lustrec / src / typing.ml @ 8fa083d5
History | View | Annotate | Download (27.7 KB)
1 |
(********************************************************************) |
---|---|
2 |
(* *) |
3 |
(* The LustreC compiler toolset / The LustreC Development Team *) |
4 |
(* Copyright 2012 - -- ONERA - CNRS - INPT - LIFL *) |
5 |
(* *) |
6 |
(* LustreC is free software, distributed WITHOUT ANY WARRANTY *) |
7 |
(* under the terms of the GNU Lesser General Public License *) |
8 |
(* version 2.1. *) |
9 |
(* *) |
10 |
(* This file was originally from the Prelude compiler *) |
11 |
(* *) |
12 |
(********************************************************************) |
13 |
|
14 |
(** Main typing module. Classic inference algorithm with destructive |
15 |
unification. *) |
16 |
|
17 |
let debug fmt args = () (* Format.eprintf "%a" *) |
18 |
(* Though it shares similarities with the clock calculus module, no code |
19 |
is shared. Simple environments, very limited identifier scoping, no |
20 |
identifier redefinition allowed. *) |
21 |
|
22 |
open Utils |
23 |
(* Yes, opening both modules is dirty as some type names will be |
24 |
overwritten, yet this makes notations far lighter.*) |
25 |
open LustreSpec |
26 |
open Corelang |
27 |
open Types |
28 |
open Format |
29 |
|
30 |
let pp_typing_env fmt env = |
31 |
Env.pp_env print_ty fmt env |
32 |
|
33 |
(** [occurs tvar ty] returns true if the type variable [tvar] occurs in |
34 |
type [ty]. False otherwise. *) |
35 |
let rec occurs tvar ty = |
36 |
let ty = repr ty in |
37 |
match ty.tdesc with |
38 |
| Tvar -> ty=tvar |
39 |
| Tarrow (t1, t2) -> |
40 |
(occurs tvar t1) || (occurs tvar t2) |
41 |
| Ttuple tl -> |
42 |
List.exists (occurs tvar) tl |
43 |
| Tstruct fl -> |
44 |
List.exists (fun (f, t) -> occurs tvar t) fl |
45 |
| Tarray (_, t) |
46 |
| Tstatic (_, t) |
47 |
| Tclock t |
48 |
| Tlink t -> occurs tvar t |
49 |
| Tenum _ | Tconst _ | Tunivar | Tint | Treal | Tbool | Trat -> false |
50 |
|
51 |
(** Promote monomorphic type variables to polymorphic type variables. *) |
52 |
(* Generalize by side-effects *) |
53 |
let rec generalize ty = |
54 |
match ty.tdesc with |
55 |
| Tvar -> |
56 |
(* No scopes, always generalize *) |
57 |
ty.tdesc <- Tunivar |
58 |
| Tarrow (t1,t2) -> |
59 |
generalize t1; generalize t2 |
60 |
| Ttuple tl -> |
61 |
List.iter generalize tl |
62 |
| Tstruct fl -> |
63 |
List.iter (fun (f, t) -> generalize t) fl |
64 |
| Tstatic (d, t) |
65 |
| Tarray (d, t) -> Dimension.generalize d; generalize t |
66 |
| Tclock t |
67 |
| Tlink t -> |
68 |
generalize t |
69 |
| Tenum _ | Tconst _ | Tunivar | Tint | Treal | Tbool | Trat -> () |
70 |
|
71 |
(** Downgrade polymorphic type variables to monomorphic type variables *) |
72 |
let rec instantiate inst_vars inst_dim_vars ty = |
73 |
let ty = repr ty in |
74 |
match ty.tdesc with |
75 |
| Tenum _ | Tconst _ | Tvar | Tint | Treal | Tbool | Trat -> ty |
76 |
| Tarrow (t1,t2) -> |
77 |
{ty with tdesc = |
78 |
Tarrow ((instantiate inst_vars inst_dim_vars t1), (instantiate inst_vars inst_dim_vars t2))} |
79 |
| Ttuple tlist -> |
80 |
{ty with tdesc = Ttuple (List.map (instantiate inst_vars inst_dim_vars) tlist)} |
81 |
| Tstruct flist -> |
82 |
{ty with tdesc = Tstruct (List.map (fun (f, t) -> (f, instantiate inst_vars inst_dim_vars t)) flist)} |
83 |
| Tclock t -> |
84 |
{ty with tdesc = Tclock (instantiate inst_vars inst_dim_vars t)} |
85 |
| Tstatic (d, t) -> |
86 |
{ty with tdesc = Tstatic (Dimension.instantiate inst_dim_vars d, instantiate inst_vars inst_dim_vars t)} |
87 |
| Tarray (d, t) -> |
88 |
{ty with tdesc = Tarray (Dimension.instantiate inst_dim_vars d, instantiate inst_vars inst_dim_vars t)} |
89 |
| Tlink t -> |
90 |
(* should not happen *) |
91 |
{ty with tdesc = Tlink (instantiate inst_vars inst_dim_vars t)} |
92 |
| Tunivar -> |
93 |
try |
94 |
List.assoc ty.tid !inst_vars |
95 |
with Not_found -> |
96 |
let var = new_var () in |
97 |
