lustrec / src / machine_code.ml @ 7a19992d
History  View  Annotate  Download (16.5 KB)
1  

2 
(*  
3 
* SchedMCore  A MultiCore Scheduling Framework 
4 
* Copyright (C) 20092013, ONERA, Toulouse, FRANCE  LIFL, Lille, FRANCE 
5 
* Copyright (C) 20122013, INPT, Toulouse, FRANCE 
6 
* 
7 
* This file is part of Prelude 
8 
* 
9 
* Prelude is free software; you can redistribute it and/or 
10 
* modify it under the terms of the GNU Lesser General Public License 
11 
* as published by the Free Software Foundation ; either version 2 of 
12 
* the License, or (at your option) any later version. 
13 
* 
14 
* Prelude is distributed in the hope that it will be useful, but 
15 
* WITHOUT ANY WARRANTY ; without even the implied warranty of 
16 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 
17 
* Lesser General Public License for more details. 
18 
* 
19 
* You should have received a copy of the GNU Lesser General Public 
20 
* License along with this program ; if not, write to the Free Software 
21 
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 021111307 
22 
* USA 
23 
* *) 
24  
25 
(* This module is used for the lustre to C compiler *) 
26  
27 
open LustreSpec 
28 
open Corelang 
29 
open Clocks 
30 
open Causality 
31  
32 
exception NormalizationError 
33  
34 
module OrdVarDecl:Map.OrderedType with type t=var_decl = 
35 
struct type t = var_decl;; let compare = compare end 
36  
37 
module ISet = Set.Make(OrdVarDecl) 
38  
39 
type value_t = 
40 
 Cst of constant 
41 
 LocalVar of var_decl 
42 
 StateVar of var_decl 
43 
 Fun of ident * value_t list 
44 
 Array of value_t list 
45 
 Access of value_t * value_t 
46 
 Power of value_t * value_t 
47  
48 
type instr_t = 
49 
 MLocalAssign of var_decl * value_t 
50 
 MStateAssign of var_decl * value_t 
51 
 MReset of ident 
52 
 MStep of var_decl list * ident * value_t list 
53 
 MBranch of value_t * (label * instr_t list) list 
54 

55 
let rec pp_val fmt v = 
56 
match v with 
57 
 Cst c > Printers.pp_const fmt c 
58 
 LocalVar v > Format.pp_print_string fmt v.var_id 
59 
 StateVar v > Format.pp_print_string fmt v.var_id 
60 
 Array vl > Format.fprintf fmt "[%a]" (Utils.fprintf_list ~sep:", " pp_val) vl 
61 
 Access (t, i) > Format.fprintf fmt "%a[%a]" pp_val t pp_val i 
62 
 Power (v, n) > Format.fprintf fmt "(%a^%a)" pp_val v pp_val n 
63 
 Fun (n, vl) > Format.fprintf fmt "%s (%a)" n (Utils.fprintf_list ~sep:", " pp_val) vl 
64  
65 
let rec pp_instr fmt i = 
66 
match i with 
67 
 MLocalAssign (i,v) > Format.fprintf fmt "%s<l %a" i.var_id pp_val v 
68 
 MStateAssign (i,v) > Format.fprintf fmt "%s<s %a" i.var_id pp_val v 
69 
 MReset i > Format.fprintf fmt "reset %s" i 
70 
 MStep (il, i, vl) > 
71 
Format.fprintf fmt "%a = %s (%a)" 
72 
(Utils.fprintf_list ~sep:", " (fun fmt v > Format.pp_print_string fmt v.var_id)) il 
73 
i 
74 
(Utils.fprintf_list ~sep:", " pp_val) vl 
75 
 MBranch (g,hl) > 
76 
Format.fprintf fmt "@[<v 2>case(%a) {@,%a@,}@]" 
77 
pp_val g 
78 
(Utils.fprintf_list ~sep:"@," pp_branch) hl 
79  
80 
and pp_branch fmt (t, h) = 
81 
Format.fprintf fmt "@[<v 2>%s:@,%a@]" t (Utils.fprintf_list ~sep:"@," pp_instr) h 
82  
83 
type step_t = { 
84 
step_checks: (Location.t * value_t) list; 
85 
step_inputs: var_decl list; 
86 
step_outputs: var_decl list; 
87 
step_locals: var_decl list; 
88 
step_instrs: instr_t list; 
