lustrec / src / machine_code.ml @ 86ae18b7
History  View  Annotate  Download (23.9 KB)
1 
(********************************************************************) 

2 
(* *) 
3 
(* The LustreC compiler toolset / The LustreC Development Team *) 
4 
(* Copyright 2012   ONERA  CNRS  INPT *) 
5 
(* *) 
6 
(* LustreC is free software, distributed WITHOUT ANY WARRANTY *) 
7 
(* under the terms of the GNU Lesser General Public License *) 
8 
(* version 2.1. *) 
9 
(* *) 
10 
(********************************************************************) 
11  
12 
open LustreSpec 
13 
open Corelang 
14 
open Clocks 
15 
open Causality 
16  
17 
exception NormalizationError 
18  
19 
module OrdVarDecl:Map.OrderedType with type t=var_decl = 
20 
struct type t = var_decl;; let compare = compare end 
21  
22 
module ISet = Set.Make(OrdVarDecl) 
23  
24 
let rec pp_val fmt v = 
25 
match v.value_desc with 
26 
 Cst c > Printers.pp_const fmt c 
27 
 LocalVar v > Format.pp_print_string fmt v.var_id 
28 
 StateVar v > Format.pp_print_string fmt v.var_id 
29 
 Array vl > Format.fprintf fmt "[%a]" (Utils.fprintf_list ~sep:", " pp_val) vl 
30 
 Access (t, i) > Format.fprintf fmt "%a[%a]" pp_val t pp_val i 
31 
 Power (v, n) > Format.fprintf fmt "(%a^%a)" pp_val v pp_val n 
32 
 Fun (n, vl) > Format.fprintf fmt "%s (%a)" n (Utils.fprintf_list ~sep:", " pp_val) vl 
33  
34 
let rec pp_instr fmt i = 
35 
match i with 
36 
 MLocalAssign (i,v) > Format.fprintf fmt "%s<l %a" i.var_id pp_val v 
37 
 MStateAssign (i,v) > Format.fprintf fmt "%s<s %a" i.var_id pp_val v 
38 
 MReset i > Format.fprintf fmt "reset %s" i 
39 
 MNoReset i > Format.fprintf fmt "noreset %s" i 
40 
 MStep (il, i, vl) > 
41 
Format.fprintf fmt "%a = %s (%a)" 
42 
(Utils.fprintf_list ~sep:", " (fun fmt v > Format.pp_print_string fmt v.var_id)) il 
43 
i 
44 
(Utils.fprintf_list ~sep:", " pp_val) vl 
45 
 MBranch (g,hl) > 
46 
Format.fprintf fmt "@[<v 2>case(%a) {@,%a@,}@]" 
47 
pp_val g 
48 
(Utils.fprintf_list ~sep:"@," pp_branch) hl 
49 
 MComment s > Format.pp_print_string fmt s 
50  
51 
and pp_branch fmt (t, h) = 
52 
Format.fprintf fmt "@[<v 2>%s:@,%a@]" t (Utils.fprintf_list ~sep:"@," pp_instr) h 
53  
54 
and pp_instrs fmt il = 
55 
Format.fprintf fmt "@[<v 2>%a@]" (Utils.fprintf_list ~sep:"@," pp_instr) il 
56  
57 
type step_t = { 
58 
step_checks: (Location.t * value_t) list; 
59 
step_inputs: var_decl list; 
60 
step_outputs: var_decl list; 
61 
step_locals: var_decl list; 
62 
step_instrs: instr_t list; 
63 
step_asserts: value_t list; 
64 
} 
65  
66 
type static_call = top_decl * (Dimension.dim_expr list) 
67  
68 
type machine_t = { 
69 
mname: node_desc; 
70 
mmemory: var_decl list; 
71 
mcalls: (ident * static_call) list; (* map from stateful/stateless instance to node, no internals *) 
72 
minstances: (ident * static_call) list; (* submap of mcalls, from stateful instance to node *) 
73 
minit: instr_t list; 
74 
mstatic: var_decl list; (* static inputs only *) 
75 
mconst: instr_t list; (* assignments of node constant locals *) 