inst_vars := (ty.tid, var)::!inst_vars; |
98 |
var |
99 |
|
100 |
(* [type_coretype cty] types the type declaration [cty] *) |
101 |
let rec type_coretype type_dim cty = |
102 |
match (*get_repr_type*) cty with |
103 |
| Tydec_any -> new_var () |
104 |
| Tydec_int -> Type_predef.type_int |
105 |
| Tydec_real -> Type_predef.type_real |
106 |
| Tydec_float -> Type_predef.type_real |
107 |
| Tydec_bool -> Type_predef.type_bool |
108 |
| Tydec_clock ty -> Type_predef.type_clock (type_coretype type_dim ty) |
109 |
| Tydec_const c -> Type_predef.type_const c |
110 |
| Tydec_enum tl -> Type_predef.type_enum tl |
111 |
| Tydec_struct fl -> Type_predef.type_struct (List.map (fun (f, ty) -> (f, type_coretype type_dim ty)) fl) |
112 |
| Tydec_array (d, ty) -> |
113 |
begin |
114 |
type_dim d; |
115 |
Type_predef.type_array d (type_coretype type_dim ty) |
116 |
end |
117 |
|
118 |
(* [coretype_type] is the reciprocal of [type_typecore] *) |
119 |
let rec coretype_type ty = |
120 |
match (repr ty).tdesc with |
121 |
| Tvar -> Tydec_any |
122 |
| Tint -> Tydec_int |
123 |
| Treal -> Tydec_real |
124 |
| Tbool -> Tydec_bool |
125 |
| Tconst c -> Tydec_const c |
126 |
| Tclock t -> Tydec_clock (coretype_type t) |
127 |
| Tenum tl -> Tydec_enum tl |
128 |
| Tstruct fl -> Tydec_struct (List.map (fun (f, t) -> (f, coretype_type t)) fl) |
129 |
| Tarray (d, t) -> Tydec_array (d, coretype_type t) |
130 |
| Tstatic (_, t) -> coretype_type t |
131 |
| _ -> assert false |
132 |
|
133 |
let get_type_definition tname = |
134 |
try |
135 |
type_coretype (fun d -> ()) (Hashtbl.find type_table (Tydec_const tname)) |
136 |
with Not_found -> raise (Error (Location.dummy_loc, Unbound_type tname)) |
137 |
|
138 |
(* Equality on ground types only *) |
139 |
(* Should be used between local variables which must have a ground type *) |
140 |
let rec eq_ground t1 t2 = |
141 |
let t1 = repr t1 in |
142 |
let t2 = repr t2 in |
143 |
t1==t2 || |
144 |
match t1.tdesc, t2.tdesc with |
145 |
| Tint, Tint | Tbool, Tbool | Trat, Trat | Treal, Treal -> true |
146 |
| Tenum tl, Tenum tl' when tl == tl' -> true |
147 |
| Ttuple tl, Ttuple tl' when List.length tl = List.length tl' -> List.for_all2 eq_ground tl tl' |
148 |
| Tstruct fl, Tstruct fl' when List.map fst fl = List.map fst fl' -> List.for_all2 (fun (_, t) (_, t') -> eq_ground t t') fl fl' |
149 |
| (Tconst t, _) -> |
150 |
let def_t = get_type_definition t in |
151 |
eq_ground def_t t2 |
152 |
| (_, Tconst t) -> |
153 |
let def_t = get_type_definition t in |
154 |
eq_ground t1 def_t |
155 |
| Tarrow (t1,t2), Tarrow (t1',t2') -> eq_ground t1 t1' && eq_ground t2 t2' |
156 |
| Tclock t1', Tclock t2' -> eq_ground t1' t2' |
157 |
| Tstatic (e1, t1'), Tstatic (e2, t2') |
158 |
| Tarray (e1, t1'), Tarray (e2, t2') -> Dimension.is_eq_dimension e1 e2 && eq_ground t1' t2' |
159 |
| _ -> false |
160 |
|
161 |
(** [unify t1 t2] unifies types [t1] and [t2] |
162 |
using standard destructive unification. |
163 |
Raises [Unify (t1,t2)] if the types are not unifiable. |
164 |
[t1] is a expected/formal/spec type, [t2] is a computed/real/implem type, |
165 |
so in case of unification error: expected type [t1], got type [t2]. |
166 |
If [sub]-typing is allowed, [t2] may be a subtype of [t1]. |
167 |
If [semi] unification is required, |
168 |
[t1] should furthermore be an instance of [t2] |
169 |
and constants are handled differently.*) |
170 |
let unify ?(sub=false) ?(semi=false) t1 t2 = |
171 |
let rec unif t1 t2 = |
172 |
let t1 = repr t1 in |
173 |
let t2 = repr t2 in |
174 |
if t1==t2 then |
175 |
() |
176 |
else |
177 |
match t1.tdesc,t2.tdesc with |
178 |
(* strictly subtyping cases first *) |
179 |
| _ , Tclock t2 when sub && (get_clock_base_type t1 = None) -> |
180 |
unif t1 t2 |
181 |
| _ , Tstatic (d2, t2) when sub && (get_static_value t1 = None) -> |
182 |
unif t1 t2 |
183 |
(* This case is not mandatory but will keep "older" types *) |
184 |
| Tvar, Tvar -> |
185 |
