lustrec / src / tools / zustre / zustre_common.ml @ 7d77632f
History  View  Annotate  Download (29 KB)
1 
open Lustre_types 

2 
open Machine_code_types 
3 
open Machine_code_common 
4 
open Format 
5 
(* open Horn_backend_common 
6 
* open Horn_backend *) 
7 
open Zustre_data 
8  
9 
module HBC = Horn_backend_common 
10 
let node_name = HBC.node_name 
11  
12 
let concat = HBC.concat 
13  
14 
let rename_machine = HBC.rename_machine 
15 
let rename_machine_list = HBC.rename_machine_list 
16  
17 
let rename_next = HBC.rename_next 
18 
let rename_mid = HBC.rename_mid 
19 
let rename_current = HBC.rename_current 
20  
21 
let rename_current_list = HBC.rename_current_list 
22 
let rename_mid_list = HBC.rename_mid_list 
23 
let rename_next_list = HBC.rename_next_list 
24  
25 
let full_memory_vars = HBC.full_memory_vars 
26 
let inout_vars = HBC.inout_vars 
27 
let reset_vars = HBC.reset_vars 
28 
let step_vars = HBC.step_vars 
29 
let local_memory_vars = HBC.local_memory_vars 
30 
let step_vars_m_x = HBC.step_vars_m_x 
31 
let step_vars_c_m_x = HBC.step_vars_c_m_x 
32 

33 
let machine_reset_name = HBC.machine_reset_name 
34 
let machine_step_name = HBC.machine_step_name 
35 
let machine_stateless_name = HBC.machine_stateless_name 
36  
37 
let preprocess = Horn_backend.preprocess 
38 

39 

40 
(** Sorts 
41  
42 
A sort is introduced for each basic type and each enumerated type. 
43  
44 
A hashtbl records these and allow easy access to sort values, when 
45 
provided with a enumerated type name. 
46  
47 
*) 
48 

49 
let bool_sort = Z3.Boolean.mk_sort !ctx 
50 
let int_sort = Z3.Arithmetic.Integer.mk_sort !ctx 
51 
let real_sort = Z3.Arithmetic.Real.mk_sort !ctx 
52  
53  
54 
let get_const_sort = Hashtbl.find const_sorts 
55 
let get_sort_elems = Hashtbl.find sort_elems 
56 
let get_tag_sort = Hashtbl.find const_tags 
57 

58  
59 

60 
let decl_sorts () = 
61 
Hashtbl.iter (fun typ decl > 
62 
match typ with 
63 
 Tydec_const var > 
64 
(match decl.top_decl_desc with 
65 
 TypeDef tdef > ( 
66 
match tdef.tydef_desc with 
67 
 Tydec_enum tl > 
68 
let new_sort = Z3.Enumeration.mk_sort_s !ctx var tl in 
69 
Hashtbl.add const_sorts var new_sort; 
70 
Hashtbl.add sort_elems new_sort tl; 
71 
List.iter (fun t > Hashtbl.add const_tags t new_sort) tl 
72 

73 
 _ > Format.eprintf "Unknown type : %a@.@?" Printers.pp_var_type_dec_desc typ; assert false 
74 
) 
75 
 _ > assert false 
76 
) 
77 
 _ > ()) Corelang.type_table 
78  
79 

80 
let rec type_to_sort t = 
81 
if Types.is_bool_type t then bool_sort else 
82 
if Types.is_int_type t then int_sort else 
83 
if Types.is_real_type t then real_sort else 
84 
match (Types.repr t).Types.tdesc with 
85 
 Types.Tconst ty > get_const_sort ty 
86 
 Types.Tclock t > type_to_sort t 
87 
 Types.Tarray(dim,ty) > Z3.Z3Array.mk_sort !ctx int_sort (type_to_sort ty) 
88 
 Types.Tstatic(d, ty)> type_to_sort ty 
89 
 Types.Tarrow _ 
90 
 _ > Format.eprintf "internal error: pp_type %a@." 
91 
Types.print_ty t; assert false 
92  
93  
94 
(* let idx_var = *) 
95 
(* Z3.FuncDecl.mk_func_decl_s !ctx "__idx__" [] idx_sort *) 
96 

97 
(* let uid_var = *) 
98 
(* Z3.FuncDecl.mk_func_decl_s !ctx "__uid__" [] uid_sort *) 
99  
100 
(** Func decls 
101  
102 
Similarly fun_decls are registerd, by their name, into a hashtbl. The 
103 
proposed encoding introduces a 0ary fun_decl to model variables and 
104 
fun_decl with arguments to declare reset and step predicates. 
105  
106  
107  
108 
*) 
109 
let register_fdecl id fd = Hashtbl.add decls id fd 
110 
let get_fdecl id = 
111 
try 
112 
Hashtbl.find decls id 
113 
with Not_found > (Format.eprintf "Unable to find func_decl %s@.@?" id; raise Not_found) 
114  
115 
let pp_fdecls fmt = 
116 
Format.fprintf fmt "Registered fdecls: @[%a@]@ " 
117 
(Utils.fprintf_list ~sep:"@ " Format.pp_print_string) (Hashtbl.fold (fun id _ accu > id::accu) decls []) 
118  
119 