76 
mstep: step_t; 
77 
mspec: node_annot option; 
78 
mannot: expr_annot list; 
79 
} 
80  
81 
let pp_step fmt s = 
82 
Format.fprintf fmt "@[<v>inputs : %a@ outputs: %a@ locals : %a@ checks : %a@ instrs : @[%a@]@ asserts : @[%a@]@]@ " 
83 
(Utils.fprintf_list ~sep:", " Printers.pp_var) s.step_inputs 
84 
(Utils.fprintf_list ~sep:", " Printers.pp_var) s.step_outputs 
85 
(Utils.fprintf_list ~sep:", " Printers.pp_var) s.step_locals 
86 
(Utils.fprintf_list ~sep:", " (fun fmt (_, c) > pp_val fmt c)) s.step_checks 
87 
(Utils.fprintf_list ~sep:"@ " pp_instr) s.step_instrs 
88 
(Utils.fprintf_list ~sep:", " pp_val) s.step_asserts 
89  
90  
91 
let pp_static_call fmt (node, args) = 
92 
Format.fprintf fmt "%s<%a>" 
93 
(node_name node) 
94 
(Utils.fprintf_list ~sep:", " Dimension.pp_dimension) args 
95  
96 
let pp_machine fmt m = 
97 
Format.fprintf fmt 
98 
"@[<v 2>machine %s@ mem : %a@ instances: %a@ init : %a@ const : %a@ step :@ @[<v 2>%a@]@ @ spec : @[%t@]@ annot : @[%a@]@]@ " 
99 
m.mname.node_id 
100 
(Utils.fprintf_list ~sep:", " Printers.pp_var) m.mmemory 
101 
(Utils.fprintf_list ~sep:", " (fun fmt (o1, o2) > Format.fprintf fmt "(%s, %a)" o1 pp_static_call o2)) m.minstances 
102 
(Utils.fprintf_list ~sep:"@ " pp_instr) m.minit 
103 
(Utils.fprintf_list ~sep:"@ " pp_instr) m.mconst 
104 
pp_step m.mstep 
105 
(fun fmt > match m.mspec with  None > ()  Some spec > Printers.pp_spec fmt spec) 
106 
(Utils.fprintf_list ~sep:"@ " Printers.pp_expr_annot) m.mannot 
107  
108 
let rec is_const_value v = 
109 
match v.value_desc with 
110 
 Cst _ > true 
111 
 Fun (id, args) > Basic_library.is_value_internal_fun v && List.for_all is_const_value args 
112 
 _ > false 
113  
114 
(* Returns the declared stateless status and the computed one. *) 
115 
let get_stateless_status m = 
116 
(m.mname.node_dec_stateless, Utils.desome m.mname.node_stateless) 
117  
118 
let is_input m id = 
119 
List.exists (fun o > o.var_id = id.var_id) m.mstep.step_inputs 
120  
121 
let is_output m id = 
122 
List.exists (fun o > o.var_id = id.var_id) m.mstep.step_outputs 
123  
124 
let is_memory m id = 
125 
List.exists (fun o > o.var_id = id.var_id) m.mmemory 
126  
127 
let conditional c t e = 
128 
MBranch(c, [ (tag_true, t); (tag_false, e) ]) 
129  
130 
let dummy_var_decl name typ = 
131 
{ 
132 
var_id = name; 
133 
var_orig = false; 
134 
var_dec_type = dummy_type_dec; 
135 
var_dec_clock = dummy_clock_dec; 
136 
var_dec_const = false; 
137 
var_dec_value = None; 
138 
var_type = typ; 
139 
var_clock = Clocks.new_ck Clocks.Cvar true; 
140 
var_loc = Location.dummy_loc 
141 
} 
142  
143 
let arrow_id = "_arrow" 
144  
145 
let arrow_typ = Types.new_ty Types.Tunivar 
146  
147 
let arrow_desc = 
148 
{ 
149 
node_id = arrow_id; 
150 
node_type = Type_predef.type_bin_poly_op; 
151 
node_clock = Clock_predef.ck_bin_univ; 
152 
node_inputs= [dummy_var_decl "_in1" arrow_typ; dummy_var_decl "_in2" arrow_typ]; 
153 
node_outputs= [dummy_var_decl "_out" arrow_typ]; 
154 
node_locals= []; 
155 
node_gencalls = []; 
