck1, cr, l) ->
308
   let id  = Clocks.const_of_carrier cr in
309
   control_on_clock node args ck1 (MBranch (translate_ident node args id,
310
					    [l, [inst]] ))
311
 | _                   -> inst
312

    
313
let rec join_branches hl1 hl2 =
314
 match hl1, hl2 with
315
 | []          , _            -> hl2
316
 | _           , []           -> hl1
317
 | (t1, h1)::q1, (t2, h2)::q2 ->
318
   if t1 < t2 then (t1, h1) :: join_branches q1 hl2 else
319
   if t1 > t2 then (t2, h2) :: join_branches hl1 q2
320
   else (t1, List.fold_right join_guards h1 h2) :: join_branches q1 q2
321

    
322
and join_guards inst1 insts2 =
323
 match inst1, insts2 with
324
 | _                   , []                               ->
325
   [inst1]
326
 | MBranch (x1, hl1), MBranch (x2, hl2) :: q when x1 = x2 ->
327
   MBranch (x1, join_branches (sort_handlers hl1) (sort_handlers hl2))
328
   :: q
329
 | _ -> inst1 :: insts2
330

    
331
let join_guards_list insts =
332
 List.fold_right join_guards insts []
333

    
334
(* specialize predefined (polymorphic) operators
335
   wrt their instances, so that the C semantics
336
   is preserved *)
337
let specialize_to_c expr =
338
 match expr.expr_desc with
339
 | Expr_appl (id, e, r) ->
340
   if List.exists (fun e -> Types.is_bool_type e.expr_type) (expr_list_of_expr e)
341
   then let id =
342
	  match id with
343
	  | "="  -> "equi"
344
	  | "!=" -> "xor"
345
	  | _    -> id in
346
	{ expr with expr_desc = Expr_appl (id, e, r) }
347
   else expr
348
 | _ -> expr
349

    
350
let specialize_op expr =
351
  match !Options.output with
352
  | "C" -> specialize_to_c expr
353
  | _   -> expr
354

    
355
let rec translate_expr node ((m, si, j, d, s) as args) expr =
356
  let expr = specialize_op expr in
357
  let value_desc = 
358
    match expr.expr_desc with
359
    | Expr_const v                     -> Cst v
360
    | Expr_ident x                     -> (translate_ident node args x).value_desc
361
    | Expr_array el                    -> Array (List.map (translate_expr node args) el)
362
    | Expr_access (t, i)               -> Access (translate_expr node args t, translate_expr node args (expr_of_dimension i))
363
    | Expr_power  (e, n)               -> Power  (translate_expr node args e, translate_expr node args (expr_of_dimension n))
364
    | Expr_tuple _
365
    | Expr_arrow _ 
366
    | Expr_fby _
367
    | Expr_pre _                       -> (Printers.pp_expr Format.err_formatter expr; Format.pp_print_flush Format.err_formatter (); raise NormalizationError)
368
    | Expr_when    (e1, _, _)          -> (translate_expr node args e1).value_desc
369
    | Expr_merge   (x, _)              -> raise NormalizationError
370
    | Expr_appl (id, e, _) when Basic_library.is_expr_internal_fun expr ->
371
      let nd = node_from_name id in
372
      Fun (node_name nd, List.map (translate_expr node args) (expr_list_of_expr e))
373
    | Expr_ite (g,t,e) -> (
374
      (* special treatment depending on the active backend. For horn backend, ite
375
	 are preserved in expression. While they are removed for C or Java
376
	 backends. *)
377
      match !Options.output with
378
      | "horn" -> 
379
	 Fun ("ite", [translate_expr node args g; translate_expr node args t; translate_expr node args e])
380
      | "C" | "java" | _ -> 
381
	 (Format.eprintf "Normalization error for backend %s: %a@."
382
	    !Options.output
383
	    Printers.pp_expr expr;
384
	  raise NormalizationError)
385
    )
386
    | _                   -> raise NormalizationError
387
  in
388
  mk_val value_desc expr.expr_type
389