120 
let decl_var id = 
121 
(* Format.eprintf "Declaring var %s@." id.var_id; *) 
122 
let fdecl = Z3.FuncDecl.mk_func_decl_s !ctx id.var_id [] (type_to_sort id.var_type) in 
123 
register_fdecl id.var_id fdecl; 
124 
fdecl 
125  
126 
let idx_sort = int_sort 
127 
let uid_sort = Z3.Z3List.mk_sort !ctx (Z3.Symbol.mk_string !ctx "uid_list") int_sort 
128 
let uid_conc = 
129 
let fd = Z3.Z3List.get_cons_decl uid_sort in 
130 
fun head tail > Z3.FuncDecl.apply fd [head;tail] 
131  
132 
let get_instance_uid = 
133 
let hash : (string, int) Hashtbl.t = Hashtbl.create 13 in 
134 
let cpt = ref 0 in 
135 
fun i > 
136 
let id = 
137 
if Hashtbl.mem hash i then 
138 
Hashtbl.find hash i 
139 
else ( 
140 
incr cpt; 
141 
Hashtbl.add hash i !cpt; 
142 
!cpt 
143 
) 
144 
in 
145 
Z3.Arithmetic.Integer.mk_numeral_i !ctx id 
146 

147  
148 

149 
let decl_rel ?(no_additional_vars=false) name args_sorts = 
150 
(* Enriching arg_sorts with two new variables: a counting index and an 
151 
uid *) 
152 
let args_sorts = 
153 
if no_additional_vars then args_sorts else idx_sort::uid_sort::args_sorts in 
154 

155 
(* let args_sorts = List.map (fun v > type_to_sort v.var_type) args in *) 
156 
if !debug then 
157 
Format.eprintf "Registering fdecl %s (%a)@." 
158 
name 
159 
(Utils.fprintf_list ~sep:"@ " 
160 
(fun fmt sort > Format.fprintf fmt "%s" (Z3.Sort.to_string sort))) 
161 
args_sorts 
162 
; 
163 
let fdecl = Z3.FuncDecl.mk_func_decl_s !ctx name args_sorts bool_sort in 
164 
Z3.Fixedpoint.register_relation !fp fdecl; 
165 
register_fdecl name fdecl; 
166 
fdecl 
167 

168  
169  
170 
(* Shared variables to describe counter and uid *) 
171  
172 
let idx = Corelang.dummy_var_decl "__idx__" Type_predef.type_int 
173 
let idx_var = Z3.Expr.mk_const_f !ctx (decl_var idx) 
174 
let uid = Corelang.dummy_var_decl "__uid__" Type_predef.type_int 
175 
let uid_fd = Z3.FuncDecl.mk_func_decl_s !ctx "__uid__" [] uid_sort 
176 
let _ = register_fdecl "__uid__" uid_fd 
177 
let uid_var = Z3.Expr.mk_const_f !ctx uid_fd 
178  
179 
(** Conversion functions 
180  
181 
The following is similar to the Horn backend. Each printing function is 
182 
rephrased from pp_xx to xx_to_expr and produces a Z3 value. 
183  
184 
*) 
185  
186  
187 
(* Returns the f_decl associated to the variable v *) 
188 
let horn_var_to_expr v = 
189 
Z3.Expr.mk_const_f !ctx (get_fdecl v.var_id) 
190  
191  
192  
193  
194 
(* Used to print boolean constants *) 
195 
let horn_tag_to_expr t = 
196 
if t = Corelang.tag_true then 
197 
Z3.Boolean.mk_true !ctx 
198 
else if t = Corelang.tag_false then 
199 
Z3.Boolean.mk_false !ctx 
200 
else 
201 
(* Finding the associated sort *) 
202 
let sort = get_tag_sort t in 
203 
let elems = get_sort_elems sort in 
204 
let res : Z3.Expr.expr option = 
205 
List.fold_left2 (fun res cst expr > 
206 
match res with 
207 
 Some _ > res 
208 
 None > if t = cst then Some (expr:Z3.Expr.expr) else None 
209 
) None elems (Z3.Enumeration.get_consts sort) 
210 
in 
211 
match res with None > assert false  Some s > s 
212 

213 
(* Prints a constant value *) 
214 
let rec horn_const_to_expr c = 
215 
match c with 
216 
 Const_int i > Z3.Arithmetic.Integer.mk_numeral_i !ctx i 
217 
 Const_real (_,_,s) > Z3.Arithmetic.Real.mk_numeral_i !ctx 0 
218 
 Const_tag t > horn_tag_to_expr t 
219 
 _ > assert false 
220  
221  
222  
223 
(* Default value for each type, used when building arrays. Eg integer array 
224 
[2;7] is defined as (store (store (0) 1 7) 0 2) where 0 is this default value 
225 
for the type integer (arrays). 
226 
*) 
227 
let rec horn_default_val t = 
228 
let t = Types.dynamic_type t in 
229 
if Types.is_bool_type t then Z3.Boolean.mk_true !ctx else 
230 
if Types.is_int_type t then Z3.Arithmetic.Integer.mk_numeral_i !ctx 0 else 
231 
if Types.is_real_type t then Z3.Arithmetic.Real.mk_numeral_i !ctx 0 else 
232 
(* match (Types.dynamic_type t).Types.tdesc with 
233 
*  Types.Tarray(dim, l) > (\* TODO PL: this strange code has to be (heavily) checked *\) 
234 
* let valt = Types.array_element_type t in 
235 
* fprintf fmt "((as const (Array Int %a)) %a)" 
236 
* pp_type valt 
237 
* pp_default_val valt 
238 
*  Types.Tstruct(l) > assert false 
239 
*  Types.Ttuple(l) > assert false 
240 
* _ > *) assert false 
241  
242 
(* Conversion of basic library functions *) 
243 