156 
node_checks = []; 
157 
node_asserts = []; 
158 
node_stmts= []; 
159 
node_dec_stateless = false; 
160 
node_stateless = Some false; 
161 
node_spec = None; 
162 
node_annot = []; } 
163  
164 
(*let arrow_top_decl = 
165 
{ 
166 
top_decl_desc = Node arrow_desc; 
167 
top_decl_owner = Version.include_path; 
168 
top_decl_itf = false; 
169 
top_decl_loc = Location.dummy_loc 
170 
}*) 
171  
172 
let arrow_top_decl = 
173 
{ 
174 
top_decl_desc = Node arrow_desc; 
175 
top_decl_owner = !Options.include_dir; 
176 
top_decl_itf = false; 
177 
top_decl_loc = Location.dummy_loc 
178 
} 
179  
180  
181 
let mk_val v t = { value_desc = v; 
182 
value_type = t; 
183 
value_annot = None } 
184  
185 
let arrow_machine = 
186 
let state = "_first" in 
187 
let var_state = dummy_var_decl state (Types.new_ty Types.Tbool) in 
188 
let var_input1 = List.nth arrow_desc.node_inputs 0 in 
189 
let var_input2 = List.nth arrow_desc.node_inputs 1 in 
190 
let var_output = List.nth arrow_desc.node_outputs 0 in 
191 
let cst b = mk_val (Cst (const_of_bool b)) Type_predef.type_bool in 
192 
let t_arg = Types.new_univar () in (* TODO Xavier: c'est bien la bonne def ? *) 
193 
{ 
194 
mname = arrow_desc; 
195 
mmemory = [var_state]; 
196 
mcalls = []; 
197 
minstances = []; 
198 
minit = [MStateAssign(var_state, cst true)]; 
199 
mstatic = []; 
200 
mconst = []; 
201 
mstep = { 
202 
step_inputs = arrow_desc.node_inputs; 
203 
step_outputs = arrow_desc.node_outputs; 
204 
step_locals = []; 
205 
step_checks = []; 
206 
step_instrs = [conditional (mk_val (StateVar var_state) Type_predef.type_bool) 
207 
[MStateAssign(var_state, cst false); 
208 
MLocalAssign(var_output, mk_val (LocalVar var_input1) t_arg)] 
209 
[MLocalAssign(var_output, mk_val (LocalVar var_input2) t_arg)] ]; 
210 
step_asserts = []; 
211 
}; 
212 
mspec = None; 
213 
mannot = []; 
214 
} 
215  
216 
let empty_desc = 
217 
{ 
218 
node_id = arrow_id; 
219 
node_type = Types.bottom; 
220 
node_clock = Clocks.bottom; 
221 
node_inputs= []; 
222 
node_outputs= []; 
223 
node_locals= []; 
224 
node_gencalls = []; 
225 
node_checks = []; 
226 
node_asserts = []; 
227 
node_stmts= []; 
228 
node_dec_stateless = true; 
229 
node_stateless = Some true; 
230 
node_spec = None; 
231 
node_annot = []; } 
232  
233 
let empty_machine = 
234 
{ 
235 
mname = empty_desc; 
236 
mmemory = []; 
237 
mcalls = []; 
238 
minstances = []; 
239 
minit = []; 
240 
mstatic = []; 
241 
mconst = []; 
242 
mstep = { 
243 
step_inputs = []; 
244 
step_outputs = []; 
245 
step_locals = []; 
246 
step_checks = []; 
247 
step_instrs = []; 
248 
step_asserts = []; 
249 
}; 
250 
mspec = None; 
251 
mannot = []; 
252 
} 
253  
254 
let new_instance = 
255 
let cpt = ref (1) in 
256 
fun caller callee tag > 
257 
begin 
258 
let o = 
259 
if Stateless.check_node callee then 
260 
node_name callee 
261 
else 
262 
Printf.sprintf "ni_%d" (incr cpt; !cpt) in 
263 
let o = 
264 
if !Options.ansi && is_generic_node callee 
265 