if t1.tid < t2.tid then |
186 |
t2.tdesc <- Tlink t1 |
187 |
else |
188 |
t1.tdesc <- Tlink t2 |
189 |
| Tvar, _ when (not semi) && (not (occurs t1 t2)) -> |
190 |
t1.tdesc <- Tlink t2 |
191 |
| _, Tvar when (not (occurs t2 t1)) -> |
192 |
t2.tdesc <- Tlink t1 |
193 |
| Tarrow (t1,t2), Tarrow (t1',t2') -> |
194 |
begin |
195 |
unif t2 t2'; |
196 |
unif t1' t1 |
197 |
end |
198 |
| Ttuple tl, Ttuple tl' when List.length tl = List.length tl' -> |
199 |
List.iter2 unif tl tl' |
200 |
| Ttuple [t1] , _ -> unif t1 t2 |
201 |
| _ , Ttuple [t2] -> unif t1 t2 |
202 |
| Tstruct fl, Tstruct fl' when List.map fst fl = List.map fst fl' -> |
203 |
List.iter2 (fun (_, t) (_, t') -> unif t t') fl fl' |
204 |
| Tclock _, Tstatic _ |
205 |
| Tstatic _, Tclock _ -> raise (Unify (t1, t2)) |
206 |
| Tclock t1', Tclock t2' -> unif t1' t2' |
207 |
| Tint, Tint | Tbool, Tbool | Trat, Trat | Treal, Treal |
208 |
| Tunivar, _ | _, Tunivar -> () |
209 |
| (Tconst t, _) -> |
210 |
let def_t = get_type_definition t in |
211 |
unif def_t t2 |
212 |
| (_, Tconst t) -> |
213 |
let def_t = get_type_definition t in |
214 |
unif t1 def_t |
215 |
| Tenum tl, Tenum tl' when tl == tl' -> () |
216 |
| Tstatic (e1, t1'), Tstatic (e2, t2') |
217 |
| Tarray (e1, t1'), Tarray (e2, t2') -> |
218 |
let eval_const = |
219 |
if semi |
220 |
then (fun c -> Some (Dimension.mkdim_ident Location.dummy_loc c)) |
221 |
else (fun c -> None) in |
222 |
begin |
223 |
unif t1' t2'; |
224 |
Dimension.eval Basic_library.eval_env eval_const e1; |
225 |
Dimension.eval Basic_library.eval_env eval_const e2; |
226 |
Dimension.unify ~semi:semi e1 e2; |
227 |
end |
228 |
| _,_ -> raise (Unify (t1, t2)) |
229 |
in unif t1 t2 |
230 |
|
231 |
(* Expected type ty1, got type ty2 *) |
232 |
let try_unify ?(sub=false) ?(semi=false) ty1 ty2 loc = |
233 |
try |
234 |
unify ~sub:sub ~semi:semi ty1 ty2 |
235 |
with |
236 |
| Unify _ -> |
237 |
raise (Error (loc, Type_clash (ty1,ty2))) |
238 |
| Dimension.Unify _ -> |
239 |
raise (Error (loc, Type_clash (ty1,ty2))) |
240 |
|
241 |
let rec type_struct_const_field loc (label, c) = |
242 |
if Hashtbl.mem field_table label |
243 |
then let tydec = Hashtbl.find field_table label in |
244 |
let tydec_struct = get_struct_type_fields tydec in |
245 |
let ty_label = type_coretype (fun d -> ()) (List.assoc label tydec_struct) in |
246 |
begin |
247 |
try_unify ty_label (type_const loc c) loc; |
248 |
type_coretype (fun d -> ()) tydec |
249 |
end |
250 |
else raise (Error (loc, Unbound_value ("struct field " ^ label))) |
251 |
|
252 |
and type_const loc c = |
253 |
match c with |
254 |
| Const_int _ -> Type_predef.type_int |
255 |
| Const_real _ -> Type_predef.type_real |
256 |
| Const_float _ -> Type_predef.type_real |
257 |
| Const_array ca -> let d = Dimension.mkdim_int loc (List.length ca) in |
258 |
let ty = new_var () in |
259 |
List.iter (fun e -> try_unify ty (type_const loc e) loc) ca; |
260 |
Type_predef.type_array d ty |
261 |
| Const_tag t -> |
262 |
if Hashtbl.mem tag_table t |
263 |
then type_coretype (fun d -> ()) (Hashtbl.find tag_table t) |
264 |
else raise (Error (loc, Unbound_value ("enum tag " ^ t))) |
265 |
| Const_struct fl -> |
266 |
let ty_struct = new_var () in |
267 |
begin |
268 |
let used = |
269 |
List.fold_left |
270 |
(fun acc (l, c) -> |
271 |
if List.mem l acc |
272 |
then raise (Error (loc, Already_bound ("struct field " ^ l))) |
273 |
else try_unify ty_struct (type_struct_const_field loc (l, c)) loc; l::acc) |
274 |
[] fl in |
275 |
try |
276 |
let total = List.map fst (get_struct_type_fields (coretype_type ty_struct)) in |
277 |
(* List.iter (fun l -> Format.eprintf "total: %s@." l) total; |
278 |
List.iter (fun l -> Format.eprintf "used: %s@." l) used; *) |
279 |
let undef = List.find (fun l -> not (List.mem l used)) total |
280 |
in raise (Error (loc, Unbound_value ("struct field " ^ undef))) |
281 |
with Not_found -> |
282 |
ty_struct |
283 |
end |
284 |