244 
let horn_basic_app i val_to_expr vl = 
245 
match i, vl with 
246 
 "ite", [v1; v2; v3] > 
247 
Z3.Boolean.mk_ite 
248 
!ctx 
249 
(val_to_expr v1) 
250 
(val_to_expr v2) 
251 
(val_to_expr v3) 
252  
253 
 "uminus", [v] > 
254 
Z3.Arithmetic.mk_unary_minus 
255 
!ctx 
256 
(val_to_expr v) 
257 
 "not", [v] > 
258 
Z3.Boolean.mk_not 
259 
!ctx 
260 
(val_to_expr v) 
261 
 "=", [v1; v2] > 
262 
Z3.Boolean.mk_eq 
263 
!ctx 
264 
(val_to_expr v1) 
265 
(val_to_expr v2) 
266 
 "&&", [v1; v2] > 
267 
Z3.Boolean.mk_and 
268 
!ctx 
269 
[val_to_expr v1; 
270 
val_to_expr v2] 
271 
 "", [v1; v2] > 
272 
Z3.Boolean.mk_or 
273 
!ctx 
274 
[val_to_expr v1; 
275 
val_to_expr v2] 
276  
277 
 "impl", [v1; v2] > 
278 
Z3.Boolean.mk_implies 
279 
!ctx 
280 
(val_to_expr v1) 
281 
(val_to_expr v2) 
282 
 "mod", [v1; v2] > 
283 
Z3.Arithmetic.Integer.mk_mod 
284 
!ctx 
285 
(val_to_expr v1) 
286 
(val_to_expr v2) 
287 
 "equi", [v1; v2] > 
288 
Z3.Boolean.mk_eq 
289 
!ctx 
290 
(val_to_expr v1) 
291 
(val_to_expr v2) 
292 
 "xor", [v1; v2] > 
293 
Z3.Boolean.mk_xor 
294 
!ctx 
295 
(val_to_expr v1) 
296 
(val_to_expr v2) 
297 
 "!=", [v1; v2] > 
298 
Z3.Boolean.mk_not 
299 
!ctx 
300 
( 
301 
Z3.Boolean.mk_eq 
302 
!ctx 
303 
(val_to_expr v1) 
304 
(val_to_expr v2) 
305 
) 
306 
 "/", [v1; v2] > 
307 
Z3.Arithmetic.mk_div 
308 
!ctx 
309 
(val_to_expr v1) 
310 
(val_to_expr v2) 
311  
312 
 "+", [v1; v2] > 
313 
Z3.Arithmetic.mk_add 
314 
!ctx 
315 
[val_to_expr v1; val_to_expr v2] 
316  
317 
 "", [v1; v2] > 
318 
Z3.Arithmetic.mk_sub 
319 
!ctx 
320 
[val_to_expr v1 ; val_to_expr v2] 
321 

322 
 "*", [v1; v2] > 
323 
Z3.Arithmetic.mk_mul 
324 
!ctx 
325 
[val_to_expr v1; val_to_expr v2] 
326  
327  
328 
 "<", [v1; v2] > 
329 
Z3.Arithmetic.mk_lt 
330 
!ctx 
331 
(val_to_expr v1) 
332 
(val_to_expr v2) 
333  
334 
 "<=", [v1; v2] > 
335 
Z3.Arithmetic.mk_le 
336 
!ctx 
337 
(val_to_expr v1) 
338 
(val_to_expr v2) 
339  
340 
 ">", [v1; v2] > 
341 
Z3.Arithmetic.mk_gt 
342 
!ctx 
343 
(val_to_expr v1) 
344 
(val_to_expr v2) 
345  
346 
 ">=", [v1; v2] > 
347 
Z3.Arithmetic.mk_ge 
348 
!ctx 
349 
(val_to_expr v1) 
350 
(val_to_expr v2) 
351  
352 

353 
(*  _, [v1; v2] > Z3.Boolean.mk_and 
354 
* !ctx 
355 
* (val_to_expr v1) 
356 
* (val_to_expr v2) 
357 
* 
358 
* Format.fprintf fmt "(%s %a %a)" i val_to_exprr v1 val_to_expr v2 *) 
359 
 _ > ( 
360 
Format.eprintf 
361 
"internal error: zustre unkown function %s@." i; 
362 
assert false) 
363  
364 

