lustrec / src / parser_lustre.mly @ 68601cf5
History  View  Annotate  Download (18.1 KB)
1 
/********************************************************************/ 

2 
/* */ 
3 
/* The LustreC compiler toolset / The LustreC Development Team */ 
4 
/* Copyright 2012   ONERA  CNRS  INPT */ 
5 
/* */ 
6 
/* LustreC is free software, distributed WITHOUT ANY WARRANTY */ 
7 
/* under the terms of the GNU Lesser General Public License */ 
8 
/* version 2.1. */ 
9 
/* */ 
10 
/********************************************************************/ 
11  
12 
%{ 
13 
open Utils 
14 
open LustreSpec 
15 
open Corelang 
16 
open Dimension 
17 
open Parse 
18  
19 
let get_loc () = Location.symbol_rloc () 
20  
21 
let mkident x = x, get_loc () 
22 
let mktyp x = mktyp (get_loc ()) x 
23 
let mkclock x = mkclock (get_loc ()) x 
24 
let mkvar_decl x loc = mkvar_decl loc ~orig:true x 
25 
let mkexpr x = mkexpr (get_loc ()) x 
26 
let mkeexpr x = mkeexpr (get_loc ()) x 
27 
let mkeq x = mkeq (get_loc ()) x 
28 
let mkassert x = mkassert (get_loc ()) x 
29 
let mktop_decl itf x = mktop_decl (get_loc ()) (Location.get_module ()) itf x 
30 
let mkpredef_call x = mkpredef_call (get_loc ()) x 
31 
(*let mkpredef_unary_call x = mkpredef_unary_call (get_loc ()) x*) 
32  
33 
let mkdim_int i = mkdim_int (get_loc ()) i 
34 
let mkdim_bool b = mkdim_bool (get_loc ()) b 
35 
let mkdim_ident id = mkdim_ident (get_loc ()) id 
36 
let mkdim_appl f args = mkdim_appl (get_loc ()) f args 
37 
let mkdim_ite i t e = mkdim_ite (get_loc ()) i t e 
38  
39 
let mkannots annots = { annots = annots; annot_loc = get_loc () } 
40  
41 
let node_stack : ident list ref = ref [] 
42 
let debug_calls () = Format.eprintf "call stack: %a@.@?" (Utils.fprintf_list ~sep:", " Format.pp_print_string) !node_stack 
43 
let push_node nd = node_stack:= nd :: !node_stack 
44 
let pop_node () = try node_stack := List.tl !node_stack with _ > assert false 
45 
let get_current_node () = try List.hd !node_stack with _ > assert false 
46  
47 
let rec fby expr n init = 
48 
if n<=1 then 
49 
mkexpr (Expr_arrow (init, mkexpr (Expr_pre expr))) 
50 
else 
51 
mkexpr (Expr_arrow (init, mkexpr (Expr_pre (fby expr (n1) init)))) 
52 

53 
%} 
54  
55 
%token <int> INT 
56 
%token <Num.num * int * string> REAL 
57  
58 
%token <string> STRING 
59 
%token AUTOMATON STATE UNTIL UNLESS RESTART RESUME LAST 
60 
%token STATELESS ASSERT OPEN QUOTE FUNCTION 
61 
%token <string> IDENT 
62 
%token <string> UIDENT 
63 
%token TRUE FALSE 
64 
%token <LustreSpec.expr_annot> ANNOT 
65 
%token <LustreSpec.node_annot> NODESPEC 
66 
%token LBRACKET RBRACKET LCUR RCUR LPAR RPAR SCOL COL COMMA COLCOL 
67 
%token AMPERAMPER BARBAR NOT POWER 
68 
%token IF THEN ELSE 
69 
%token UCLOCK DCLOCK PHCLOCK TAIL 
70 
%token MERGE FBY WHEN WHENNOT EVERY 
71 
%token NODE LET TEL RETURNS VAR IMPORTED SENSOR ACTUATOR WCET TYPE CONST 