| Const_string _ -> assert false (* string should only appear in annotations *) |
285 |
|
286 |
(* The following typing functions take as parameter an environment [env] |
287 |
and whether the element being typed is expected to be constant [const]. |
288 |
[env] is a pair composed of: |
289 |
- a map from ident to type, associating to each ident, i.e. |
290 |
variables, constants and (imported) nodes, its type including whether |
291 |
it is constant or not. This latter information helps in checking constant |
292 |
propagation policy in Lustre. |
293 |
- a vdecl list, in order to modify types of declared variables that are |
294 |
later discovered to be clocks during the typing process. |
295 |
*) |
296 |
let check_constant loc const_expected const_real = |
297 |
if const_expected && not const_real |
298 |
then raise (Error (loc, Not_a_constant)) |
299 |
|
300 |
let rec type_add_const env const arg targ = |
301 |
if const |
302 |
then let d = |
303 |
if is_dimension_type targ |
304 |
then dimension_of_expr arg |
305 |
else Dimension.mkdim_var () in |
306 |
let eval_const id = Types.get_static_value (Env.lookup_value (fst env) id) in |
307 |
Dimension.eval Basic_library.eval_env eval_const d; |
308 |
let real_static_type = Type_predef.type_static d (Types.dynamic_type targ) in |
309 |
(match Types.get_static_value targ with |
310 |
| None -> () |
311 |
| Some d' -> try_unify targ real_static_type arg.expr_loc); |
312 |
real_static_type |
313 |
else targ |
314 |
|
315 |
(* emulates a subtyping relation between types t and (d : t), |
316 |
used during node applications and assignments *) |
317 |
and type_subtyping_arg env in_main ?(sub=true) const real_arg formal_type = |
318 |
let loc = real_arg.expr_loc in |
319 |
let const = const || (Types.get_static_value formal_type <> None) in |
320 |
let real_type = type_add_const env const real_arg (type_expr env in_main const real_arg) in |
321 |
(*Format.eprintf "subtyping const %B real %a:%a vs formal %a@." const Printers.pp_expr real_arg Types.print_ty real_type Types.print_ty formal_type;*) |
322 |
try_unify ~sub:sub formal_type real_type loc |
323 |
|
324 |
and type_ident env in_main loc const id = |
325 |
type_expr env in_main const (expr_of_ident id loc) |
326 |
|
327 |
(* typing an application implies: |
328 |
- checking that const formal parameters match real const (maybe symbolic) arguments |
329 |
- checking type adequation between formal and real arguments |
330 |
An application may embed an homomorphic/internal function, in which case we need to split |
331 |
it in many calls |
332 |
*) |
333 |
and type_appl env in_main loc const f args = |
334 |
let targs = List.map (type_expr env in_main const) args in |
335 |
if Basic_library.is_internal_fun f && List.exists is_tuple_type targs |
336 |
then |
337 |
try |
338 |
let targs = Utils.transpose_list (List.map type_list_of_type targs) in |
339 |
Types.type_of_type_list (List.map (type_simple_call env in_main loc const f) targs) |
340 |
with |
341 |
Utils.TransposeError (l, l') -> raise (Error (loc, WrongMorphism (l, l'))) |
342 |
else |
343 |
type_dependent_call env in_main loc const f (List.combine args targs) |
344 |
|
345 |
(* type a call with possible dependent types. [targs] is here a list of (argument, type) pairs. *) |
346 |
and type_dependent_call env in_main loc const f targs = |
347 |
let tins, touts = new_var (), new_var () in |
348 |
let tfun = Type_predef.type_arrow tins touts in |
349 |
type_subtyping_arg env in_main const (expr_of_ident f loc) tfun; |
350 |
let tins = type_list_of_type tins in |
351 |
if List.length targs <> List.length tins then |
352 |
raise (Error (loc, WrongArity (List.length tins, List.length targs))) |
353 |
else |
354 |
begin |
355 |
List.iter2 (fun (a,t) ti -> |
356 |
let t' = type_add_const env (const || Types.get_static_value ti <> None) a t |
357 |
in try_unify ~sub:true ti t' a.expr_loc) targs tins; |
358 |
touts |
359 |
end |
360 |
|