    
390
let translate_guard node args expr =
391
  match expr.expr_desc with
392
  | Expr_ident x  -> translate_ident node args x
393
  | _ -> (Format.eprintf "internal error: translate_guard %s %a@." node.node_id Printers.pp_expr expr;assert false)
394

    
395
let rec translate_act node ((m, si, j, d, s) as args) (y, expr) =
396
  match expr.expr_desc with
397
  | Expr_ite   (c, t, e) -> let g = translate_guard node args c in
398
			    conditional g
399
                              [translate_act node args (y, t)]
400
                              [translate_act node args (y, e)]
401
  | Expr_merge (x, hl)   -> MBranch (translate_ident node args x,
402
                                     List.map (fun (t,  h) -> t, [translate_act node args (y, h)]) hl)
403
  | _                    -> MLocalAssign (y, translate_expr node args expr)
404

    
405
let reset_instance node args i r c =
406
  match r with
407
  | None        -> []
408
  | Some r      -> let g = translate_guard node args r in
409
                   [control_on_clock node args c (conditional g [MReset i] [MNoReset i])]
410

    
411
let translate_eq node ((m, si, j, d, s) as args) eq =
412
  (* Format.eprintf "translate_eq %a with clock %a@." Printers.pp_node_eq eq Clocks.print_ck eq.eq_rhs.expr_clock;  *)
413
  match eq.eq_lhs, eq.eq_rhs.expr_desc with
414
  | [x], Expr_arrow (e1, e2)                     ->
415
     let var_x = get_node_var x node in
416
     let o = new_instance node arrow_top_decl eq.eq_rhs.expr_tag in
417
     let c1 = translate_expr node args e1 in
418
     let c2 = translate_expr node args e2 in
419
     (m,
420
      MReset o :: si,
421
      Utils.IMap.add o (arrow_top_decl, []) j,
422
      d,
423
      (control_on_clock node args eq.eq_rhs.expr_clock (MStep ([var_x], o, [c1;c2]))) :: s)
424
  | [x], Expr_pre e1 when ISet.mem (get_node_var x node) d     ->
425
     let var_x = get_node_var x node in
426
     (ISet.add var_x m,
427
      si,
428
      j,
429
      d,
430
      control_on_clock node args eq.eq_rhs.expr_clock (MStateAssign (var_x, translate_expr node args e1)) :: s)
431
  | [x], Expr_fby (e1, e2) when ISet.mem (get_node_var x node) d ->
432
     let var_x = get_node_var x node in
433
     (ISet.add var_x m,
434
      MStateAssign (var_x, translate_expr node args e1) :: si,
435
      j,
436
      d,
437
      control_on_clock node args eq.eq_rhs.expr_clock (MStateAssign (var_x, translate_expr node args e2)) :: s)
438