72 
%token STRUCT ENUM 
73 
%token TINT TREAL TBOOL TCLOCK 
74 
%token RATE DUE 
75 
%token EQ LT GT LTE GTE NEQ 
76 
%token AND OR XOR IMPL 
77 
%token MULT DIV MOD 
78 
%token MINUS PLUS UMINUS 
79 
%token PRE ARROW 
80 
%token REQUIRES ENSURES OBSERVER 
81 
%token INVARIANT BEHAVIOR ASSUMES CCODE MATLAB 
82 
%token EXISTS FORALL 
83 
%token PROTOTYPE LIB 
84 
%token EOF 
85  
86 
%nonassoc prec_exists prec_forall 
87 
%nonassoc COMMA 
88 
%nonassoc EVERY 
89 
%left MERGE IF 
90 
%nonassoc ELSE 
91 
%right ARROW FBY 
92 
%left WHEN WHENNOT UCLOCK DCLOCK PHCLOCK 
93 
%right COLCOL 
94 
%right IMPL 
95 
%left OR XOR BARBAR 
96 
%left AND AMPERAMPER 
97 
%left NOT 
98 
%nonassoc INT 
99 
%nonassoc EQ LT GT LTE GTE NEQ 
100 
%left MINUS PLUS 
101 
%left MULT DIV MOD 
102 
%left UMINUS 
103 
%left POWER 
104 
%left PRE LAST 
105 
%nonassoc RBRACKET 
106 
%nonassoc LBRACKET 
107  
108 
%start prog 
109 
%type <LustreSpec.top_decl list> prog 
110  
111 
%start header 
112 
%type <LustreSpec.top_decl list> header 
113  
114 
%start lustre_annot 
115 
%type <LustreSpec.expr_annot> lustre_annot 
116  
117 
%start lustre_spec 
118 
%type <LustreSpec.node_annot> lustre_spec 
119  
120 
%start signed_const 
121 
%type <LustreSpec.constant> signed_const 
122  
123 
%% 
124  
125 
module_ident: 
126 
UIDENT { $1 } 
127 
 IDENT { $1 } 
128  
129 
tag_ident: 
130 
UIDENT { $1 } 
131 
 TRUE { tag_true } 
132 
 FALSE { tag_false } 
133  
134 
node_ident: 
135 
UIDENT { $1 } 
136 
 IDENT { $1 } 
137  
138 
node_ident_decl: 
139 
node_ident { push_node $1; $1 } 
140  
141 
vdecl_ident: 
142 
UIDENT { mkident $1 } 
143 
 IDENT { mkident $1 } 
144  
145 
const_ident: 
146 
UIDENT { $1 } 
147 
 IDENT { $1 } 
148  
149 
type_ident: 
150 
IDENT { $1 } 
151  
152 
prog: 
153 
open_list typ_def_prog top_decl_list EOF { $1 @ $2 @ (List.rev $3) } 
154  
155 
typ_def_prog: 
156 
typ_def_list { $1 false } 
157  
158 
header: 
159 
open_list typ_def_header top_decl_header_list EOF { $1 @ $2 @ (List.rev $3) } 
160  
161 
typ_def_header: 
162 
typ_def_list { $1 true } 
163  
164 
open_list: 
165 
{ [] } 
166 
 open_lusi open_list { $1 :: $2 } 
167  
168 
open_lusi: 
169 
 OPEN QUOTE module_ident QUOTE { mktop_decl false (Open (true, $3))} 
170 
 OPEN LT module_ident GT { mktop_decl false (Open (false, $3)) } 
171  
172 
top_decl_list: 
173 
{[]} 
174 
 top_decl_list top_decl {$2@$1} 
175  
176  
177 
top_decl_header_list: 
178 
{ [] } 
179 
 top_decl_header_list top_decl_header { $2@$1 } 
180  
181 
state_annot: 
182 
FUNCTION { true } 
183 
 NODE { false } 
184  
185 
top_decl_header: 
186 
 CONST cdecl_list { List.rev ($2 true) } 
187 
 nodespec_list state_annot node_ident LPAR vdecl_list SCOL_opt RPAR RETURNS LPAR vdecl_list SCOL_opt RPAR prototype_opt in_lib_list SCOL 
188 
{let nd = mktop_decl true (ImportedNode 
189 
{nodei_id = $3; 
190 