361 |
(* type a simple call without dependent types |
362 |
but possible homomorphic extension. |
363 |
[targs] is here a list of arguments' types. *) |
364 |
and type_simple_call env in_main loc const f targs = |
365 |
let tins, touts = new_var (), new_var () in |
366 |
let tfun = Type_predef.type_arrow tins touts in |
367 |
type_subtyping_arg env in_main const (expr_of_ident f loc) tfun; |
368 |
(*Format.eprintf "try unify %a %a@." Types.print_ty tins Types.print_ty (type_of_type_list targs);*) |
369 |
try_unify ~sub:true tins (type_of_type_list targs) loc; |
370 |
touts |
371 |
|
372 |
(** [type_expr env in_main expr] types expression [expr] in environment |
373 |
[env], expecting it to be [const] or not. *) |
374 |
and type_expr env in_main const expr = |
375 |
let resulting_ty = |
376 |
match expr.expr_desc with |
377 |
| Expr_const c -> |
378 |
let ty = type_const expr.expr_loc c in |
379 |
let ty = Type_predef.type_static (Dimension.mkdim_var ()) ty in |
380 |
expr.expr_type <- ty; |
381 |
ty |
382 |
| Expr_ident v -> |
383 |
let tyv = |
384 |
try |
385 |
Env.lookup_value (fst env) v |
386 |
with Not_found -> |
387 |
Format.eprintf "Failure in typing expr %a@." Printers.pp_expr expr; |
388 |
raise (Error (expr.expr_loc, Unbound_value ("identifier " ^ v))) |
389 |
in |
390 |
let ty = instantiate (ref []) (ref []) tyv in |
391 |
let ty' = |
392 |
if const |
393 |
then Type_predef.type_static (Dimension.mkdim_var ()) (new_var ()) |
394 |
else new_var () in |
395 |
try_unify ty ty' expr.expr_loc; |
396 |
expr.expr_type <- ty; |
397 |
ty |
398 |
| Expr_array elist -> |
399 |
let ty_elt = new_var () in |
400 |
List.iter (fun e -> try_unify ty_elt (type_appl env in_main expr.expr_loc const "uminus" [e]) e.expr_loc) elist; |
401 |
let d = Dimension.mkdim_int expr.expr_loc (List.length elist) in |
402 |
let ty = Type_predef.type_array d ty_elt in |
403 |
expr.expr_type <- ty; |
404 |
ty |
405 |
| Expr_access (e1, d) -> |
406 |
type_subtyping_arg env in_main true (expr_of_dimension d) Type_predef.type_int; |
407 |
let ty_elt = new_var () in |
408 |
let d = Dimension.mkdim_var () in |
409 |
type_subtyping_arg env in_main const e1 (Type_predef.type_array d ty_elt); |
410 |
expr.expr_type <- ty_elt; |
411 |
ty_elt |
412 |
| Expr_power (e1, d) -> |
413 |
let eval_const id = Types.get_static_value (Env.lookup_value (fst env) id) in |
414 |
type_subtyping_arg env in_main true (expr_of_dimension d) Type_predef.type_int; |
415 |
Dimension.eval Basic_library.eval_env eval_const d; |
416 |
let ty_elt = type_appl env in_main expr.expr_loc const "uminus" [e1] in |
417 |
let ty = Type_predef.type_array d ty_elt in |
418 |
expr.expr_type <- ty; |
419 |
ty |
420 |
| Expr_tuple elist -> |
421 |
let ty = new_ty (Ttuple (List.map (type_expr env in_main const) elist)) in |
422 |
expr.expr_type <- ty; |
423 |
ty |
424 |
| Expr_ite (c, t, e) -> |
425 |
type_subtyping_arg env in_main const c Type_predef.type_bool; |
426 |
let ty = type_appl env in_main expr.expr_loc const "+" [t; e] in |
427 |
expr.expr_type <- ty; |
428 |
ty |
429 |
| Expr_appl (id, args, r) -> |
430 |
(* application of non internal function is not legal in a constant |
431 |
expression *) |
432 |
(match r with |
433 |
| None -> () |
434 |
| Some (x, l) -> |
435 |
check_constant expr.expr_loc const false; |
436 |
let expr_x = expr_of_ident x expr.expr_loc in |
437 |
let typ_l = |
438 |
Type_predef.type_clock |
439 |
(type_const expr.expr_loc (Const_tag l)) in |
440 |
type_subtyping_arg env in_main ~sub:false const expr_x typ_l); |
441 |
let touts = type_appl env in_main expr.expr_loc const id (expr_list_of_expr args) in |
442 |
expr.expr_type <- touts; |
443 |
touts |
444 |
| Expr_fby (e1,e2) |
445 |
| Expr_arrow (e1,e2) -> |
446 |
(* fby/arrow is not legal in a constant expression *) |
447 |
check_constant expr.expr_loc const false; |
448 |
let ty = type_appl env in_main expr.expr_loc const "+" [e1; e2] in |
449 |