89 
} 
90  
91 
type static_call = top_decl * (Dimension.dim_expr list) 
92  
93 
type machine_t = { 
94 
mname: node_desc; 
95 
mmemory: var_decl list; 
96 
mcalls: (ident * static_call) list; (* map from stateful/stateless instance to node, no internals *) 
97 
minstances: (ident * static_call) list; (* submap of mcalls, from stateful instance to node *) 
98 
minit: instr_t list; 
99 
mstatic: var_decl list; (* static inputs only *) 
100 
mstep: step_t; 
101 
mspec: node_annot option; 
102 
mannot: expr_annot option; 
103 
} 
104  
105 
let pp_step fmt s = 
106 
Format.fprintf fmt "@[<v>inputs : %a@ outputs: %a@ locals : %a@ checks : %a@ instrs : @[%a@]@]@ " 
107 
(Utils.fprintf_list ~sep:", " Printers.pp_var) s.step_inputs 
108 
(Utils.fprintf_list ~sep:", " Printers.pp_var) s.step_outputs 
109 
(Utils.fprintf_list ~sep:", " Printers.pp_var) s.step_locals 
110 
(Utils.fprintf_list ~sep:", " (fun fmt (_, c) > pp_val fmt c)) s.step_checks 
111 
(Utils.fprintf_list ~sep:"@ " pp_instr) s.step_instrs 
112  
113 
let pp_static_call fmt (node, args) = 
114 
Format.fprintf fmt "%s<%a>" 
115 
(node_name node) 
116 
(Utils.fprintf_list ~sep:", " Dimension.pp_dimension) args 
117  
118 
let pp_machine fmt m = 
119 
Format.fprintf fmt 
120 
"@[<v 2>machine %s@ mem : %a@ instances: %a@ init : %a@ step :@ @[<v 2>%a@]@ @]@ " 
121 
m.mname.node_id 
122 
(Utils.fprintf_list ~sep:", " Printers.pp_var) m.mmemory 
123 
(Utils.fprintf_list ~sep:", " (fun fmt (o1, o2) > Format.fprintf fmt "(%s, %a)" o1 pp_static_call o2)) m.minstances 
124 
(Utils.fprintf_list ~sep:"@ " pp_instr) m.minit 
125 
pp_step m.mstep 
126  
127 
let is_output m id = 
128 
List.exists (fun o > o.var_id = id.var_id) m.mstep.step_outputs 
129  
130 
let conditional c t e = 
131 
MBranch(c, [ (tag_true, t); (tag_false, e) ]) 
132  
133 
let dummy_var_decl name typ = 
134 
{ 
135 
var_id = name; 
136 
var_dec_type = dummy_type_dec; 
137 
var_dec_clock = dummy_clock_dec; 
138 
var_dec_const = false; 
139 
var_type = typ; 
140 
var_clock = Clocks.new_ck (Clocks.Cvar Clocks.CSet_all) true; 
141 
var_loc = Location.dummy_loc 
142 
} 
143  
144 
let arrow_id = "_arrow" 
145  
146 
let arrow_typ = Types.new_ty Types.Tunivar 
147  
148 
let arrow_desc = 
149 
{ 
150 
node_id = arrow_id; 
151 
node_type = Type_predef.type_bin_poly_op; 
152 
node_clock = Clock_predef.ck_bin_univ; 
153 
node_inputs= [dummy_var_decl "_in1" arrow_typ; dummy_var_decl "_in2" arrow_typ]; 
154 
node_outputs= [dummy_var_decl "_out" arrow_typ]; 
155 
node_locals= []; 
156 
node_gencalls = []; 
157 
node_checks = []; 
158 
node_asserts = []; 
159 
node_eqs= []; 
160 
node_spec = None; 
161 
node_annot = None; } 
162  
163 
let arrow_top_decl = 
164 
{ 
165 
top_decl_desc = Node arrow_desc; 
166 
top_decl_loc = Location.dummy_loc 
167 
} 
168  
169 
let arrow_machine = 
170 
let state = "_first" in 
171 
let var_state = dummy_var_decl state (Types.new_ty Types.Tbool) in 
172 
let var_input1 = List.nth arrow_desc.node_inputs 0 in 
173 
let var_input2 = List.nth arrow_desc.node_inputs 1 in 
174 
let var_output = List.nth arrow_desc.node_outputs 0 in 
175 
{ 
176 
mname = arrow_desc; 
177 
mmemory = [var_state]; 
178 
mcalls = []; 
179 
minstances = []; 
180 
minit = [MStateAssign(var_state, Cst (const_of_bool true))]; 
181 
mstatic = []; 
182 
mstep = { 