nodei_type = Types.new_var (); 
191 
nodei_clock = Clocks.new_var true; 
192 
nodei_inputs = List.rev $5; 
193 
nodei_outputs = List.rev $10; 
194 
nodei_stateless = $2; 
195 
nodei_spec = $1; 
196 
nodei_prototype = $13; 
197 
nodei_in_lib = $14;}) 
198 
in 
199 
(*add_imported_node $3 nd;*) [nd] } 
200  
201 
prototype_opt: 
202 
{ None } 
203 
 PROTOTYPE node_ident { Some $2} 
204  
205 
in_lib_list: 
206 
{ [] } 
207 
 LIB module_ident in_lib_list { $2::$3 } 
208  
209 
top_decl: 
210 
 CONST cdecl_list { List.rev ($2 false) } 
211 
 nodespec_list state_annot node_ident_decl LPAR vdecl_list SCOL_opt RPAR RETURNS LPAR vdecl_list SCOL_opt RPAR SCOL_opt locals LET stmt_list TEL 
212 
{ 
213 
let stmts, asserts, annots = $16 in 
214 
(* Declaring eqs annots *) 
215 
List.iter (fun ann > 
216 
List.iter (fun (key, _) > 
217 
Annotations.add_node_ann $3 key 
218 
) ann.annots 
219 
) annots; 
220 
(* Building the node *) 
221 
let nd = mktop_decl false (Node 
222 
{node_id = $3; 
223 
node_type = Types.new_var (); 
224 
node_clock = Clocks.new_var true; 
225 
node_inputs = List.rev $5; 
226 
node_outputs = List.rev $10; 
227 
node_locals = List.rev $14; 
228 
node_gencalls = []; 
229 
node_checks = []; 
230 
node_asserts = asserts; 
231 
node_stmts = stmts; 
232 
node_dec_stateless = $2; 
233 
node_stateless = None; 
234 
node_spec = $1; 
235 
node_annot = annots}) 
236 
in 
237 
pop_node (); 
238 
(*add_node $3 nd;*) [nd] } 
239  
240 
nodespec_list: 
241 
{ None } 
242 
 NODESPEC nodespec_list { 
243 
(function 
244 
 None > (fun s1 > Some s1) 
245 
 Some s2 > (fun s1 > Some (merge_node_annot s1 s2))) $2 $1 } 
246  
247 
typ_def_list: 
248 
/* empty */ { (fun itf > []) } 
249 
 typ_def SCOL typ_def_list { (fun itf > let ty1 = ($1 itf) in ty1 :: ($3 itf)) } 
250  
251 
typ_def: 
252 
TYPE type_ident EQ typ_def_rhs { (fun itf > 
253 
let typ = mktop_decl itf (TypeDef { tydef_id = $2; 
254 
tydef_desc = $4 
255 
}) 
256 
in (*add_type itf $2 typ;*) typ) } 
257  
258 
typ_def_rhs: 
259 
typeconst { $1 } 
260 
 ENUM LCUR tag_list RCUR { Tydec_enum (List.rev $3) } 
261 
 STRUCT LCUR field_list RCUR { Tydec_struct (List.rev $3) } 
262  
263 
array_typ_decl: 
264 
%prec POWER { fun typ > typ } 
265 
 POWER dim array_typ_decl { fun typ > $3 (Tydec_array ($2, typ)) } 
266  
267 
typeconst: 
268 
TINT array_typ_decl { $2 Tydec_int } 
269 
 TBOOL array_typ_decl { $2 Tydec_bool } 
270 
 TREAL array_typ_decl { $2 Tydec_real } 
271 
/*  TFLOAT array_typ_decl { $2 Tydec_float } */ 
272 
 type_ident array_typ_decl { $2 (Tydec_const $1) } 
273 
 TBOOL TCLOCK { Tydec_clock Tydec_bool } 
274 
 IDENT TCLOCK { Tydec_clock (Tydec_const $1) } 
275  
276 
tag_list: 
277 
UIDENT { $1 :: [] } 
278 
 tag_list COMMA UIDENT { $3 :: $1 } 
279 

280 
field_list: { [] } 
281 
 field_list IDENT COL typeconst SCOL { ($2, $4) :: $1 } 
282 

283 
stmt_list: 
284 
{ [], [], [] } 