expr.expr_type <- ty; |
450 |
ty |
451 |
| Expr_pre e -> |
452 |
(* pre is not legal in a constant expression *) |
453 |
check_constant expr.expr_loc const false; |
454 |
let ty = type_appl env in_main expr.expr_loc const "uminus" [e] in |
455 |
expr.expr_type <- ty; |
456 |
ty |
457 |
| Expr_when (e1,c,l) -> |
458 |
(* when is not legal in a constant expression *) |
459 |
check_constant expr.expr_loc const false; |
460 |
let typ_l = Type_predef.type_clock (type_const expr.expr_loc (Const_tag l)) in |
461 |
let expr_c = expr_of_ident c expr.expr_loc in |
462 |
type_subtyping_arg env in_main ~sub:false const expr_c typ_l; |
463 |
let ty = type_appl env in_main expr.expr_loc const "uminus" [e1] in |
464 |
expr.expr_type <- ty; |
465 |
ty |
466 |
| Expr_merge (c,hl) -> |
467 |
(* merge is not legal in a constant expression *) |
468 |
check_constant expr.expr_loc const false; |
469 |
let typ_in, typ_out = type_branches env in_main expr.expr_loc const hl in |
470 |
let expr_c = expr_of_ident c expr.expr_loc in |
471 |
let typ_l = Type_predef.type_clock typ_in in |
472 |
type_subtyping_arg env in_main ~sub:false const expr_c typ_l; |
473 |
expr.expr_type <- typ_out; |
474 |
typ_out |
475 |
in |
476 |
Log.report ~level:3 (fun fmt -> Format.fprintf fmt "Type of expr %a: %a@." Printers.pp_expr expr Types.print_ty resulting_ty); |
477 |
resulting_ty |
478 |
|
479 |
and type_branches env in_main loc const hl = |
480 |
let typ_in = new_var () in |
481 |
let typ_out = new_var () in |
482 |
try |
483 |
let used_labels = |
484 |
List.fold_left (fun accu (t, h) -> |
485 |
unify typ_in (type_const loc (Const_tag t)); |
486 |
type_subtyping_arg env in_main const h typ_out; |
487 |
if List.mem t accu |
488 |
then raise (Error (loc, Already_bound t)) |
489 |
else t :: accu) [] hl in |
490 |
let type_labels = get_enum_type_tags (coretype_type typ_in) in |
491 |
if List.sort compare used_labels <> List.sort compare type_labels |
492 |
then let unbound_tag = List.find (fun t -> not (List.mem t used_labels)) type_labels in |
493 |
raise (Error (loc, Unbound_value ("branching tag " ^ unbound_tag))) |
494 |
else (typ_in, typ_out) |
495 |
with Unify (t1, t2) -> |
496 |
raise (Error (loc, Type_clash (t1,t2))) |
497 |
|
498 |
(** [type_eq env eq] types equation [eq] in environment [env] *) |
499 |
let type_eq env in_main undefined_vars eq = |
500 |
(* Check undefined variables, type lhs *) |
501 |
let expr_lhs = expr_of_expr_list eq.eq_loc (List.map (fun v -> expr_of_ident v eq.eq_loc) eq.eq_lhs) in |
502 |
let ty_lhs = type_expr env in_main false expr_lhs in |
503 |
(* Check multiple variable definitions *) |
504 |
let define_var id uvars = |
505 |
try |
506 |
ignore(IMap.find id uvars); |
507 |
IMap.remove id uvars |
508 |
with Not_found -> |
509 |
raise (Error (eq.eq_loc, Already_defined id)) |
510 |
in |
511 |
(* check assignment of declared constant, assignment of clock *) |
512 |
let ty_lhs = |
513 |
type_of_type_list |
514 |
(List.map2 (fun ty id -> |
515 |
if get_static_value ty <> None |
516 |
then raise (Error (eq.eq_loc, Assigned_constant id)) else |
517 |
match get_clock_base_type ty with |
518 |
| None -> ty |
519 |
| Some ty -> ty) |
520 |
(type_list_of_type ty_lhs) eq.eq_lhs) in |
521 |
let undefined_vars = |
522 |
List.fold_left (fun uvars v -> define_var v uvars) undefined_vars eq.eq_lhs in |
523 |
(* Type rhs wrt to lhs type with subtyping, i.e. a constant rhs value may be assigned |
524 |
to a (always non-constant) lhs variable *) |
525 |
type_subtyping_arg env in_main false eq.eq_rhs ty_lhs; |
526 |
undefined_vars |
527 |
|
528 |
|
529 |
(* [type_coreclock env ck id loc] types the type clock declaration [ck] |
530 |
in environment [env] *) |
531 |
let type_coreclock env ck id loc = |
532 |
match ck.ck_dec_desc with |
533 |
| Ckdec_any | Ckdec_pclock (_,_) -> () |
534 |
| Ckdec_bool cl -> |
535 |
let dummy_id_expr = expr_of_ident id loc in |
536 |
let when_expr = |
537 |
List.fold_left |