365 
(* Convert a value expression [v], with internal function calls only. [pp_var] 
366 
is a printer for variables (typically [pp_c_var_read]), but an offset suffix 
367 
may be added for array variables 
368 
*) 
369 
let rec horn_val_to_expr ?(is_lhs=false) self v = 
370 
match v.value_desc with 
371 
 Cst c > horn_const_to_expr c 
372  
373 
(* Code specific for arrays *) 
374 
 Array il > 
375 
(* An array definition: 
376 
(store ( 
377 
... 
378 
(store ( 
379 
store ( 
380 
default_val 
381 
) 
382 
idx_n val_n 
383 
) 
384 
idx_n1 val_n1) 
385 
... 
386 
idx_1 val_1 
387 
) *) 
388 
let rec build_array (tab, x) = 
389 
match tab with 
390 
 [] > horn_default_val v.value_type(* (get_type v) *) 
391 
 h::t > 
392 
Z3.Z3Array.mk_store 
393 
!ctx 
394 
(build_array (t, (x+1))) 
395 
(Z3.Arithmetic.Integer.mk_numeral_i !ctx x) 
396 
(horn_val_to_expr ~is_lhs:is_lhs self h) 
397 
in 
398 
build_array (il, 0) 
399 

400 
 Access(tab,index) > 
401 
Z3.Z3Array.mk_select !ctx 
402 
(horn_val_to_expr ~is_lhs:is_lhs self tab) 
403 
(horn_val_to_expr ~is_lhs:is_lhs self index) 
404  
405 
(* Code specific for arrays *) 
406 

407 
 Power (v, n) > assert false 
408 
 LocalVar v > 
409 
horn_var_to_expr 
410 
(rename_machine 
411 
self 
412 
v) 
413 
 StateVar v > 
414 
if Types.is_array_type v.var_type 
415 
then assert false 
416 
else horn_var_to_expr (rename_machine self ((if is_lhs then rename_next else rename_current) (* self *) v)) 
417 
 Fun (n, vl) > horn_basic_app n (horn_val_to_expr self) vl 
418  
419 
let no_reset_to_exprs machines m i = 
420 
let (n,_) = List.assoc i m.minstances in 
421 
let target_machine = List.find (fun m > m.mname.node_id = (Corelang.node_name n)) machines in 
422  
423 
let m_list = 
424 
rename_machine_list 
425 
(concat m.mname.node_id i) 
426 
(rename_mid_list (full_memory_vars machines target_machine)) 
427 
in 
428 
let c_list = 
429 
rename_machine_list 
430 
(concat m.mname.node_id i) 
431 
(rename_current_list (full_memory_vars machines target_machine)) 
432 
in 
433 
match c_list, m_list with 
434 
 [chd], [mhd] > 
435 
let expr = 
436 
Z3.Boolean.mk_eq !ctx 
437 
(horn_var_to_expr mhd) 
438 
(horn_var_to_expr chd) 
439 
in 
440 
[expr] 
441 
 _ > ( 
442 
let exprs = 
443 
List.map2 (fun mhd chd > 
444 
Z3.Boolean.mk_eq !ctx 
445 
(horn_var_to_expr mhd) 
446 
(horn_var_to_expr chd) 
447 
) 
448 
m_list 
449 
c_list 
450 
in 
451 
exprs 
452 
) 
453  
454 
let instance_reset_to_exprs machines m i = 
455 
let (n,_) = List.assoc i m.minstances in 
456 
let target_machine = List.find (fun m > m.mname.node_id = (Corelang.node_name n)) machines in 
457 
let vars = 
458 
(rename_machine_list 
459 
(concat m.mname.node_id i) 
460 
(rename_current_list (full_memory_vars machines target_machine))@ (rename_mid_list (full_memory_vars machines target_machine)) 
461 
) 
462 

463 
in 
464 
let expr = 
465 
Z3.Expr.mk_app 
466 
!ctx 
467 
(get_fdecl (machine_reset_name (Corelang.node_name n))) 
468 
(List.map (horn_var_to_expr) (idx::uid::vars)) 
469 
in 
470 
[expr] 
471  
472 
let instance_call_to_exprs machines reset_instances m i inputs outputs = 
473 
let self = m.mname.node_id in 
474  
475 
(* Building call args *) 
476 
let idx_uid_inout = 
477 
(* Additional input to register step counters, and uid *) 
478 
let idx = horn_var_to_expr idx in 
479 
let uid = uid_conc (get_instance_uid i) (horn_var_to_expr uid) in 
480 
let inout = 
481 
List.map (horn_val_to_expr self) 
482 
(inputs @ (List.map (fun v > mk_val (LocalVar v) v.var_type) outputs)) 
483 
in 
484 
idx::uid::inout 
485 
in 
486 

487 
try (* stateful node instance *) 
488 
begin 
489 
let (n,_) = List.assoc i m.minstances in 
490 
let target_machine = List.find (fun m > m.mname.node_id = Corelang.node_name n) machines in 
491  
492 
(* Checking whether this specific instances has been reset yet *) 
493 
let reset_exprs = 
494 
if not (List.mem i reset_instances) then 
495 
(* If not, declare mem_m = mem_c *) 
496 
no_reset_to_exprs machines m i 
497 
else 
498 
[] (* Nothing to add yet *) 
499 
in 
500 