    
439
  | p  , Expr_appl (f, arg, r) when not (Basic_library.is_expr_internal_fun eq.eq_rhs) ->
440
     let var_p = List.map (fun v -> get_node_var v node) p in
441
     let el = expr_list_of_expr arg in
442
     let vl = List.map (translate_expr node args) el in
443
     let node_f = node_from_name f in
444
     let call_f =
445
       node_f,
446
       NodeDep.filter_static_inputs (node_inputs node_f) el in
447
     let o = new_instance node node_f eq.eq_rhs.expr_tag in
448
     let env_cks = List.fold_right (fun arg cks -> arg.expr_clock :: cks) el [eq.eq_rhs.expr_clock] in
449
     let call_ck = Clock_calculus.compute_root_clock (Clock_predef.ck_tuple env_cks) in
450
     (*Clocks.new_var true in
451
       Clock_calculus.unify_imported_clock (Some call_ck) eq.eq_rhs.expr_clock eq.eq_rhs.expr_loc;
452
       Format.eprintf "call %a: %a: %a@," Printers.pp_expr eq.eq_rhs Clocks.print_ck (Clock_predef.ck_tuple env_cks) Clocks.print_ck call_ck;*)
453
     (m,
454
      (if Stateless.check_node node_f then si else MReset o :: si),
455
      Utils.IMap.add o call_f j,
456
      d,
457
      (if Stateless.check_node node_f
458
       then []
459
       else reset_instance node args o r call_ck) @
460
	(control_on_clock node args call_ck (MStep (var_p, o, vl))) :: s)
461
  (*
462
    (* special treatment depending on the active backend. For horn backend, x = ite (g,t,e)
463
    are preserved. While they are replaced as if g then x = t else x = e in  C or Java
464
    backends. *)
465
    | [x], Expr_ite   (c, t, e)
466
    when (match !Options.output with | "horn" -> true | "C" | "java" | _ -> false)
467
    ->
468
    let var_x = get_node_var x node in
469
    (m,
470
    si,
471
    j,
472
    d,
473
    (control_on_clock node args eq.eq_rhs.expr_clock
474
    (MLocalAssign (var_x, translate_expr node args eq.eq_rhs))::s)
475
    )
476

    
477
  *)
478
  | [x], _                                       -> (
479
    let var_x = get_node_var x node in
480
    (m, si, j, d,
481
     control_on_clock
482
       node
483
       args
484
       eq.eq_rhs.expr_clock
485
       (translate_act node args (var_x, eq.eq_rhs)) :: s
486
    )
487
  )
488
  | _                                            ->
489
     begin
490
       Format.eprintf "internal error: Machine_code.translate_eq %a@?" Printers.pp_node_eq eq;
491
       assert false
492
     end
493

    
494
let find_eq xl eqs =
495
  let rec aux accu eqs =
496
      match eqs with
497
	| [] ->
498
	  begin
499
	    Format.eprintf "Looking for variables %a in the following equations@.%a@."
500
	      (Utils.fprintf_list ~sep:" , " (fun fmt v -> Format.fprintf fmt "%s" v)) xl
501
	      Printers.pp_node_eqs eqs;
502
	    assert false
503
	  end
504
	| hd::tl ->
505
	  if List.exists (fun x -> List.mem x hd.eq_lhs) xl then hd, accu@tl else aux (hd::accu) tl
506
    in
507
    aux [] eqs
508

    
509
(* Sort the set of equations of node [nd] according
510
   to the computed schedule [sch]
511
*)
512
let sort_equations_from_schedule nd sch =
513
  (* Format.eprintf "%s schedule: %a@." *)
514
  (* 		 nd.node_id *)
515
  (* 		 (Utils.fprintf_list ~sep:" ; " Scheduling.pp_eq_schedule) sch; *)
516
  let split_eqs = Splitting.tuple_split_eq_list (get_node_eqs nd) in
517
  let eqs_rev, remainder =
518
    List.fold_left
519
      (fun (accu, node_eqs_remainder) vl ->
520
       if List.exists (fun eq -> List.exists (fun v -> List.mem v eq.eq_lhs) vl) accu
521
       then
522
	 (accu, node_eqs_remainder)
523
       else
524
	 let eq_v, remainder = find_eq vl node_eqs_remainder in
525
	 eq_v::accu, remainder
526
      )
527
      ([], split_eqs)
528
      sch
529
  in
530
  begin
531
    if List.length remainder > 0 then (
532
      Format.eprintf "Equations not used are@.%a@.Full equation set is:@.%a@.@?"
533
		     Printers.pp_node_eqs remainder
534
      		     Printers.pp_node_eqs (get_node_eqs nd);
535
      assert false);
536
    List.rev eqs_rev
537
  end
538

    
539
let constant_equations nd =
540
 List.fold_right (fun vdecl eqs ->
541
   if vdecl.var_dec_const
542
   then
543
     { eq_lhs = [vdecl.var_id];
544
       eq_rhs = Utils.desome vdecl.var_dec_value;
545
       eq_loc = vdecl.var_loc
546
     } :: eqs
547
   else eqs)
548
   nd.node_locals []
549

