Project

General

Profile

Statistics
| Branch: | Tag: | Revision:

lustrec / src / machine_code.ml @ 63f10e14

History | View | Annotate | Download (25 KB)

1
(********************************************************************)
2
(*                                                                  *)
3
(*  The LustreC compiler toolset   /  The LustreC Development Team  *)
4
(*  Copyright 2012 -    --   ONERA - CNRS - INPT                    *)
5
(*                                                                  *)
6
(*  LustreC is free software, distributed WITHOUT ANY WARRANTY      *)
7
(*  under the terms of the GNU Lesser General Public License        *)
8
(*  version 2.1.                                                    *)
9
(*                                                                  *)
10
(********************************************************************)
11

    
12
open LustreSpec
13
open Corelang
14
open Clocks
15
open Causality
16

    
17
exception NormalizationError
18

    
19
module OrdVarDecl:Map.OrderedType with type t=var_decl =
20
  struct type t = var_decl;; let compare = compare end
21

    
22
module ISet = Set.Make(OrdVarDecl)
23

    
24
let rec pp_val fmt v =
25
  match v.value_desc with
26
    | Cst c         -> Printers.pp_const fmt c 
27
    | LocalVar v    -> Format.pp_print_string fmt v.var_id
28
    | StateVar v    -> Format.pp_print_string fmt v.var_id
29
    | Array vl      -> Format.fprintf fmt "[%a]" (Utils.fprintf_list ~sep:", " pp_val)  vl
30
    | Access (t, i) -> Format.fprintf fmt "%a[%a]" pp_val t pp_val i
31
    | Power (v, n)  -> Format.fprintf fmt "(%a^%a)" pp_val v pp_val n
32
    | Fun (n, vl)   -> Format.fprintf fmt "%s (%a)" n (Utils.fprintf_list ~sep:", " pp_val)  vl
33

    
34
let rec pp_instr fmt i =
35
  match i with
36
    | MLocalAssign (i,v) -> Format.fprintf fmt "%s<-l- %a" i.var_id pp_val v
37
    | MStateAssign (i,v) -> Format.fprintf fmt "%s<-s- %a" i.var_id pp_val v
38
    | MReset i           -> Format.fprintf fmt "reset %s" i
39
    | MNoReset i         -> Format.fprintf fmt "noreset %s" i
40
    | MStep (il, i, vl)  ->
41
      Format.fprintf fmt "%a = %s (%a)"
42
	(Utils.fprintf_list ~sep:", " (fun fmt v -> Format.pp_print_string fmt v.var_id)) il
43
	i
44
	(Utils.fprintf_list ~sep:", " pp_val) vl
45
    | MBranch (g,hl)     ->
46
      Format.fprintf fmt "@[<v 2>case(%a) {@,%a@,}@]"
47
	pp_val g
48
	(Utils.fprintf_list ~sep:"@," pp_branch) hl
49
    | MComment s -> Format.pp_print_string fmt s
50

    
51
and pp_branch fmt (t, h) =
52
  Format.fprintf fmt "@[<v 2>%s:@,%a@]" t (Utils.fprintf_list ~sep:"@," pp_instr) h
53

    
54
and pp_instrs fmt il =
55
  Format.fprintf fmt "@[<v 2>%a@]" (Utils.fprintf_list ~sep:"@," pp_instr) il
56

    
57
type step_t = {
58
  step_checks: (Location.t * value_t) list;
59
  step_inputs: var_decl list;
60
  step_outputs: var_decl list;
61
  step_locals: var_decl list;
62
  step_instrs: instr_t list;
63
  step_asserts: value_t list;
64
}
65

    
66
type static_call = top_decl * (Dimension.dim_expr list)
67

    
68
type machine_t = {
69
  mname: node_desc;
70
  mmemory: var_decl list;
71
  mcalls: (ident * static_call) list; (* map from stateful/stateless instance to node, no internals *)
72
  minstances: (ident * static_call) list; (* sub-map of mcalls, from stateful instance to node *)
73
  minit: instr_t list;
74
  mstatic: var_decl list; (* static inputs only *)
75
  mconst: instr_t list; (* assignments of node constant locals *)
76
  mstep: step_t;
77
  mspec: node_annot option;
78
  mannot: expr_annot list;
79
}
80

    
81
let machine_vars m = m.mstep.step_inputs @ m.mstep.step_locals @ m.mstep.step_outputs @ m.mmemory
82