183 
step_inputs = arrow_desc.node_inputs; 
184 
step_outputs = arrow_desc.node_outputs; 
185 
step_locals = []; 
186 
step_checks = []; 
187 
step_instrs = [conditional (StateVar var_state) 
188 
[MStateAssign(var_state, Cst (const_of_bool false)); 
189 
MLocalAssign(var_output, LocalVar var_input1)] 
190 
[MLocalAssign(var_output, LocalVar var_input2)] ] 
191 
}; 
192 
mspec = None; 
193 
mannot = None; 
194 
} 
195  
196 
let is_stateless_node node = 
197 
(node_name node <> arrow_id) && 
198 
match node.top_decl_desc with 
199 
 Node id > false (* TODO: add a check after the machines are produced. Start from the main node and do a DFS to compute the stateless/statefull property of nodes. Stateless nodes should not be reset *) 
200 
 ImportedNode id > id.nodei_stateless 
201 
 ImportedFun _ > true 
202 
 _ > assert false 
203  
204 
let new_instance = 
205 
let cpt = ref (1) in 
206 
fun caller callee tag > 
207 
begin 
208 
let o = 
209 
if is_stateless_node callee then 
210 
node_name callee 
211 
else 
212 
Printf.sprintf "ni_%d" (incr cpt; !cpt) in 
213 
let o = 
214 
if !Options.ansi && is_generic_node callee 
215 
then Printf.sprintf "%s_inst_%d" o (Utils.position (fun e > e.expr_tag = tag) caller.node_gencalls) 
216 
else o in 
217 
o 
218 
end 
219  
220 
let const_of_carrier cr = 
221 
match (carrier_repr cr).carrier_desc with 
222 
 Carry_const id > id 
223 
 Carry_name > assert false 
224 
 Carry_var > assert false 
225 
 Carry_link _ > assert false (* TODO check this Xavier *) 
226  
227 
(* translate_<foo> : node > context > <foo> > machine code/expression *) 
228 
(* the context contains m : state aka memory variables *) 
229 
(* si : initialization instructions *) 
230 
(* j : node aka machine instances *) 
231 
(* d : local variables *) 
232 
(* s : step instructions *) 
233 
let translate_ident node (m, si, j, d, s) id = 
234 
try (* id is a node var *) 
235 
let var_id = node_var id node in 
236 
if ISet.exists (fun v > v.var_id = id) m 
237 
then StateVar var_id 
238 
else LocalVar var_id 
239 
with Not_found > (* id is a constant *) 
240 
LocalVar (Corelang.var_decl_of_const (Hashtbl.find Corelang.consts_table id)) 
241  
242 
let rec control_on_clock node ((m, si, j, d, s) as args) ck inst = 
243 
match ck.cdesc with 
244 
 Con (ck1, cr, l) > 
245 
let id = const_of_carrier cr in 
246 
control_on_clock node args ck1 (MBranch (translate_ident node args id, 
247 
[l, [inst]] )) 
248 
 _ > inst 
249  
250 
let rec join_branches hl1 hl2 = 
251 
match hl1, hl2 with 
252 
 [] , _ > hl2 
253 
 _ , [] > hl1 
254 
 (t1, h1)::q1, (t2, h2)::q2 > 
255 
if t1 < t2 then (t1, h1) :: join_branches q1 hl2 else 
256 
if t1 > t2 then (t2, h2) :: join_branches hl1 q2 
257 
else (t1, List.fold_right join_guards h1 h2) :: join_branches q1 q2 
258  
259 
and join_guards inst1 insts2 = 
260 
match inst1, insts2 with 
261 
 _ , [] > 
262 
[inst1] 
263 
 MBranch (x1, hl1), MBranch (x2, hl2) :: q when x1 = x2 > 
264 
MBranch (x1, join_branches (sort_handlers hl1) (sort_handlers hl2)) 
265 
:: q 
266 
 _ > inst1 :: insts2 
267  
268 
let join_guards_list insts = 
269 
List.fold_right join_guards insts [] 
270  
271 
let find_eq x eqs = 
272 
let rec aux accu eqs = 
273 
match eqs with 
274 
 [] > 
275 
begin 
276 
Format.eprintf "Looking for variable %a in the following equations@.%a@." 