285 
 eq stmt_list {let eql, assertl, annotl = $2 in ((Eq $1)::eql), assertl, annotl} 
286 
 assert_ stmt_list {let eql, assertl, annotl = $2 in eql, ($1::assertl), annotl} 
287 
 ANNOT stmt_list {let eql, assertl, annotl = $2 in eql, assertl, $1::annotl} 
288 
 automaton stmt_list {let eql, assertl, annotl = $2 in ((Aut $1)::eql), assertl, annotl} 
289  
290 
automaton: 
291 
AUTOMATON type_ident handler_list { Automata.mkautomata (get_loc ()) $2 $3 } 
292  
293 
handler_list: 
294 
{ [] } 
295 
 handler handler_list { $1::$2 } 
296  
297 
handler: 
298 
STATE UIDENT COL unless_list locals LET stmt_list TEL until_list { Automata.mkhandler (get_loc ()) $2 $4 $9 $5 $7 } 
299  
300 
unless_list: 
301 
{ [] } 
302 
 unless unless_list { $1::$2 } 
303  
304 
until_list: 
305 
{ [] } 
306 
 until until_list { $1::$2 } 
307  
308 
unless: 
309 
UNLESS expr RESTART UIDENT { (get_loc (), $2, true, $4) } 
310 
 UNLESS expr RESUME UIDENT { (get_loc (), $2, false, $4) } 
311  
312 
until: 
313 
UNTIL expr RESTART UIDENT { (get_loc (), $2, true, $4) } 
314 
 UNTIL expr RESUME UIDENT { (get_loc (), $2, false, $4) } 
315  
316 
assert_: 
317 
 ASSERT expr SCOL {mkassert ($2)} 
318  
319 
eq: 
320 
ident_list EQ expr SCOL {mkeq (List.rev (List.map fst $1), $3)} 
321 
 LPAR ident_list RPAR EQ expr SCOL {mkeq (List.rev (List.map fst $2), $5)} 
322  
323 
lustre_spec: 
324 
 contract EOF { $1 } 
325  
326 
contract: 
327 
requires ensures behaviors { { requires = $1; ensures = $2; behaviors = $3; spec_loc = get_loc () } } 
328 

329 
requires: 
330 
{ [] } 
331 
 REQUIRES qexpr SCOL requires { $2::$4 } 
332  
333 
ensures: 
334 
{ [] } 
335 
 ENSURES qexpr SCOL ensures { $2 :: $4 } 
336 
 OBSERVER node_ident LPAR tuple_expr RPAR SCOL ensures { 
337 
mkeexpr (mkexpr ((Expr_appl ($2, mkexpr (Expr_tuple $4), None)))) :: $7 
338 
} 
339  
340 
behaviors: 
341 
{ [] } 
342 
 BEHAVIOR IDENT COL assumes ensures behaviors { ($2,$4,$5,get_loc ())::$6 } 
343  
344 
assumes: 
345 
{ [] } 
346 
 ASSUMES qexpr SCOL assumes { $2::$4 } 
347  
348 
/* WARNING: UNUSED RULES */ 
349 
tuple_qexpr: 
350 
 qexpr COMMA qexpr {[$3;$1]} 
351 
 tuple_qexpr COMMA qexpr {$3::$1} 
352  
353 
qexpr: 
354 
 expr { mkeexpr $1 } 
355 
/* Quantifiers */ 
356 
 EXISTS vdecl SCOL qexpr %prec prec_exists { extend_eexpr [Exists, $2] $4 } 
357 
 FORALL vdecl SCOL qexpr %prec prec_forall { extend_eexpr [Forall, $2] $4 } 
358  
359  
360 
tuple_expr: 
361 
expr COMMA expr {[$3;$1]} 
362 
 tuple_expr COMMA expr {$3::$1} 
363  
364 
// Same as tuple expr but accepting lists with single element 
365 
array_expr: 
366 
expr {[$1]} 
367 
 expr COMMA array_expr {$1::$3} 
368  
369 
dim_list: 
370 
dim RBRACKET { fun base > mkexpr (Expr_access (base, $1)) } 
371 
 dim RBRACKET LBRACKET dim_list { fun base > $4 (mkexpr (Expr_access (base, $1))) } 
372  
373 
expr: 
374 
/* constants */ 