    
83
let pp_step fmt s =
84
  Format.fprintf fmt "@[<v>inputs : %a@ outputs: %a@ locals : %a@ checks : %a@ instrs : @[%a@]@ asserts : @[%a@]@]@ "
85
    (Utils.fprintf_list ~sep:", " Printers.pp_var) s.step_inputs
86
    (Utils.fprintf_list ~sep:", " Printers.pp_var) s.step_outputs
87
    (Utils.fprintf_list ~sep:", " Printers.pp_var) s.step_locals
88
    (Utils.fprintf_list ~sep:", " (fun fmt (_, c) -> pp_val fmt c)) s.step_checks
89
    (Utils.fprintf_list ~sep:"@ " pp_instr) s.step_instrs
90
    (Utils.fprintf_list ~sep:", " pp_val) s.step_asserts
91

    
92

    
93
let pp_static_call fmt (node, args) =
94
 Format.fprintf fmt "%s<%a>"
95
   (node_name node)
96
   (Utils.fprintf_list ~sep:", " Dimension.pp_dimension) args
97

    
98
let pp_machine fmt m =
99
  Format.fprintf fmt
100
    "@[<v 2>machine %s@ mem      : %a@ instances: %a@ init     : %a@ const    : %a@ step     :@   @[<v 2>%a@]@ @  spec : @[%t@]@  annot : @[%a@]@]@ "
101
    m.mname.node_id
102
    (Utils.fprintf_list ~sep:", " Printers.pp_var) m.mmemory
103
    (Utils.fprintf_list ~sep:", " (fun fmt (o1, o2) -> Format.fprintf fmt "(%s, %a)" o1 pp_static_call o2)) m.minstances
104
    (Utils.fprintf_list ~sep:"@ " pp_instr) m.minit
105
    (Utils.fprintf_list ~sep:"@ " pp_instr) m.mconst
106
    pp_step m.mstep
107
    (fun fmt -> match m.mspec with | None -> () | Some spec -> Printers.pp_spec fmt spec)
108
    (Utils.fprintf_list ~sep:"@ " Printers.pp_expr_annot) m.mannot
109

    
110
let rec is_const_value v =
111
  match v.value_desc with
112
  | Cst _          -> true
113
  | Fun (id, args) -> Basic_library.is_value_internal_fun v && List.for_all is_const_value args
114
  | _              -> false
115

    
116
(* Returns the declared stateless status and the computed one. *)
117
let get_stateless_status m =
118
 (m.mname.node_dec_stateless, Utils.desome m.mname.node_stateless)
119

    
120
let is_input m id =
121
  List.exists (fun o -> o.var_id = id.var_id) m.mstep.step_inputs
122

    
123
let is_output m id =
124
  List.exists (fun o -> o.var_id = id.var_id) m.mstep.step_outputs
125

    
126
let is_memory m id =
127
  List.exists (fun o -> o.var_id = id.var_id) m.mmemory
128

    
129
let conditional c t e =
130
  MBranch(c, [ (tag_true, t); (tag_false, e) ])
131

    
132
let dummy_var_decl name typ =
133
  {
134
    var_id = name;
135
    var_orig = false;
136
    var_dec_type = dummy_type_dec;
137
    var_dec_clock = dummy_clock_dec;
138
    var_dec_const = false;
139
    var_dec_value = None;
140
    var_type =  typ;
141
    var_clock = Clocks.new_ck Clocks.Cvar true;
142
    var_loc = Location.dummy_loc
143
  }
144

    
145
let arrow_id = "_arrow"
146

    
147
let arrow_typ = Types.new_ty Types.Tunivar
148

    
149
let arrow_desc =
150
  {
151
    node_id = arrow_id;
152
    node_type = Type_predef.type_bin_poly_op;
153
    node_clock = Clock_predef.ck_bin_univ;
154
    node_inputs= [dummy_var_decl "_in1" arrow_typ; dummy_var_decl "_in2" arrow_typ];
155
    node_outputs= [dummy_var_decl "_out" arrow_typ];
156
    node_locals= [];
157
    node_gencalls = [];
158
    node_checks = [];
159
    node_asserts = [];
160
    node_stmts= [];
161
    node_dec_stateless = false;
162
    node_stateless = Some false;
163
    node_spec = None;
164
    node_annot = [];  }
165

    
166
let arrow_top_decl =
167
  {
168
    top_decl_desc = Node arrow_desc;
169
    top_decl_owner = !Options.include_dir;
170
    top_decl_itf = false;
171
    top_decl_loc = Location.dummy_loc
172
  }
173

    
174
let mk_val v t = { value_desc = v; 
175
		   value_type = t; 
176
		   value_annot = None }
177