    
550
let translate_eqs node args eqs =
551
  List.fold_right (fun eq args -> translate_eq node args eq) eqs args;;
552

    
553
let translate_decl nd sch =
554
  (*Log.report ~level:1 (fun fmt -> Printers.pp_node fmt nd);*)
555

    
556
  let sorted_eqs = sort_equations_from_schedule nd sch in
557
  let constant_eqs = constant_equations nd in
558

    
559
  (* In case of non functional backend (eg. C), additional local variables have
560
     to be declared for each assert *)
561
  let new_locals, assert_instrs, nd_node_asserts =
562
    let exprl = List.map (fun assert_ -> assert_.assert_expr ) nd.node_asserts in
563
    if Corelang.functional_backend () then
564
      [], [], exprl  
565
    else (* Each assert(e) is associated to a fresh variable v and declared as
566
	    v=e; assert (v); *)
567
      let _, vars, eql, assertl =
568
	List.fold_left (fun (i, vars, eqlist, assertlist) expr ->
569
	  let loc = expr.expr_loc in
570
	  let var_id = nd.node_id ^ "_assert_" ^ string_of_int i in
571
	  let assert_var =
572
	    mkvar_decl
573
	      loc
574
	      ~orig:false (* fresh var *)
575
	      (var_id,
576
	       mktyp loc Tydec_bool,
577
	       mkclock loc Ckdec_any,
578
	       false, (* not a constant *)
579
	       None (* no default value *)
580
	      )
581
	  in
582
	  assert_var.var_type <- Types.new_ty (Types.Tbool); 
583
	  let eq = mkeq loc ([var_id], expr) in
584
	  (i+1, assert_var::vars, eq::eqlist, {expr with expr_desc = Expr_ident var_id}::assertlist)
585
	) (1, [], [], []) exprl
586
      in
587
      vars, eql, assertl
588
  in
589
  let locals_list = nd.node_locals @ new_locals in
590

    
591
  let nd = { nd with node_locals = locals_list } in
592
  let init_args = ISet.empty, [], Utils.IMap.empty, List.fold_right (fun l -> ISet.add l) locals_list ISet.empty, [] in
593
  (* memories, init instructions, node calls, local variables (including memories), step instrs *)
594
  let m0, init0, j0, locals0, s0 = translate_eqs nd init_args constant_eqs in
595
  assert (ISet.is_empty m0);
596
  assert (init0 = []);
597
  assert (Utils.IMap.is_empty j0);
598
  let m, init, j, locals, s = translate_eqs nd (m0, init0, j0, locals0, []) (assert_instrs@sorted_eqs) in
599
  let mmap = Utils.IMap.fold (fun i n res -> (i, n)::res) j [] in
600
  {
601
    mname = nd;
602
    mmemory = ISet.elements m;
603
    mcalls = mmap;
604
    minstances = List.filter (fun (_, (n,_)) -> not (Stateless.check_node n)) mmap;
605
    minit = init;
606
    mconst = s0;
607
    mstatic = List.filter (fun v -> v.var_dec_const) nd.node_inputs;
608
    mstep = {
609
      step_inputs = nd.node_inputs;
610
      step_outputs = nd.node_outputs;
611
      step_locals = ISet.elements (ISet.diff locals m);
612
      step_checks = List.map (fun d -> d.Dimension.dim_loc, translate_expr nd init_args (expr_of_dimension d)) nd.node_checks;
613
      step_instrs = (
614
	(* special treatment depending on the active backend. For horn backend,
615
	   common branches are not merged while they are in C or Java
616
	   backends. *)
617
	(*match !Options.output with
618
	| "horn" -> s
619
	| "C" | "java" | _ ->*) join_guards_list s
620
      );
621
      step_asserts = List.map (translate_expr nd init_args) nd_node_asserts;
622
    };
623
    mspec = nd.node_spec;
624
    mannot = nd.node_annot;
625
  }
626