375 
INT {mkexpr (Expr_const (Const_int $1))} 
376 
 REAL {let c,e,s = $1 in mkexpr (Expr_const (Const_real (c,e,s)))} 
377 
/*  FLOAT {mkexpr (Expr_const (Const_float $1))}*/ 
378 
/* Idents or type enum tags */ 
379 
 IDENT { mkexpr (Expr_ident $1) } 
380 
 tag_ident { mkexpr (Expr_ident $1) (*(Expr_const (Const_tag $1))*) } 
381 
 LPAR ANNOT expr RPAR 
382 
{update_expr_annot (get_current_node ()) $3 $2} 
383 
 LPAR expr RPAR 
384 
{$2} 
385 
 LPAR tuple_expr RPAR 
386 
{mkexpr (Expr_tuple (List.rev $2))} 
387  
388 
/* Array expressions */ 
389 
 LBRACKET array_expr RBRACKET { mkexpr (Expr_array $2) } 
390 
 expr POWER dim { mkexpr (Expr_power ($1, $3)) } 
391 
 expr LBRACKET dim_list { $3 $1 } 
392  
393 
/* Temporal operators */ 
394 
 PRE expr 
395 
{mkexpr (Expr_pre $2)} 
396 
 expr ARROW expr 
397 
{mkexpr (Expr_arrow ($1,$3))} 
398 
 expr FBY expr 
399 
{(*mkexpr (Expr_fby ($1,$3))*) 
400 
mkexpr (Expr_arrow ($1, mkexpr (Expr_pre $3)))} 
401 
 expr WHEN vdecl_ident 
402 
{mkexpr (Expr_when ($1,fst $3,tag_true))} 
403 
 expr WHENNOT vdecl_ident 
404 
{mkexpr (Expr_when ($1,fst $3,tag_false))} 
405 
 expr WHEN tag_ident LPAR vdecl_ident RPAR 
406 
{mkexpr (Expr_when ($1, fst $5, $3))} 
407 
 MERGE vdecl_ident handler_expr_list 
408 
{mkexpr (Expr_merge (fst $2,$3))} 
409  
410 
/* Applications */ 
411 
 node_ident LPAR expr RPAR 
412 
{mkexpr (Expr_appl ($1, $3, None))} 
413 
 node_ident LPAR expr RPAR EVERY expr 
414 
{mkexpr (Expr_appl ($1, $3, Some $6))} 
415 
 node_ident LPAR tuple_expr RPAR 
416 
{ 
417 
let id=$1 in 
418 
let args=List.rev $3 in 
419 
match id, args with 
420 
 "fbyn", [expr;n;init] > 
421 
let n = match n.expr_desc with 
422 
 Expr_const (Const_int n) > n 
423 
 _ > assert false 
424 
in 
425 
fby expr n init 
426 
 _ > mkexpr (Expr_appl ($1, mkexpr (Expr_tuple args), None)) 
427 
} 
428 
 node_ident LPAR tuple_expr RPAR EVERY expr 
429 
{ 
430 
let id=$1 in 
431 
let args=List.rev $3 in 
432 
let clock=$6 in 
433 
if id="fby" then 
434 
assert false (* TODO Ca veut dire quoi fby (e,n,init) every c *) 
435 
else 
436 
mkexpr (Expr_appl (id, mkexpr (Expr_tuple args), Some clock)) 
437 
} 
438  
439 
/* Boolean expr */ 
440 
 expr AND expr 
441 
{mkpredef_call "&&" [$1;$3]} 
442 
 expr AMPERAMPER expr 
443 
{mkpredef_call "&&" [$1;$3]} 
444 
 expr OR expr 
445 
{mkpredef_call "" [$1;$3]} 
446 
 expr BARBAR expr 
447 
{mkpredef_call "" [$1;$3]} 
448 
 expr XOR expr 
449 
{mkpredef_call "xor" [$1;$3]} 
450 
 NOT expr 
451 
{mkpredef_call "not" [$2]} 
452 
 expr IMPL expr 
453 
{mkpredef_call "impl" [$1;$3]} 
454  
455 
/* Comparison expr */ 
456 
 expr EQ expr 
457 
{mkpredef_call "=" [$1;$3]} 
458 
 expr LT expr 
459 
{mkpredef_call "<" [$1;$3]} 
460 
 expr LTE expr 
461 
{mkpredef_call "<=" [$1;$3]} 
462 
 expr GT expr 
463 
{mkpredef_call ">" [$1;$3]} 
464 
 expr GTE expr 
465 