277 
Format.pp_print_string x 
278 
Printers.pp_node_eqs eqs; 
279 
assert false 
280 
end 
281 
 hd::tl > 
282 
if List.mem x hd.eq_lhs then hd, accu@tl else aux (hd::accu) tl 
283 
in 
284 
aux [] eqs 
285  
286 
let rec translate_expr node ((m, si, j, d, s) as args) expr = 
287 
match expr.expr_desc with 
288 
 Expr_const v > Cst v 
289 
 Expr_ident x > translate_ident node args x 
290 
 Expr_array el > Array (List.map (translate_expr node args) el) 
291 
 Expr_access (t, i) > Access (translate_expr node args t, translate_expr node args (expr_of_dimension i)) 
292 
 Expr_power (e, n) > Power (translate_expr node args e, translate_expr node args (expr_of_dimension n)) 
293 
 Expr_tuple _ 
294 
 Expr_arrow _ 
295 
 Expr_fby _ 
296 
 Expr_pre _ > (Printers.pp_expr Format.err_formatter expr; Format.pp_print_flush Format.err_formatter (); raise NormalizationError) 
297 
 Expr_when (e1, _, _) > translate_expr node args e1 
298 
 Expr_merge (x, _) > raise NormalizationError 
299 
 Expr_appl (id, e, _) when Basic_library.is_internal_fun id > 
300 
let nd = node_from_name id in 
301 
(match e.expr_desc with 
302 
 Expr_tuple el > Fun (node_name nd, List.map (translate_expr node args) el) 
303 
 _ > Fun (node_name nd, [translate_expr node args e])) 
304 
 Expr_ite (g,t,e) > Fun ("ite", [translate_expr node args g; translate_expr node args t; translate_expr node args e]) 
305  
306 
 _ > raise NormalizationError 
307  
308 
let translate_guard node args expr = 
309 
match expr.expr_desc with 
310 
 Expr_ident x > translate_ident node args x 
311 
 _ > assert false 
312  
313 
let rec translate_act node ((m, si, j, d, s) as args) (y, expr) = 
314 
match expr.expr_desc with 
315 
 Expr_ite (c, t, e) > let g = translate_guard node args c in 
316 
conditional g [translate_act node args (y, t)] 
317 
[translate_act node args (y, e)] 
318 
 Expr_merge (x, hl) > MBranch (translate_ident node args x, List.map (fun (t, h) > t, [translate_act node args (y, h)]) hl) 
319 
 _ > MLocalAssign (y, translate_expr node args expr) 
320  
321 
let reset_instance node args i r c = 
322 
match r with 
323 
 None > [] 
324 
 Some (x, l) > [control_on_clock node args c (MBranch (translate_ident node args x, [l, [MReset i]]))] 
325  
326 
let translate_eq node ((m, si, j, d, s) as args) eq = 
327 
(*Format.eprintf "translate_eq %a@." Printers.pp_node_eq eq;*) 
328 
match eq.eq_lhs, eq.eq_rhs.expr_desc with 
329 
 [x], Expr_arrow (e1, e2) > 
330 
let var_x = node_var x node in 
331 
let o = new_instance node arrow_top_decl eq.eq_rhs.expr_tag in 
332 
let c1 = translate_expr node args e1 in 
333 
let c2 = translate_expr node args e2 in 
334 
(m, 
335 
MReset o :: si, 
336 
Utils.IMap.add o (arrow_top_decl, []) j, 
337 
d, 
338 
(control_on_clock node args eq.eq_rhs.expr_clock (MStep ([var_x], o, [c1;c2]))) :: s) 
339 
 [x], Expr_pre e1 when ISet.mem (node_var x node) d > 
340 
let var_x = node_var x node in 
341 
(ISet.add var_x m, 
342 
si, 
343 
j, 
344 
d, 
345 
control_on_clock node args eq.eq_rhs.expr_clock (MStateAssign (var_x, translate_expr node args e1)) :: s) 
346 
 [x], Expr_fby (e1, e2) when ISet.mem (node_var x node) d > 
347 
let var_x = node_var x node in 
348 
(ISet.add var_x m, 
349 
MStateAssign (var_x, translate_expr node args e1) :: si, 
350 
j, 
351 
d, 
352 
control_on_clock node args eq.eq_rhs.expr_clock (MStateAssign (var_x, translate_expr node args e2)) :: s) 
353 
 p , Expr_appl (f, arg, r) > 
354 
let var_p = List.map (fun v > node_var v node) p in 
355 
let el = 
356 
match arg.expr_desc with 
357 
 Expr_tuple el > el 
358 
 _ > [arg] in 
359 
let vl = List.map (translate_expr node args) el in 