    
627
(** takes the global declarations and the scheduling associated to each node *)
628
let translate_prog decls node_schs =
629
  let nodes = get_nodes decls in
630
  List.map
631
    (fun decl ->
632
     let node = node_of_top decl in
633
      let sch = (Utils.IMap.find node.node_id node_schs).Scheduling.schedule in
634
      translate_decl node sch
635
    ) nodes
636

    
637
let get_machine_opt name machines =
638
  List.fold_left
639
    (fun res m ->
640
      match res with
641
      | Some _ -> res
642
      | None -> if m.mname.node_id = name then Some m else None)
643
    None machines
644

    
645
let get_const_assign m id =
646
  try
647
    match (List.find (fun instr -> match instr with MLocalAssign (v, _) -> v == id | _ -> false) m.mconst) with
648
    | MLocalAssign (_, e) -> e
649
    | _                   -> assert false
650
  with Not_found -> assert false
651

    
652

    
653
let value_of_ident loc m id =
654
  (* is is a state var *)
655
  try
656
    let v = List.find (fun v -> v.var_id = id) m.mmemory
657
    in mk_val (StateVar v) v.var_type 
658
  with Not_found ->
659
    try (* id is a node var *)
660
      let v = get_node_var id m.mname
661
      in mk_val (LocalVar v) v.var_type
662
  with Not_found ->
663
    try (* id is a constant *)
664
      let c = Corelang.var_decl_of_const (const_of_top (Hashtbl.find Corelang.consts_table id))
665
      in mk_val (LocalVar c) c.var_type
666
    with Not_found ->
667
      (* id is a tag *)
668
      let t = Const_tag id
669
      in mk_val (Cst t) (Typing.type_const loc t)
670

    
671
(* type of internal fun used in dimension expression *)
672
let type_of_value_appl f args =
673
  if List.mem f Basic_library.arith_funs
674
  then (List.hd args).value_type
675
  else Type_predef.type_bool
676

    
677
let rec value_of_dimension m dim =
678
  match dim.Dimension.dim_desc with
679
  | Dimension.Dbool b         ->
680
     mk_val (Cst (Const_tag (if b then Corelang.tag_true else Corelang.tag_false))) Type_predef.type_bool
681
  | Dimension.Dint i          ->
682
     mk_val (Cst (Const_int i)) Type_predef.type_int
683
  | Dimension.Dident v        -> value_of_ident dim.Dimension.dim_loc m v
684
  | Dimension.Dappl (f, args) ->
685
     let vargs = List.map (value_of_dimension m) args
686
     in mk_val (Fun (f, vargs)) (type_of_value_appl f vargs) 
687
  | Dimension.Dite (i, t, e)  ->
688
     (match List.map (value_of_dimension m) [i; t; e] with
689
     | [vi; vt; ve] -> mk_val (Fun ("ite", [vi; vt; ve])) vt.value_type
690
     | _            -> assert false)
691
  | Dimension.Dlink dim'      -> value_of_dimension m dim'
692
  | _                         -> assert false
693

    
694
let rec dimension_of_value value =
695
  match value.value_desc with
696
  | Cst (Const_tag t) when t = Corelang.tag_true  -> Dimension.mkdim_bool  Location.dummy_loc true
697
  | Cst (Const_tag t) when t = Corelang.tag_false -> Dimension.mkdim_bool  Location.dummy_loc false
698
  | Cst (Const_int i)                             -> Dimension.mkdim_int   Location.dummy_loc i
699
  | LocalVar v                                    -> Dimension.mkdim_ident Location.dummy_loc v.var_id
700
  | Fun (f, args)                                 -> Dimension.mkdim_appl  Location.dummy_loc f (List.map dimension_of_value args)
701
  | _                                             -> assert false
702

    
703
(* Local Variables: *)
704
(* compile-command:"make -C .." *)
705
(* End: *)