{mkpredef_call ">=" [$1;$3]} 
466 
 expr NEQ expr 
467 
{mkpredef_call "!=" [$1;$3]} 
468  
469 
/* Arithmetic expr */ 
470 
 expr PLUS expr 
471 
{mkpredef_call "+" [$1;$3]} 
472 
 expr MINUS expr 
473 
{mkpredef_call "" [$1;$3]} 
474 
 expr MULT expr 
475 
{mkpredef_call "*" [$1;$3]} 
476 
 expr DIV expr 
477 
{mkpredef_call "/" [$1;$3]} 
478 
 MINUS expr %prec UMINUS 
479 
{mkpredef_call "uminus" [$2]} 
480 
 expr MOD expr 
481 
{mkpredef_call "mod" [$1;$3]} 
482  
483 
/* If */ 
484 
 IF expr THEN expr ELSE expr 
485 
{mkexpr (Expr_ite ($2, $4, $6))} 
486  
487 
handler_expr_list: 
488 
{ [] } 
489 
 handler_expr handler_expr_list { $1 :: $2 } 
490  
491 
handler_expr: 
492 
LPAR tag_ident ARROW expr RPAR { ($2, $4) } 
493  
494 
signed_const_array: 
495 
 signed_const { [$1] } 
496 
 signed_const COMMA signed_const_array { $1 :: $3 } 
497  
498 
signed_const_struct: 
499 
 IDENT EQ signed_const { [ ($1, $3) ] } 
500 
 IDENT EQ signed_const COMMA signed_const_struct { ($1, $3) :: $5 } 
501  
502 
signed_const: 
503 
INT {Const_int $1} 
504 
 REAL {let c,e,s =$1 in Const_real (c,e,s)} 
505 
/*  FLOAT {Const_float $1} */ 
506 
 tag_ident {Const_tag $1} 
507 
 MINUS INT {Const_int (1 * $2)} 
508 
 MINUS REAL {let c,e,s = $2 in Const_real (Num.minus_num c, e, "" ^ s)} 
509 
/*  MINUS FLOAT {Const_float (1. *. $2)} */ 
510 
 LCUR signed_const_struct RCUR { Const_struct $2 } 
511 
 LBRACKET signed_const_array RBRACKET { Const_array $2 } 
512  
513 
dim: 
514 
INT { mkdim_int $1 } 
515 
 LPAR dim RPAR { $2 } 
516 
 UIDENT { mkdim_ident $1 } 
517 
 IDENT { mkdim_ident $1 } 
518 
 dim AND dim 
519 
{mkdim_appl "&&" [$1;$3]} 
520 
 dim AMPERAMPER dim 
521 
{mkdim_appl "&&" [$1;$3]} 
522 
 dim OR dim 
523 
{mkdim_appl "" [$1;$3]} 
524 
 dim BARBAR dim 
525 
{mkdim_appl "" [$1;$3]} 
526 
 dim XOR dim 
527 
{mkdim_appl "xor" [$1;$3]} 
528 
 NOT dim 
529 
{mkdim_appl "not" [$2]} 
530 
 dim IMPL dim 
531 
{mkdim_appl "impl" [$1;$3]} 
532  
533 
/* Comparison dim */ 
534 
 dim EQ dim 
535 
{mkdim_appl "=" [$1;$3]} 
536 
 dim LT dim 
537 
{mkdim_appl "<" [$1;$3]} 
538 
 dim LTE dim 
539 
{mkdim_appl "<=" [$1;$3]} 
540 
 dim GT dim 
541 
{mkdim_appl ">" [$1;$3]} 
542 
 dim GTE dim 
543 
{mkdim_appl ">=" [$1;$3]} 
544 
 dim NEQ dim 
545 
{mkdim_appl "!=" [$1;$3]} 
546  
547 
/* Arithmetic dim */ 
548 
 dim PLUS dim 
549 
{mkdim_appl "+" [$1;$3]} 
550 
 dim MINUS dim 
551 
{mkdim_appl "" [$1;$3]} 
552 
 dim MULT dim 
553 
{mkdim_appl "*" [$1;$3]} 
554 
 dim DIV dim 
555 
{mkdim_appl "/" [$1;$3]} 
556 
 MINUS dim %prec UMINUS 
557 
{mkdim_appl "uminus" [$2]} 
558 
 dim MOD dim 
559 
{mkdim_appl "mod" [$1;$3]} 
560 
/* If */ 
561 
 IF dim THEN dim ELSE dim 
562 
{mkdim_ite $2 $4 $6} 
563  
564 
locals: 
565 
{[]} 
566 
 VAR local_vdecl_list SCOL {$2} 
567  
568 
vdecl_list: 
569 
vdecl {$1} 
570 
 vdecl_list SCOL vdecl {$3 @ $1} 
571  
572 
vdecl: 
573 