then Printf.sprintf "%s_inst_%d" o (Utils.position (fun e > e.expr_tag = tag) caller.node_gencalls) 
266 
else o in 
267 
o 
268 
end 
269  
270  
271 
(* translate_<foo> : node > context > <foo> > machine code/expression *) 
272 
(* the context contains m : state aka memory variables *) 
273 
(* si : initialization instructions *) 
274 
(* j : node aka machine instances *) 
275 
(* d : local variables *) 
276 
(* s : step instructions *) 
277 
let translate_ident node (m, si, j, d, s) id = 
278 
try (* id is a node var *) 
279 
let var_id = get_node_var id node in 
280 
if ISet.exists (fun v > v.var_id = id) m 
281 
then mk_val (StateVar var_id) var_id.var_type 
282 
else mk_val (LocalVar var_id) var_id.var_type 
283 
with Not_found > 
284 
try (* id is a constant *) 
285 
let vdecl = (Corelang.var_decl_of_const (const_of_top (Hashtbl.find Corelang.consts_table id))) in 
286 
mk_val (LocalVar vdecl) vdecl.var_type 
287 
with Not_found > 
288 
(* id is a tag *) 
289 
(* DONE construire une liste des enum declarés et alors chercher dedans la liste 
290 
qui contient id *) 
291 
try 
292 
let typ = (typedef_of_top (Hashtbl.find Corelang.tag_table id)).tydef_id in 
293 
mk_val (Cst (Const_tag id)) (Type_predef.type_const typ) 
294 
with Not_found > (Format.eprintf "internal error: Machine_code.translate_ident %s" id; 
295 
assert false) 
296  
297 
let rec control_on_clock node ((m, si, j, d, s) as args) ck inst = 
298 
match (Clocks.repr ck).cdesc with 
299 
 Con (ck1, cr, l) > 
300 
let id = Clocks.const_of_carrier cr in 
301 
control_on_clock node args ck1 (MBranch (translate_ident node args id, 
302 
[l, [inst]] )) 
303 
 _ > inst 
304  
305 
let rec join_branches hl1 hl2 = 
306 
match hl1, hl2 with 
307 
 [] , _ > hl2 
308 
 _ , [] > hl1 
309 
 (t1, h1)::q1, (t2, h2)::q2 > 
310 
if t1 < t2 then (t1, h1) :: join_branches q1 hl2 else 
311 
if t1 > t2 then (t2, h2) :: join_branches hl1 q2 
312 
else (t1, List.fold_right join_guards h1 h2) :: join_branches q1 q2 
313  
314 
and join_guards inst1 insts2 = 
315 
match inst1, insts2 with 
316 
 _ , [] > 
317 
[inst1] 
318 
 MBranch (x1, hl1), MBranch (x2, hl2) :: q when x1 = x2 > 
319 
MBranch (x1, join_branches (sort_handlers hl1) (sort_handlers hl2)) 
320 
:: q 
321 
 _ > inst1 :: insts2 
322  
323 
let join_guards_list insts = 
324 
List.fold_right join_guards insts [] 
325  
326 
(* specialize predefined (polymorphic) operators 
327 
wrt their instances, so that the C semantics 
328 
is preserved *) 
329 
let specialize_to_c expr = 
330 
match expr.expr_desc with 
331 
 Expr_appl (id, e, r) > 
332 
if List.exists (fun e > Types.is_bool_type e.expr_type) (expr_list_of_expr e) 
333 
then let id = 
334 
match id with 
335 
 "=" > "equi" 
336 
 "!=" > "xor" 
337 
 _ > id in 
338 
{ expr with expr_desc = Expr_appl (id, e, r) } 
339 
else expr 
340 
 _ > expr 
341  
342 
let specialize_op expr = 
343 
match !Options.output with 
344 
 "C" > specialize_to_c expr 
345 
 _ > expr 
346  
347 
let rec translate_expr node ((m, si, j, d, s) as args) expr = 
348 