538 |
(fun expr (x, l) -> |
539 |
{expr_tag = new_tag (); |
540 |
expr_desc= Expr_when (expr,x,l); |
541 |
expr_type = new_var (); |
542 |
expr_clock = Clocks.new_var true; |
543 |
expr_delay = Delay.new_var (); |
544 |
expr_loc=loc; |
545 |
expr_annot = None}) |
546 |
dummy_id_expr cl |
547 |
in |
548 |
ignore (type_expr env false false when_expr) |
549 |
|
550 |
let rec check_type_declaration loc cty = |
551 |
match cty with |
552 |
| Tydec_clock ty |
553 |
| Tydec_array (_, ty) -> check_type_declaration loc ty |
554 |
| Tydec_const tname -> |
555 |
if not (Hashtbl.mem type_table cty) |
556 |
then raise (Error (loc, Unbound_type tname)); |
557 |
| _ -> () |
558 |
|
559 |
let type_var_decl vd_env env vdecl = |
560 |
check_type_declaration vdecl.var_loc vdecl.var_dec_type.ty_dec_desc; |
561 |
let eval_const id = Types.get_static_value (Env.lookup_value env id) in |
562 |
let type_dim d = |
563 |
begin |
564 |
type_subtyping_arg (env, vd_env) false true (expr_of_dimension d) Type_predef.type_int; |
565 |
Dimension.eval Basic_library.eval_env eval_const d; |
566 |
end in |
567 |
let ty = type_coretype type_dim vdecl.var_dec_type.ty_dec_desc in |
568 |
let ty_status = |
569 |
if vdecl.var_dec_const |
570 |
then Type_predef.type_static (Dimension.mkdim_var ()) ty |
571 |
else ty in |
572 |
let new_env = Env.add_value env vdecl.var_id ty_status in |
573 |
type_coreclock (new_env,vd_env) vdecl.var_dec_clock vdecl.var_id vdecl.var_loc; |
574 |
vdecl.var_type <- ty_status; |
575 |
new_env |
576 |
|
577 |
let type_var_decl_list vd_env env l = |
578 |
List.fold_left (type_var_decl vd_env) env l |
579 |
|
580 |
let type_of_vlist vars = |
581 |
let tyl = List.map (fun v -> v.var_type) vars in |
582 |
type_of_type_list tyl |
583 |
|
584 |
let add_vdecl vd_env vdecl = |
585 |
if List.exists (fun v -> v.var_id = vdecl.var_id) vd_env |
586 |
then raise (Error (vdecl.var_loc, Already_bound vdecl.var_id)) |
587 |
else vdecl::vd_env |
588 |
|
589 |
let check_vd_env vd_env = |
590 |
ignore (List.fold_left add_vdecl [] vd_env) |
591 |
|
592 |
(** [type_node env nd loc] types node [nd] in environment env. The |
593 |
location is used for error reports. *) |
594 |
let type_node env nd loc = |
595 |
let is_main = nd.node_id = !Options.main_node in |
596 |
let vd_env_ol = nd.node_outputs@nd.node_locals in |
597 |
let vd_env = nd.node_inputs@vd_env_ol in |
598 |
check_vd_env vd_env; |
599 |
let init_env = env in |
600 |
let delta_env = type_var_decl_list vd_env init_env nd.node_inputs in |
601 |
let delta_env = type_var_decl_list vd_env delta_env nd.node_outputs in |
602 |
let delta_env = type_var_decl_list vd_env delta_env nd.node_locals in |
603 |
let new_env = Env.overwrite env delta_env in |
604 |
let undefined_vars_init = |
605 |
List.fold_left |
606 |
(fun uvs v -> IMap.add v.var_id () uvs) |
607 |
IMap.empty vd_env_ol in |
608 |
let undefined_vars = |
609 |
List.fold_left (type_eq (new_env, vd_env) is_main) undefined_vars_init nd.node_eqs |
610 |
in |
611 |
(* Typing asserts *) |
612 |
List.iter (fun assert_ -> |
613 |
let assert_expr = assert_.assert_expr in |
614 |
type_subtyping_arg (new_env, vd_env) is_main false assert_expr Type_predef.type_bool |
615 |
) nd.node_asserts; |
616 |
|
617 |
(* check that table is empty *) |
618 |
if (not (IMap.is_empty undefined_vars)) then |
619 |
raise (Error (loc, Undefined_var undefined_vars)); |
620 |
let ty_ins = type_of_vlist nd.node_inputs in |
621 |
let ty_outs = type_of_vlist nd.node_outputs in |
622 |
let ty_node = new_ty (Tarrow (ty_ins,ty_outs)) in |
623 |
generalize ty_node; |
624 |
(* TODO ? Check that no node in the hierarchy remains polymorphic ? *) |
625 |
nd.node_type <- ty_node; |
626 |
Env.add_value env nd.node_id ty_node |
627 |
|
628 |
let type_imported_node env nd loc = |
629 |
let new_env = type_var_decl_list nd.nodei_inputs env nd.nodei_inputs in |
630 |
let vd_env = nd.nodei_inputs@nd.nodei_outputs in |
631 |