501 
let mems = full_memory_vars machines target_machine in 
502 
let rename_mems f = rename_machine_list (concat m.mname.node_id i) (f mems) in 
503 
let mid_mems = rename_mems rename_mid_list in 
504 
let next_mems = rename_mems rename_next_list in 
505  
506 
let call_expr = 
507 
match Corelang.node_name n, inputs, outputs, mid_mems, next_mems with 
508 
 "_arrow", [i1; i2], [o], [mem_m], [mem_x] > begin 
509 
let stmt1 = (* out = ite mem_m then i1 else i2 *) 
510 
Z3.Boolean.mk_eq !ctx 
511 
( (* output var *) 
512 
horn_val_to_expr 
513 
~is_lhs:true 
514 
self 
515 
(mk_val (LocalVar o) o.var_type) 
516 
) 
517 
( 
518 
Z3.Boolean.mk_ite !ctx 
519 
(horn_var_to_expr mem_m) 
520 
(horn_val_to_expr self i1) 
521 
(horn_val_to_expr self i2) 
522 
) 
523 
in 
524 
let stmt2 = (* mem_X = false *) 
525 
Z3.Boolean.mk_eq !ctx 
526 
(horn_var_to_expr mem_x) 
527 
(Z3.Boolean.mk_false !ctx) 
528 
in 
529 
[stmt1; stmt2] 
530 
end 
531  
532 
 node_name_n > 
533 
let expr = 
534 
Z3.Expr.mk_app 
535 
!ctx 
536 
(get_fdecl (machine_step_name (node_name n))) 
537 
( (* Arguments are input, output, mid_mems, next_mems *) 
538 
idx_uid_inout @ List.map (horn_var_to_expr) (mid_mems@next_mems) 
539 

540 
) 
541 
in 
542 
[expr] 
543 
in 
544  
545 
reset_exprs@call_expr 
546 
end 
547 
with Not_found > ( (* stateless node instance *) 
548 
let (n,_) = List.assoc i m.mcalls in 
549 
let expr = 
550 
Z3.Expr.mk_app 
551 
!ctx 
552 
(get_fdecl (machine_stateless_name (node_name n))) 
553 
idx_uid_inout (* Arguments are inputs, outputs *) 
554 
in 
555 
[expr] 
556 
) 
557  
558  
559 

560 
(* (\* Prints a [value] indexed by the suffix list [loop_vars] *\) *) 
561 
(* let rec value_suffix_to_expr self value = *) 
562 
(* match value.value_desc with *) 
563 
(*  Fun (n, vl) > *) 
564 
(* horn_basic_app n (horn_val_to_expr self) (value_suffix_to_expr self vl) *) 
565 

566 
(*  _ > *) 
567 
(* horn_val_to_expr self value *) 
568  
569  
570 
(* type_directed assignment: array vs. statically sized type 
571 
 [var_type]: type of variable to be assigned 
572 
 [var_name]: name of variable to be assigned 
573 
 [value]: assigned value 
574 
 [pp_var]: printer for variables 
575 
*) 
576 
let assign_to_exprs m var_name value = 
577 
let self = m.mname.node_id in 
578 
let e = 
579 
Z3.Boolean.mk_eq 
580 
!ctx 
581 
(horn_val_to_expr ~is_lhs:true self var_name) 
582 
(horn_val_to_expr self value) 
583 
(* was: TODO deal with array accesses (value_suffix_to_expr self value) *) 
584 
in 
585 
[e] 
586  
587 

588 
(* Convert instruction to Z3.Expr and update the set of reset instances *) 
589 
let rec instr_to_exprs machines reset_instances (m: machine_t) instr : Z3.Expr.expr list * ident list = 
590 
match Corelang.get_instr_desc instr with 
591 
 MComment _ > [], reset_instances 
592 
 MNoReset i > (* we assign middle_mem with mem_m. And declare i as reset *) 
593 
no_reset_to_exprs machines m i, 
594 
i::reset_instances 
595 
 MReset i > (* we assign middle_mem with reset: reset(mem_m) *) 
596 
instance_reset_to_exprs machines m i, 
597 
i::reset_instances 
598 
 MLocalAssign (i,v) > 
599 
assign_to_exprs 
600 
m 
601 
(mk_val (LocalVar i) i.var_type) v, 
602 
reset_instances 
603 
 MStateAssign (i,v) > 
604 
assign_to_exprs 
605 
m 
606 
(mk_val (StateVar i) i.var_type) v, 
607 
reset_instances 
608 
 MStep ([i0], i, vl) when Basic_library.is_internal_fun i (List.map (fun v > v.value_type) vl) > 
609 
assert false (* This should not happen anymore *) 
610 
 MStep (il, i, vl) > 
611 
(* if reset instance, just print the call over mem_m , otherwise declare mem_m = 
612 
mem_c and print the call to mem_m *) 
613 
instance_call_to_exprs machines reset_instances m i vl il, 
614 
reset_instances (* Since this instance call will only happen once, we 
615 
don't have to update reset_instances *) 
616  
617 
 MBranch (g,hl) > (* (g = tag1 => expr1) and (g = tag2 => expr2) ... 
618 
should not be produced yet. Later, we will have to 
619 
compare the reset_instances of each branch and 
620 
introduced the mem_m = mem_c for branches to do not 
621 
address it while other did. Am I clear ? *) 
622 
(* For each branch we obtain the logical encoding, and the information 
623 
whether a sub node has been reset or not. If a node has been reset in one 
624 
of the branch, then all others have to have the mem_m = mem_c 
625 
statement. *) 
626 
let self = m.mname.node_id in 
627 
let branch_to_expr (tag, instrs) = 
628 
let branch_def, branch_resets = instrs_to_expr machines reset_instances m instrs in 
629 
let e = 
630 
Z3.Boolean.mk_implies !ctx 
631 
(Z3.Boolean.mk_eq !ctx 
632 
(horn_val_to_expr self g) 
633 
(horn_tag_to_expr tag)) 
634 
branch_def in 
635  
636 
[e], branch_resets 
637 