let expr = specialize_op expr in 
349 
let value_desc = 
350 
match expr.expr_desc with 
351 
 Expr_const v > Cst v 
352 
 Expr_ident x > (translate_ident node args x).value_desc 
353 
 Expr_array el > Array (List.map (translate_expr node args) el) 
354 
 Expr_access (t, i) > Access (translate_expr node args t, translate_expr node args (expr_of_dimension i)) 
355 
 Expr_power (e, n) > Power (translate_expr node args e, translate_expr node args (expr_of_dimension n)) 
356 
 Expr_tuple _ 
357 
 Expr_arrow _ 
358 
 Expr_fby _ 
359 
 Expr_pre _ > (Printers.pp_expr Format.err_formatter expr; Format.pp_print_flush Format.err_formatter (); raise NormalizationError) 
360 
 Expr_when (e1, _, _) > (translate_expr node args e1).value_desc 
361 
 Expr_merge (x, _) > raise NormalizationError 
362 
 Expr_appl (id, e, _) when Basic_library.is_expr_internal_fun expr > 
363 
let nd = node_from_name id in 
364 
Fun (node_name nd, List.map (translate_expr node args) (expr_list_of_expr e)) 
365 
(* Expr_ite (g,t,e) > ( 
366 
(* special treatment depending on the active backend. For horn backend, ite 
367 
are preserved in expression. While they are removed for C or Java 
368 
backends. *) 
369 
match !Options.output with  "horn" > 
370 
Fun ("ite", [translate_expr node args g; translate_expr node args t; translate_expr node args e]) 
371 
 "C"  "java"  _ > 
372 
(Printers.pp_expr Format.err_formatter expr; Format.pp_print_flush Format.err_formatter (); raise NormalizationError) 
373 
)*) 
374 
 _ > raise NormalizationError 
375 
in 
376 
mk_val value_desc expr.expr_type 
377  
378 
let translate_guard node args expr = 
379 
match expr.expr_desc with 
380 
 Expr_ident x > translate_ident node args x 
381 
 _ > (Format.eprintf "internal error: translate_guard %s %a@." node.node_id Printers.pp_expr expr;assert false) 
382  
383 
let rec translate_act node ((m, si, j, d, s) as args) (y, expr) = 
384 
match expr.expr_desc with 
385 
 Expr_ite (c, t, e) > let g = translate_guard node args c in 
386 
conditional g 
387 
[translate_act node args (y, t)] 
388 
[translate_act node args (y, e)] 
389 
 Expr_merge (x, hl) > MBranch (translate_ident node args x, 
390 
List.map (fun (t, h) > t, [translate_act node args (y, h)]) hl) 
391 
 _ > MLocalAssign (y, translate_expr node args expr) 
392  
393 
let reset_instance node args i r c = 
394 
match r with 
395 
 None > [] 
396 
 Some r > let g = translate_guard node args r in 
397 
[control_on_clock node args c (conditional g [MReset i] [MNoReset i])] 
398  
399 
let translate_eq node ((m, si, j, d, s) as args) eq = 
400 
(* Format.eprintf "translate_eq %a with clock %a@." Printers.pp_node_eq eq Clocks.print_ck eq.eq_rhs.expr_clock; *) 
401 
match eq.eq_lhs, eq.eq_rhs.expr_desc with 
402 
 [x], Expr_arrow (e1, e2) > 
403 
let var_x = get_node_var x node in 
404 
let o = new_instance node arrow_top_decl eq.eq_rhs.expr_tag in 
405 
let c1 = translate_expr node args e1 in 
406 
let c2 = translate_expr node args e2 in 
407 
(m, 
408 
MReset o :: si, 
409 
Utils.IMap.add o (arrow_top_decl, []) j, 