360 
let node_f = node_from_name f in 
361 
let call_f = 
362 
node_f, 
363 
NodeDep.filter_static_inputs (node_inputs node_f) el in 
364 
let o = new_instance node node_f eq.eq_rhs.expr_tag in 
365 
(m, 
366 
(if is_stateless_node node_f then si else MReset o :: si), 
367 
(if Basic_library.is_internal_fun f then j else Utils.IMap.add o call_f j), 
368 
d, 
369 
reset_instance node args o r eq.eq_rhs.expr_clock @ 
370 
(control_on_clock node args eq.eq_rhs.expr_clock (MStep (var_p, o, vl))) :: s) 
371 
 [x], Expr_ite (c, t, e) > 
372 
let var_x = node_var x node in 
373 
(m, 
374 
si, 
375 
j, 
376 
d, 
377 
(control_on_clock node args eq.eq_rhs.expr_clock 
378 
(MLocalAssign (var_x, translate_expr node args eq.eq_rhs))::s) 
379 
) 
380 
 [x], _ > 
381 
let var_x = node_var x node in 
382 
(m, si, j, d, 
383 
control_on_clock node args eq.eq_rhs.expr_clock (translate_act node args (var_x, eq.eq_rhs)) :: s) 
384 
 _ > 
385 
begin 
386 
Format.eprintf "unsupported equation: %a@?" Printers.pp_node_eq eq; 
387 
assert false 
388 
end 
389  
390 
let translate_eqs node args eqs = 
391 
List.fold_right (fun eq args > translate_eq node args eq) eqs args;; 
392  
393 
let translate_decl nd = 
394 
(*Log.report ~level:1 (fun fmt > Printers.pp_node fmt nd);*) 
395 
let nd, sch = Scheduling.schedule_node nd in 
396 
let split_eqs = Splitting.tuple_split_eq_list nd.node_eqs in 
397 
let eqs_rev, remainder = 
398 
List.fold_left 
399 
(fun (accu, node_eqs_remainder) v > 
400 
if List.exists (fun eq > List.mem v eq.eq_lhs) accu 
401 
then 
402 
(accu, node_eqs_remainder) 
403 
else 
404 
if List.exists (fun vdecl > vdecl.var_id = v) nd.node_locals 
405 
 List.exists (fun vdecl > vdecl.var_id = v) nd.node_outputs 
406 
then 
407 
let eq_v, remainder = find_eq v node_eqs_remainder in 
408 
eq_v::accu, remainder 
409 
(* else it is a constant value, checked during typing phase *) 
410 
else 
411 
accu, node_eqs_remainder 
412 
) 
413 
([], split_eqs) 
414 
sch 
415 
in 
416 
if List.length remainder > 0 then ( 
417 
Format.eprintf "Equations not used are@.%a@.Full equation set is:@.%a@.@?" 
418 
Printers.pp_node_eqs remainder 
419 
Printers.pp_node_eqs nd.node_eqs; 
420 
assert false ) 
421 
; 
422  
423 
let init_args = ISet.empty, [], Utils.IMap.empty, List.fold_right (fun l > ISet.add l) nd.node_locals ISet.empty, [] in 
424 
let m, init, j, locals, s = translate_eqs nd init_args (List.rev eqs_rev) in 
425 
let mmap = Utils.IMap.fold (fun i n res > (i, n)::res) j [] in 
426 
{ 
427 
mname = nd; 
428 
mmemory = ISet.elements m; 
429 
mcalls = mmap; 
430 
minstances = List.filter (fun (_, (n,_)) > not (is_stateless_node n)) mmap; 
431 
minit = init; 
432 
mstatic = List.filter (fun v > v.var_dec_const) nd.node_inputs; 
433 
mstep = { 
434 
step_inputs = nd.node_inputs; 
435 
step_outputs = nd.node_outputs; 
436 
step_locals = ISet.elements (ISet.diff locals m); 
437 
step_checks = List.map (fun d > d.Dimension.dim_loc, translate_expr nd init_args (expr_of_dimension d)) nd.node_checks; 
438 
step_instrs = (* join_guards_list *) s; 
439 
}; 
440 
mspec = nd.node_spec; 
441 
mannot = nd.node_annot; 
442 
} 
443  
444  
445 
let translate_prog decls = 
446 
let nodes = get_nodes decls in 
447 
(* What to do with Imported/Sensor/Actuators ? *) 
448 
arrow_machine :: List.map translate_decl nodes 
449  
450 
let get_machine_opt name machines = 
451 
List.fold_left 
452 
(fun res m > 
453 
match res with 
454 
 Some _ > res 
455 
 None > if m.mname.node_id = name then Some m else None) 
456 
None machines 
457 

458  
459 
(* Local Variables: *) 
460 
(* compilecommand:"make C .." *) 
461 
(* End: *) 