638 
in 
639 
List.fold_left (fun (instrs, resets) b > 
640 
let b_instrs, b_resets = branch_to_expr b in 
641 
instrs@b_instrs, resets@b_resets 
642 
) ([], reset_instances) hl 
643  
644 
and instrs_to_expr machines reset_instances m instrs = 
645 
let instr_to_exprs rs i = instr_to_exprs machines rs m i in 
646 
let e_list, rs = 
647 
match instrs with 
648 
 [x] > instr_to_exprs reset_instances x 
649 
 _::_ > (* TODO: check whether we should compuyte a AND on the exprs (expr list) built here. It was performed in the printer setting but seems to be useless here since the output is a list of exprs *) 
650 

651 
List.fold_left (fun (exprs, rs) i > 
652 
let exprs_i, rs_i = instr_to_exprs rs i in 
653 
exprs@exprs_i, rs@rs_i 
654 
) 
655 
([], reset_instances) instrs 
656 

657 

658 
 [] > [], reset_instances 
659 
in 
660 
let e = 
661 
match e_list with 
662 
 [e] > e 
663 
 [] > Z3.Boolean.mk_true !ctx 
664 
 _ > Z3.Boolean.mk_and !ctx e_list 
665 
in 
666 
e, rs 
667  
668  
669 
(*********************************************************) 
670  
671 
(* Quantifiying universally all occuring variables *) 
672 
let add_rule ?(dont_touch=[]) vars expr = 
673 
(* let fds = Z3.Expr.get_args expr in *) 
674 
(* Format.eprintf "Expr %s: args: [%a]@." *) 
675 
(* (Z3.Expr.to_string expr) *) 
676 
(* (Utils.fprintf_list ~sep:", " (fun fmt e > Format.pp_print_string fmt (Z3.Expr.to_string e))) fds; *) 
677  
678 
(* (\* Old code relying on provided vars *\) *) 
679 
(* let sorts = (List.map (fun id > type_to_sort id.var_type) vars) in *) 
680 
(* let symbols = (List.map (fun id > Z3.FuncDecl.get_name (get_fdecl id.var_id)) vars) in *) 
681 

682 
(* New code: we extract vars from expr *) 
683 
let module FDSet = Set.Make (struct type t = Z3.FuncDecl.func_decl 
684 
let compare = compare 
685 
let hash = Hashtbl.hash 
686 
end) 
687 
in 
688 
let rec get_expr_vars e = 
689 
let open Utils in 
690 
let nb_args = Z3.Expr.get_num_args e in 
691 
if nb_args <= 0 then ( 
692 
let fdecl = Z3.Expr.get_func_decl e in 
693 
(* let params = Z3.FuncDecl.get_parameters fdecl in *) 
694 
(* Format.eprintf "Extracting info about %s: @." (Z3.Expr.to_string e); *) 
695 
let dkind = Z3.FuncDecl.get_decl_kind fdecl in 
696 
match dkind with Z3enums.OP_UNINTERPRETED > ( 
697 
(* Format.eprintf "kind = %s, " (match dkind with Z3enums.OP_TRUE > "true"  Z3enums.OP_UNINTERPRETED > "uninter"); *) 
698 
(* let open Z3.FuncDecl.Parameter in *) 
699 
(* List.iter (fun p > *) 
700 
(* match p with *) 
701 
(* P_Int i > Format.eprintf "int %i" i *) 
702 
(*  P_Dbl f > Format.eprintf "dbl %f" f *) 
703 
(*  P_Sym s > Format.eprintf "symb" *) 
704 
(*  P_Srt s > Format.eprintf "sort" *) 
705 
(*  P_Ast _ >Format.eprintf "ast" *) 
706 
(*  P_Fdl f > Format.eprintf "fundecl" *) 
707 
(*  P_Rat s > Format.eprintf "rat %s" s *) 
708 

709 
(* ) params; *) 
710 
(* Format.eprintf "]@."; *) 
711 
FDSet.singleton fdecl 
712 
) 
713 
 _ > FDSet.empty 
714 
) 
715 
else (*if nb_args > 0 then*) 
716 
List.fold_left 
717 
(fun accu e > FDSet.union accu (get_expr_vars e)) 
718 
FDSet.empty (Z3.Expr.get_args e) 
719 
in 
720 
let extracted_vars = FDSet.elements (FDSet.diff (get_expr_vars expr) (FDSet.of_list dont_touch)) in 
721 
let extracted_sorts = List.map Z3.FuncDecl.get_range extracted_vars in 
722 
let extracted_symbols = List.map Z3.FuncDecl.get_name extracted_vars in 
723  
724 
if !debug then ( 
725 
Format.eprintf "Declaring rule: %s with variables @[<v 0>@ [%a@ ]@]@ @." 
726 
(Z3.Expr.to_string expr) 
727 
(Utils.fprintf_list ~sep:",@ " (fun fmt e > Format.fprintf fmt "%s" (Z3.Expr.to_string e))) (List.map horn_var_to_expr vars) 
728 
) 
729 
; 
730 
let expr = Z3.Quantifier.mk_forall_const 
731 
!ctx (* context *) 
732 
(List.map horn_var_to_expr vars) (* TODO provide bounded variables as expr *) 
733 
(* sorts (\* sort list*\) *) 
734 
(* symbols (\* symbol list *\) *) 
735 
expr (* expression *) 
736 
None (* quantifier weight, None means 1 *) 
737 
[] (* pattern list ? *) 
738 
[] (* ? *) 
739 
None (* ? *) 
740 
None (* ? *) 
741 
in 
742 
(* Format.eprintf "OK@.@?"; *) 
743  
744 
(* 
745 
TODO: bizarre la declaration de INIT tout seul semble poser pb. 
746 
*) 
747 
Z3.Fixedpoint.add_rule !fp 
748 
(Z3.Quantifier.expr_of_quantifier expr) 
749 
None 
750  
751 