410 
d, 
411 
(control_on_clock node args eq.eq_rhs.expr_clock (MStep ([var_x], o, [c1;c2]))) :: s) 
412 
 [x], Expr_pre e1 when ISet.mem (get_node_var x node) d > 
413 
let var_x = get_node_var x node in 
414 
(ISet.add var_x m, 
415 
si, 
416 
j, 
417 
d, 
418 
control_on_clock node args eq.eq_rhs.expr_clock (MStateAssign (var_x, translate_expr node args e1)) :: s) 
419 
 [x], Expr_fby (e1, e2) when ISet.mem (get_node_var x node) d > 
420 
let var_x = get_node_var x node in 
421 
(ISet.add var_x m, 
422 
MStateAssign (var_x, translate_expr node args e1) :: si, 
423 
j, 
424 
d, 
425 
control_on_clock node args eq.eq_rhs.expr_clock (MStateAssign (var_x, translate_expr node args e2)) :: s) 
426  
427 
 p , Expr_appl (f, arg, r) when not (Basic_library.is_expr_internal_fun eq.eq_rhs) > 
428 
let var_p = List.map (fun v > get_node_var v node) p in 
429 
let el = expr_list_of_expr arg in 
430 
let vl = List.map (translate_expr node args) el in 
431 
let node_f = node_from_name f in 
432 
let call_f = 
433 
node_f, 
434 
NodeDep.filter_static_inputs (node_inputs node_f) el in 
435 
let o = new_instance node node_f eq.eq_rhs.expr_tag in 
436 
let env_cks = List.fold_right (fun arg cks > arg.expr_clock :: cks) el [eq.eq_rhs.expr_clock] in 
437 
let call_ck = Clock_calculus.compute_root_clock (Clock_predef.ck_tuple env_cks) in 
438 
(*Clocks.new_var true in 
439 
Clock_calculus.unify_imported_clock (Some call_ck) eq.eq_rhs.expr_clock eq.eq_rhs.expr_loc; 
440 
Format.eprintf "call %a: %a: %a@," Printers.pp_expr eq.eq_rhs Clocks.print_ck (Clock_predef.ck_tuple env_cks) Clocks.print_ck call_ck;*) 
441 
(m, 
442 
(if Stateless.check_node node_f then si else MReset o :: si), 
443 
Utils.IMap.add o call_f j, 
444 
d, 
445 
(if Stateless.check_node node_f 
446 
then [] 
447 
else reset_instance node args o r call_ck) @ 
448 
(control_on_clock node args call_ck (MStep (var_p, o, vl))) :: s) 
449 
(* 
450 
(* special treatment depending on the active backend. For horn backend, x = ite (g,t,e) 
451 
are preserved. While they are replaced as if g then x = t else x = e in C or Java 
452 
backends. *) 
453 
 [x], Expr_ite (c, t, e) 
454 
when (match !Options.output with  "horn" > true  "C"  "java"  _ > false) 
455 
> 
456 
let var_x = get_node_var x node in 
457 
(m, 
458 
si, 
459 
j, 
460 
d, 
461 
(control_on_clock node args eq.eq_rhs.expr_clock 
462 
(MLocalAssign (var_x, translate_expr node args eq.eq_rhs))::s) 
463 
) 
464  
465 
*) 
466 
 [x], _ > ( 
467 
let var_x = get_node_var x node in 
468 
(m, si, j, d, 
469 
control_on_clock 
470 
node 
471 
args 
472 
eq.eq_rhs.expr_clock 
473 
(translate_act node args (var_x, eq.eq_rhs)) :: s 
474 
) 
475 
) 
476 
 _ > 
477 
begin 
478 
Format.eprintf "internal error: Machine_code.translate_eq %a@?" Printers.pp_node_eq eq; 
479 
assert false 
480 
end 
481  
482 
let find_eq xl eqs = 
483 
let rec aux accu eqs = 
484 
match eqs with 
485 
 [] > 
486 
begin 
487 
Format.eprintf "Looking for variables %a in the following equations@.%a@." 