check_vd_env vd_env; |
632 |
ignore(type_var_decl_list vd_env new_env nd.nodei_outputs); |
633 |
let ty_ins = type_of_vlist nd.nodei_inputs in |
634 |
let ty_outs = type_of_vlist nd.nodei_outputs in |
635 |
let ty_node = new_ty (Tarrow (ty_ins,ty_outs)) in |
636 |
generalize ty_node; |
637 |
(* |
638 |
if (is_polymorphic ty_node) then |
639 |
raise (Error (loc, Poly_imported_node nd.nodei_id)); |
640 |
*) |
641 |
let new_env = Env.add_value env nd.nodei_id ty_node in |
642 |
nd.nodei_type <- ty_node; |
643 |
new_env |
644 |
|
645 |
let type_top_consts env clist = |
646 |
List.fold_left (fun env cdecl -> |
647 |
let ty = type_const cdecl.const_loc cdecl.const_value in |
648 |
let d = |
649 |
if is_dimension_type ty |
650 |
then dimension_of_const cdecl.const_loc cdecl.const_value |
651 |
else Dimension.mkdim_var () in |
652 |
let ty = Type_predef.type_static d ty in |
653 |
let new_env = Env.add_value env cdecl.const_id ty in |
654 |
cdecl.const_type <- ty; |
655 |
new_env) env clist |
656 |
|
657 |
let type_top_decl env decl = |
658 |
match decl.top_decl_desc with |
659 |
| Node nd -> ( |
660 |
try |
661 |
type_node env nd decl.top_decl_loc |
662 |
with Error (loc, err) as exc -> ( |
663 |
if !Options.global_inline then |
664 |
Format.eprintf "Type error: failing node@.%a@.@?" |
665 |
Printers.pp_node nd |
666 |
; |
667 |
raise exc) |
668 |
) |
669 |
| ImportedNode nd -> |
670 |
type_imported_node env nd decl.top_decl_loc |
671 |
| Consts clist -> |
672 |
type_top_consts env clist |
673 |
| Open _ -> env |
674 |
|
675 |
let type_prog env decls = |
676 |
try |
677 |
List.fold_left type_top_decl env decls |
678 |
with Failure _ as exc -> raise exc |
679 |
|
680 |
(* Once the Lustre program is fully typed, |
681 |
we must get back to the original description of dimensions, |
682 |
with constant parameters, instead of unifiable internal variables. *) |
683 |
|
684 |
(* The following functions aims at 'unevaluating' dimension expressions occuring in array types, |
685 |
i.e. replacing unifiable second_order variables with the original static parameters. |
686 |
Once restored in this formulation, dimensions may be meaningfully printed. |
687 |
*) |
688 |
let uneval_vdecl_generics vdecl = |
689 |
if vdecl.var_dec_const |
690 |
then |
691 |
match get_static_value vdecl.var_type with |
692 |
| None -> (Format.eprintf "internal error: %a@." Types.print_ty vdecl.var_type; assert false) |
693 |
| Some d -> Dimension.uneval vdecl.var_id d |
694 |
|
695 |
let uneval_node_generics vdecls = |
696 |
List.iter uneval_vdecl_generics vdecls |
697 |
|
698 |
let uneval_top_generics decl = |
699 |
match decl.top_decl_desc with |
700 |
| Node nd -> |
701 |
uneval_node_generics (nd.node_inputs @ nd.node_outputs) |
702 |
| ImportedNode nd -> |
703 |
uneval_node_generics (nd.nodei_inputs @ nd.nodei_outputs) |
704 |
| Consts clist -> () |
705 |
| Open _ -> () |
706 |
|
707 |
let uneval_prog_generics prog = |
708 |
List.iter uneval_top_generics prog |
709 |
|
710 |
let rec get_imported_node decls id = |
711 |
match decls with |
712 |
| [] -> assert false |
713 |
| decl::q -> |
714 |
(match decl.top_decl_desc with |
715 |
| ImportedNode nd when id = nd.nodei_id -> decl |
716 |
| _ -> get_imported_node q id) |
717 |
|
718 |
let check_env_compat header declared computed = |
719 |
uneval_prog_generics header; |
720 |
Env.iter declared (fun k decl_type_k -> |
721 |
let computed_t = instantiate (ref []) (ref []) |
722 |
(try Env.lookup_value computed k |
723 |
with Not_found -> |
724 |
let loc = (get_imported_node header k).top_decl_loc in |
725 |
raise (Error (loc, Declared_but_undefined k))) in |
726 |
(*Types.print_ty Format.std_formatter decl_type_k; |
727 |
Types.print_ty Format.std_formatter computed_t;*) |
728 |
try_unify ~sub:true ~semi:true decl_type_k computed_t Location.dummy_loc |
729 |
) |
730 |
|
731 |
(* Local Variables: *) |
732 |
(* compile-command:"make -C .." *) |
733 |
(* End: *) |