752 
(********************************************************) 
753 

754 
let machine_reset machines m = 
755 
let locals = local_memory_vars machines m in 
756 

757 
(* print "x_m = x_c" for each local memory *) 
758 
let mid_mem_def = 
759 
List.map (fun v > 
760 
Z3.Boolean.mk_eq !ctx 
761 
(horn_var_to_expr (rename_mid v)) 
762 
(horn_var_to_expr (rename_current v)) 
763 
) locals 
764 
in 
765  
766 
(* print "child_reset ( associated vars _ {c,m} )" for each subnode. 
767 
Special treatment for _arrow: _first = true 
768 
*) 
769  
770 
let reset_instances = 
771 

772 
List.map (fun (id, (n, _)) > 
773 
let name = node_name n in 
774 
if name = "_arrow" then ( 
775 
Z3.Boolean.mk_eq !ctx 
776 
( 
777 
let vdecl = get_fdecl ((concat m.mname.node_id id) ^ "._arrow._first_m") in 
778 
Z3.Expr.mk_const_f !ctx vdecl 
779 
) 
780 
(Z3.Boolean.mk_true !ctx) 
781 

782 
) else ( 
783 
let machine_n = get_machine machines name in 
784 

785 
Z3.Expr.mk_app 
786 
!ctx 
787 
(get_fdecl (name ^ "_reset")) 
788 
(List.map (horn_var_to_expr) 
789 
(idx::uid:: (* Additional vars: counters, uid *) 
790 
(rename_machine_list (concat m.mname.node_id id) (reset_vars machines machine_n)) 
791 
)) 
792 

793 
) 
794 
) m.minstances 
795 

796 

797 
in 
798 

799 
Z3.Boolean.mk_and !ctx (mid_mem_def @ reset_instances) 
800 

801 

802  
803 
(* TODO: empty list means true statement *) 
804 
let decl_machine machines m = 
805 
if m.mname.node_id = Arrow.arrow_id then 
806 
(* We don't do arrow function *) 
807 
() 
808 
else 
809 
begin 
810 
let _ = 
811 
List.map decl_var 
812 
( 
813 
(inout_vars machines m)@ 
814 
(rename_current_list (full_memory_vars machines m)) @ 
815 
(rename_mid_list (full_memory_vars machines m)) @ 
816 
(rename_next_list (full_memory_vars machines m)) @ 
817 
(rename_machine_list m.mname.node_id m.mstep.step_locals) 
818 
) 
819 
in 
820 
if is_stateless m then 
821 
begin 
822 
if !debug then 
823 
Format.eprintf "Declaring a stateless machine: %s@." m.mname.node_id; 
824  
825 
(* Declaring single predicate *) 
826 
let vars = inout_vars machines m in 
827 
let vars_types = List.map (fun v > type_to_sort v.var_type) vars in 
828 
let _ = decl_rel (machine_stateless_name m.mname.node_id) vars_types in 
829 

830 
let horn_body, _ (* don't care for reset here *) = 
831 
instrs_to_expr 
832 
machines 
833 
([] (* No reset info for stateless nodes *) ) 
834 
m 
835 
m.mstep.step_instrs 
836 
in 
837 
let horn_head = 
838 
Z3.Expr.mk_app 
839 
!ctx 
840 
(get_fdecl (machine_stateless_name m.mname.node_id)) 
841 
( List.map (horn_var_to_expr) (idx::uid:: (* Additional vars: counters, uid *) vars)) 
842 
in 
843 
(* this line seems useless *) 
844 
let vars = idx::uid::vars@(rename_machine_list m.mname.node_id m.mstep.step_locals) in 
845 
(* Format.eprintf "useless Vars: %a@." (Utils.fprintf_list ~sep:"@ " Printers.pp_var) vars; *) 
846 
match m.mstep.step_asserts with 
847 
 [] > 
848 
begin 
849 
(* Rule for single predicate : "; Stateless step rule @." *) 
850 
(*let vars = rename_machine_list m.mname.node_id m.mstep.step_locals in*) 
851 
(* TODO clean code *) 
852 
(* Format.eprintf "used Vars: %a@." (Utils.fprintf_list ~sep:"@ " Printers.pp_var) vars; *) 
853 
add_rule vars (Z3.Boolean.mk_implies !ctx horn_body horn_head) 
854 