488 
(Utils.fprintf_list ~sep:" , " (fun fmt v > Format.fprintf fmt "%s" v)) xl 
489 
Printers.pp_node_eqs eqs; 
490 
assert false 
491 
end 
492 
 hd::tl > 
493 
if List.exists (fun x > List.mem x hd.eq_lhs) xl then hd, accu@tl else aux (hd::accu) tl 
494 
in 
495 
aux [] eqs 
496  
497 
(* Sort the set of equations of node [nd] according 
498 
to the computed schedule [sch] 
499 
*) 
500 
let sort_equations_from_schedule nd sch = 
501 
(* Format.eprintf "%s schedule: %a@." *) 
502 
(* nd.node_id *) 
503 
(* (Utils.fprintf_list ~sep:" ; " Scheduling.pp_eq_schedule) sch; *) 
504 
let split_eqs = Splitting.tuple_split_eq_list (get_node_eqs nd) in 
505 
let eqs_rev, remainder = 
506 
List.fold_left 
507 
(fun (accu, node_eqs_remainder) vl > 
508 
if List.exists (fun eq > List.exists (fun v > List.mem v eq.eq_lhs) vl) accu 
509 
then 
510 
(accu, node_eqs_remainder) 
511 
else 
512 
let eq_v, remainder = find_eq vl node_eqs_remainder in 
513 
eq_v::accu, remainder 
514 
) 
515 
([], split_eqs) 
516 
sch 
517 
in 
518 
begin 
519 
if List.length remainder > 0 then ( 
520 
Format.eprintf "Equations not used are@.%a@.Full equation set is:@.%a@.@?" 
521 
Printers.pp_node_eqs remainder 
522 
Printers.pp_node_eqs (get_node_eqs nd); 
523 
assert false); 
524 
List.rev eqs_rev 
525 
end 
526  
527 
let constant_equations nd = 
528 
List.fold_right (fun vdecl eqs > 
529 
if vdecl.var_dec_const 
530 
then 
531 
{ eq_lhs = [vdecl.var_id]; 
532 
eq_rhs = Utils.desome vdecl.var_dec_value; 
533 
eq_loc = vdecl.var_loc 
534 
} :: eqs 
535 
else eqs) 
536 
nd.node_locals [] 
537  
538 
let translate_eqs node args eqs = 
539 
List.fold_right (fun eq args > translate_eq node args eq) eqs args;; 
540  
541 
let translate_decl nd sch = 
542 
(*Log.report ~level:1 (fun fmt > Printers.pp_node fmt nd);*) 
543  
544 
let sorted_eqs = sort_equations_from_schedule nd sch in 
545 
let constant_eqs = constant_equations nd in 
546 

547 
let init_args = ISet.empty, [], Utils.IMap.empty, List.fold_right (fun l > ISet.add l) nd.node_locals ISet.empty, [] in 
548 
(* memories, init instructions, node calls, local variables (including memories), step instrs *) 
549 
let m0, init0, j0, locals0, s0 = translate_eqs nd init_args constant_eqs in 
550 
assert (ISet.is_empty m0); 
551 
assert (init0 = []); 
552 
assert (Utils.IMap.is_empty j0); 
553 
let m, init, j, locals, s = translate_eqs nd (m0, init0, j0, locals0, []) sorted_eqs in 
554 
let mmap = Utils.IMap.fold (fun i n res > (i, n)::res) j [] in 
555 
{ 
556 
mname = nd; 
557 
mmemory = ISet.elements m; 
558 
mcalls = mmap; 
559 
minstances = List.filter (fun (_, (n,_)) > not (Stateless.check_node n)) mmap; 
560 
minit = init; 
561 
mconst = s0; 
562 
mstatic = List.filter (fun v > v.var_dec_const) nd.node_inputs; 
563 
mstep = { 
564 
step_inputs = nd.node_inputs; 
565 
step_outputs = nd.node_outputs; 
566 
step_locals = ISet.elements (ISet.diff locals m); 
567 
step_checks = List.map (fun d > d.Dimension.dim_loc, translate_expr nd init_args (expr_of_dimension d)) nd.node_checks; 
568 
step_instrs = ( 
569 
(* special treatment depending on the active backend. For horn backend, 
570 
common branches are not merged while they are in C or Java 
571 
backends. *) 
572 
(*match !Options.output with 
573 
 "horn" > s 
574 
 "C"  "java"  _ >*) join_guards_list s 
575 
); 
