## lustrec / optim / oversampling / out / typed / f_step_assert_3_Coq.v @ 6a93d814

History | View | Annotate | Download (2.12 KB)

1 |
(* ---------------------------------------------------------- *) |
---|---|

2 |
(* --- Assertion (file oversampling0_4.c, line 165) --- *) |

3 |
(* ---------------------------------------------------------- *) |

4 |
Require Import ZArith. |

5 |
Require Import Reals. |

6 |
Require Import BuiltIn. |

7 |
Require Import bool.Bool. |

8 |
Require Import int.Int. |

9 |
Require Import int.Abs. |

10 |
Require Import int.ComputerDivision. |

11 |
Require Import real.Real. |

12 |
Require Import real.RealInfix. |

13 |
Require Import real.FromInt. |

14 |
Require Import map.Map. |

15 |
Require Import Qedlib. |

16 |
Require Import Qed. |

17 | |

18 |
Require Import S_f_mem_pack. |

19 |
Require Import Memory. |

20 |
Require Import Cint. |

21 |
Require Import Compound. |

22 |
Require Import Axiomatic. |

23 | |

24 |
Goal |

25 |
forall (i : Z), |

26 |
forall (t : array Z), |

27 |
forall (t_2 t_1 : farray addr Z), |

28 |
forall (t_3 : farray addr addr), |

29 |
forall (a_2 a_1 a : addr), |

30 |
forall (f_1 f : S_f_mem_pack), |

31 |
let a_3 := t_3.[ (shiftfield_F_f_mem_ni_2 a_2) ] in |

32 |
let x := (1%Z + i%Z)%Z in |

33 |
let m := t_2.[ a <- x ] in |

34 |
let a_4 := (shiftfield_F__arrow_reg__first |

35 |
((shiftfield_F__arrow_mem__reg a_3))) in |

36 |
let x_1 := (m.[ a_4 ])%Z in |

37 |
(a <> a_1) -> |

38 |
((IsS_f_mem_pack f)) -> |

39 |
((IsS_f_mem_pack f_1)) -> |

40 |
((framed t_3)) -> |

41 |
((linked t)) -> |

42 |
((is_sint32 i%Z)) -> |

43 |
(a <> a_3) -> |

44 |
(a_1 <> a_3) -> |

45 |
((valid_rw t a 1%Z)) -> |

46 |
((valid_rw t a_1 1%Z)) -> |

47 |
((P_valid_f t t_3 a_2)) -> |

48 |
((((region ((base a))%Z)) <= 0)%Z) -> |

49 |
((((region ((base a_1))%Z)) <= 0)%Z) -> |

50 |
((((region ((base a_2))%Z)) <= 0)%Z) -> |

51 |
((separated a_2 2%Z a 1%Z)) -> |

52 |
((separated a_2 2%Z a_1 1%Z)) -> |

53 |
((P_f_pack1 t_3 t_1 f a_2)) -> |

54 |
((P_f_pack2 t_3 t_2 f_1 a_2)) -> |

55 |
((separated a_2 2%Z a_3 1%Z)) -> |

56 |
((is_uint32 x_1)) -> |

57 |
(itep ((0 = x_1)%Z) (t_1 = m) (t_1 = (m.[ a_4 <- (0)%Z ]))) -> |

58 |
(forall (f_2 : S_f_mem_pack), ((IsS_f_mem_pack f_2)) -> |

59 |
(forall (f_3 : S_f_mem_pack), (P_f_pack0) -> ((IsS_f_mem_pack f_3)) -> |

60 |
((P_f_pack2 t_3 t_2 f_2 a_2)) -> (P_trans_fA))) -> |

61 |
(forall (f_2 : S_f_mem_pack), ((IsS_f_mem_pack f_2)) -> |

62 |
(forall (f_3 : S_f_mem_pack), (P_f_pack0) -> ((IsS_f_mem_pack f_3)) -> |

63 |
((P_f_pack2 t_3 t_2 f_2 a_2)) -> ((P_trans_fB i%Z x)))) -> |

64 |
((P_trans_fC i%Z f_1 f (t_1.[ a ])%Z x_1)). |

65 | |

66 |
Proof. |

67 |
auto with zarith. |

68 |
Qed. |

69 |