855 
end 
856 
 assertsl > 
857 
begin 
858 
(*Rule for step "; Stateless step rule with Assertions @.";*) 
859 
let body_with_asserts = 
860 
Z3.Boolean.mk_and !ctx (horn_body :: List.map (horn_val_to_expr m.mname.node_id) assertsl) 
861 
in 
862 
let vars = rename_machine_list m.mname.node_id m.mstep.step_locals in 
863 
add_rule vars (Z3.Boolean.mk_implies !ctx body_with_asserts horn_head) 
864 
end 
865 
end 
866 
else 
867 
begin 
868  
869 
(* Rule for reset *) 
870  
871 
let vars = reset_vars machines m in 
872 
let vars_types = List.map (fun v > type_to_sort v.var_type) vars in 
873 
let _ = decl_rel (machine_reset_name m.mname.node_id) vars_types in 
874 
let horn_reset_body = machine_reset machines m in 
875 
let horn_reset_head = 
876 
Z3.Expr.mk_app 
877 
!ctx 
878 
(get_fdecl (machine_reset_name m.mname.node_id)) 
879 
( List.map (horn_var_to_expr) (idx::uid:: (* Additional vars: counters, uid *) vars)) 
880 
in 
881  
882 

883 
let _ = 
884 
add_rule (idx::uid::vars) (Z3.Boolean.mk_implies !ctx horn_reset_body horn_reset_head) 
885 

886 
in 
887  
888 
(* Rule for step*) 
889 
let vars = step_vars machines m in 
890 
let vars_types = List.map (fun v > type_to_sort v.var_type) vars in 
891 
let _ = decl_rel (machine_step_name m.mname.node_id) vars_types in 
892 
let horn_step_body, _ (* don't care for reset here *) = 
893 
instrs_to_expr 
894 
machines 
895 
[] 
896 
m 
897 
m.mstep.step_instrs 
898 
in 
899 
let horn_step_head = 
900 
Z3.Expr.mk_app 
901 
!ctx 
902 
(get_fdecl (machine_step_name m.mname.node_id)) 
903 
( List.map (horn_var_to_expr) (idx::uid:: (* Additional vars: counters, uid *) vars)) 
904 
in 
905 
match m.mstep.step_asserts with 
906 
 [] > 
907 
begin 
908 
(* Rule for single predicate *) 
909 
let vars = (step_vars_c_m_x machines m) @(rename_machine_list m.mname.node_id m.mstep.step_locals) in 
910 
add_rule (idx::uid::vars) (Z3.Boolean.mk_implies !ctx horn_step_body horn_step_head) 
911 

912 
end 
913 
 assertsl > 
914 
begin 
915 
(* Rule for step Assertions @.; *) 
916 
let body_with_asserts = 
917 
Z3.Boolean.mk_and !ctx 
918 
(horn_step_body :: List.map (horn_val_to_expr m.mname.node_id) assertsl) 
919 
in 
920 
let vars = (step_vars_c_m_x machines m) @(rename_machine_list m.mname.node_id m.mstep.step_locals) in 
921 
add_rule (idx::uid::vars) (Z3.Boolean.mk_implies !ctx body_with_asserts horn_step_head) 
922 

923 
end 
924 

925 
end 
926 
end 
927  
928  
929  
930 
(* Debug functions *) 
931  
932 
let rec extract_expr_fds e = 
933 
(* Format.eprintf "@[<v 2>Extracting fundecls from expr %s@ " *) 
934 
(* (Z3.Expr.to_string e); *) 
935 

936 
(* Removing quantifier is there are some *) 
937 
let e = (* I didn't found a nicer way to do it than with an exception. My 
938 
bad *) 
939 
try 
940 
let eq = Z3.Quantifier.quantifier_of_expr e in 
941 
let e2 = Z3.Quantifier.get_body eq in 
942 
(* Format.eprintf "Extracted quantifier body@ "; *) 
943 
e2 
944 

945 
with _ > Format.eprintf "No quantifier info@ "; e 
946 
in 
947 
let _ = 
948 
try 
949 
( 
950 
let fd = Z3.Expr.get_func_decl e in 
951 
let fd_symbol = Z3.FuncDecl.get_name fd in 
952 
let fd_name = Z3.Symbol.to_string fd_symbol in 
953 
if not (Hashtbl.mem decls fd_name) then 
954 
register_fdecl fd_name fd; 
955 
(* Format.eprintf "fdecls (%s): %s@ " *) 
956 
(* fd_name *) 
957 
(* (Z3.FuncDecl.to_string fd); *) 
958 
try 
959 
( 
960 
let args = Z3.Expr.get_args e in 
961 
(* Format.eprintf "@[<v>@ "; *) 
962 
(* List.iter extract_expr_fds args; *) 
963 
(* Format.eprintf "@]@ "; *) 
964 
() 
965 
) 
966 
with _ > 
967 
Format.eprintf "Impossible to extract fundecl args for expression %s@ " 
968 
(Z3.Expr.to_string e) 
969 
) 
970 
with _ > 
971 
Format.eprintf "Impossible to extract anything from expression %s@ " 
972 
(Z3.Expr.to_string e) 
973 
in 
974 
(* Format.eprintf "@]@ " *) 
975 
() 
976  
977 
(* Local Variables: *) 
978 
(* compilecommand:"make C ../.." *) 
979 
(* End: *) 