576 
step_asserts = 
577 
let exprl = List.map (fun assert_ > assert_.assert_expr ) nd.node_asserts in 
578 
List.map (translate_expr nd init_args) exprl 
579 
; 
580 
}; 
581 
mspec = nd.node_spec; 
582 
mannot = nd.node_annot; 
583 
} 
584  
585 
(** takes the global declarations and the scheduling associated to each node *) 
586 
let translate_prog decls node_schs = 
587 
let nodes = get_nodes decls in 
588 
List.map 
589 
(fun decl > 
590 
let node = node_of_top decl in 
591 
let sch = (Utils.IMap.find node.node_id node_schs).Scheduling.schedule in 
592 
translate_decl node sch 
593 
) nodes 
594  
595 
let get_machine_opt name machines = 
596 
List.fold_left 
597 
(fun res m > 
598 
match res with 
599 
 Some _ > res 
600 
 None > if m.mname.node_id = name then Some m else None) 
601 
None machines 
602  
603 
let get_const_assign m id = 
604 
try 
605 
match (List.find (fun instr > match instr with MLocalAssign (v, _) > v == id  _ > false) m.mconst) with 
606 
 MLocalAssign (_, e) > e 
607 
 _ > assert false 
608 
with Not_found > assert false 
609  
610  
611 
let value_of_ident loc m id = 
612 
(* is is a state var *) 
613 
try 
614 
let v = List.find (fun v > v.var_id = id) m.mmemory 
615 
in mk_val (StateVar v) v.var_type 
616 
with Not_found > 
617 
try (* id is a node var *) 
618 
let v = get_node_var id m.mname 
619 
in mk_val (LocalVar v) v.var_type 
620 
with Not_found > 
621 
try (* id is a constant *) 
622 
let c = Corelang.var_decl_of_const (const_of_top (Hashtbl.find Corelang.consts_table id)) 
623 
in mk_val (LocalVar c) c.var_type 
624 
with Not_found > 
625 
(* id is a tag *) 
626 
let t = Const_tag id 
627 
in mk_val (Cst t) (Typing.type_const loc t) 
628  
629 
(* type of internal fun used in dimension expression *) 
630 
let type_of_value_appl f args = 
631 
if List.mem f Basic_library.arith_funs 
632 
then (List.hd args).value_type 
633 
else Type_predef.type_bool 
634  
635 
let rec value_of_dimension m dim = 
636 
match dim.Dimension.dim_desc with 
637 
 Dimension.Dbool b > 
638 
mk_val (Cst (Const_tag (if b then Corelang.tag_true else Corelang.tag_false))) Type_predef.type_bool 
639 
 Dimension.Dint i > 
640 
mk_val (Cst (Const_int i)) Type_predef.type_int 
641 
 Dimension.Dident v > value_of_ident dim.Dimension.dim_loc m v 
642 
 Dimension.Dappl (f, args) > 
643 
let vargs = List.map (value_of_dimension m) args 
644 
in mk_val (Fun (f, vargs)) (type_of_value_appl f vargs) 
645 
 Dimension.Dite (i, t, e) > 
646 
(match List.map (value_of_dimension m) [i; t; e] with 
647 
 [vi; vt; ve] > mk_val (Fun ("ite", [vi; vt; ve])) vt.value_type 
648 
 _ > assert false) 
649 
 Dimension.Dlink dim' > value_of_dimension m dim' 
650 
 _ > assert false 
651  
652 
let rec dimension_of_value value = 
653 
match value.value_desc with 
654 
 Cst (Const_tag t) when t = Corelang.tag_true > Dimension.mkdim_bool Location.dummy_loc true 
655 
 Cst (Const_tag t) when t = Corelang.tag_false > Dimension.mkdim_bool Location.dummy_loc false 
656 
 Cst (Const_int i) > Dimension.mkdim_int Location.dummy_loc i 
657 
 LocalVar v > Dimension.mkdim_ident Location.dummy_loc v.var_id 
658 
 Fun (f, args) > Dimension.mkdim_appl Location.dummy_loc f (List.map dimension_of_value args) 
659 
 _ > assert false 
660  
661 
(* Local Variables: *) 
662 
(* compilecommand:"make C .." *) 
663 
(* End: *) 