ident_list COL typeconst clock 
574 
{ List.map (fun (id, loc) > mkvar_decl (id, mktyp $3, $4, false, None) loc) $1 } 
575 
 CONST ident_list /* static parameters don't have clocks */ 
576 
{ List.map (fun (id, loc) > mkvar_decl (id, mktyp Tydec_any, mkclock Ckdec_any, true, None) loc) $2 } 
577 
 CONST ident_list COL typeconst /* static parameters don't have clocks */ 
578 
{ List.map (fun (id, loc) > mkvar_decl (id, mktyp $4, mkclock Ckdec_any, true, None) loc) $2 } 
579  
580 
local_vdecl_list: 
581 
local_vdecl {$1} 
582 
 local_vdecl_list SCOL local_vdecl {$3 @ $1} 
583  
584 
local_vdecl: 
585 
/* Useless no ?*/ ident_list 
586 
{ List.map (fun (id, loc) > mkvar_decl (id, mktyp Tydec_any, mkclock Ckdec_any, false, None) loc) $1 } 
587 
 ident_list COL typeconst clock 
588 
{ List.map (fun (id, loc) > mkvar_decl (id, mktyp $3, $4, false, None) loc) $1 } 
589 
 CONST vdecl_ident EQ expr /* static parameters don't have clocks */ 
590 
{ let (id, loc) = $2 in [ mkvar_decl (id, mktyp Tydec_any, mkclock Ckdec_any, true, Some $4) loc] } 
591 
 CONST vdecl_ident COL typeconst EQ expr /* static parameters don't have clocks */ 
592 
{ let (id, loc) = $2 in [ mkvar_decl (id, mktyp $4, mkclock Ckdec_any, true, Some $6) loc] } 
593  
594 
cdecl_list: 
595 
cdecl SCOL { (fun itf > [$1 itf]) } 
596 
 cdecl cdecl_list SCOL { (fun itf > let c1 = ($1 itf) in c1::($2 itf)) } 
597  
598 
cdecl: 
599 
const_ident EQ signed_const { 
600 
(fun itf > 
601 
let c = mktop_decl itf (Const { 
602 
const_id = $1; 
603 
const_loc = Location.symbol_rloc (); 
604 
const_type = Types.new_var (); 
605 
const_value = $3}) 
606 
in 
607 
(*add_const itf $1 c;*) c) 
608 
} 
609  
610 
clock: 
611 
{mkclock Ckdec_any} 
612 
 when_list 
613 
{mkclock (Ckdec_bool (List.rev $1))} 
614  
615 
when_cond: 
616 
WHEN IDENT {($2, tag_true)} 
617 
 WHENNOT IDENT {($2, tag_false)} 
618 
 WHEN tag_ident LPAR IDENT RPAR {($4, $2)} 
619  
620 
when_list: 
621 
when_cond {[$1]} 
622 
 when_list when_cond {$2::$1} 
623  
624 
ident_list: 
625 
vdecl_ident {[$1]} 
626 
 ident_list COMMA vdecl_ident {$3::$1} 
627  
628 
SCOL_opt: 
629 
SCOL {}  {} 
630  
631  
632 
lustre_annot: 
633 
lustre_annot_list EOF { { annots = $1; annot_loc = get_loc () } } 
634  
635 
lustre_annot_list: 
636 
{ [] } 
637 
 kwd COL qexpr SCOL lustre_annot_list { ($1,$3)::$5 } 
638 
 IDENT COL qexpr SCOL lustre_annot_list { ([$1],$3)::$5 } 
639 
 INVARIANT COL qexpr SCOL lustre_annot_list{ (["invariant"],$3)::$5 } 
640 
 OBSERVER COL qexpr SCOL lustre_annot_list { (["observer"],$3)::$5 } 
641 
 CCODE COL qexpr SCOL lustre_annot_list{ (["c_code"],$3)::$5 } 
642 
 MATLAB COL qexpr SCOL lustre_annot_list{ (["matlab"],$3)::$5 } 
643  
644  
645 
kwd: 
646 
DIV { [] } 
647 
 DIV IDENT kwd { $2::$3} 
648  
649 
%% 
650 
(* Local Variables: *) 
651 
(* compilecommand:"make C .." *) 
652 
(* End: *) 
653  
654 