    
178
let arrow_machine =
179
  let state = "_first" in
180
  let var_state = dummy_var_decl state (Types.new_ty Types.Tbool) in
181
  let var_input1 = List.nth arrow_desc.node_inputs 0 in
182
  let var_input2 = List.nth arrow_desc.node_inputs 1 in
183
  let var_output = List.nth arrow_desc.node_outputs 0 in
184
  let cst b = mk_val (Cst (const_of_bool b)) Type_predef.type_bool in
185
  let t_arg = Types.new_univar () in (* TODO Xavier: c'est bien la bonne def ? *)
186
  {
187
    mname = arrow_desc;
188
    mmemory = [var_state];
189
    mcalls = [];
190
    minstances = [];
191
    minit = [MStateAssign(var_state, cst true)];
192
    mstatic = [];
193
    mconst = [];
194
    mstep = {
195
      step_inputs = arrow_desc.node_inputs;
196
      step_outputs = arrow_desc.node_outputs;
197
      step_locals = [];
198
      step_checks = [];
199
      step_instrs = [conditional (mk_val (StateVar var_state) Type_predef.type_bool)
200
			         [MStateAssign(var_state, cst false);
201
                                  MLocalAssign(var_output, mk_val (LocalVar var_input1) t_arg)]
202
                                 [MLocalAssign(var_output, mk_val (LocalVar var_input2) t_arg)] ];
203
      step_asserts = [];
204
    };
205
    mspec = None;
206
    mannot = [];
207
  }
208

    
209
let empty_desc =
210
  {
211
    node_id = arrow_id;
212
    node_type = Types.bottom;
213
    node_clock = Clocks.bottom;
214
    node_inputs= [];
215
    node_outputs= [];
216
    node_locals= [];
217
    node_gencalls = [];
218
    node_checks = [];
219
    node_asserts = [];
220
    node_stmts= [];
221
    node_dec_stateless = true;
222
    node_stateless = Some true;
223
    node_spec = None;
224
    node_annot = [];  }
225

    
226
let empty_machine =
227
  {
228
    mname = empty_desc;
229
    mmemory = [];
230
    mcalls = [];
231
    minstances = [];
232
    minit = [];
233
    mstatic = [];
234
    mconst = [];
235
    mstep = {
236
      step_inputs = [];
237
      step_outputs = [];
238
      step_locals = [];
239
      step_checks = [];
240
      step_instrs = [];
241
      step_asserts = [];
242
    };
243
    mspec = None;
244
    mannot = [];
245
  }
246

    
247
let new_instance =
248
  let cpt = ref (-1) in
249
  fun caller callee tag ->
250
    begin
251
      let o =
252
	if Stateless.check_node callee then
253
	  node_name callee
254
	else
255
	  Printf.sprintf "ni_%d" (incr cpt; !cpt) in
256
      let o =
257
	if !Options.ansi && is_generic_node callee
258
	then Printf.sprintf "%s_inst_%d" o (Utils.position (fun e -> e.expr_tag = tag) caller.node_gencalls)
259
	else o in
260
      o
261
    end
262

    
263

    
264
(* translate_<foo> : node -> context -> <foo> -> machine code/expression *)
265
(* the context contains  m : state aka memory variables  *)
266
(*                      si : initialization instructions *)
267
(*                       j : node aka machine instances  *)
268
(*                       d : local variables             *)
269
(*                       s : step instructions           *)
270
let translate_ident node (m, si, j, d, s) id =
271
  try (* id is a node var *)
272
    let var_id = get_node_var id node in
273
    if ISet.exists (fun v -> v.var_id = id) m
274
    then mk_val (StateVar var_id) var_id.var_type
275
    else mk_val (LocalVar var_id) var_id.var_type
276
  with Not_found ->
277
    try (* id is a constant *)
278
      let vdecl = (Corelang.var_decl_of_const (const_of_top (Hashtbl.find Corelang.consts_table id))) in
279
      mk_val (LocalVar vdecl) vdecl.var_type
280
    with Not_found ->
281
      (* id is a tag *)
282
      (* DONE construire une liste des enum declar├ęs et alors chercher dedans la liste
283
	 qui contient id *)
284
      try
285
        let typ = (typedef_of_top (Hashtbl.find Corelang.tag_table id)).tydef_id in
286
        mk_val (Cst (Const_tag id)) (Type_predef.type_const typ)
287
      with Not_found -> (Format.eprintf "internal error: Machine_code.translate_ident %s" id;
288
                         assert false)
289

    
290
let rec control_on_clock node ((m, si, j, d, s) as args) ck inst =
291
 match (Clocks.repr ck).cdesc with
292
 | Con    (ck1, cr, l) ->
293
   let id  = Clocks.const_of_carrier cr in
294
   control_on_clock node args ck1 (MBranch (translate_ident node args id,
295
					    [l, [inst]] ))
296
 | _                   -> inst
297

    
298
let rec join_branches hl1 hl2 =
299
 match hl1, hl2 with
300
 | []          , _            -> hl2
301
 | _           , []           -> hl1
302
 | (t1, h1)::q1, (t2, h2)::q2 ->
303
   if t1 < t2 then (t1, h1) :: join_branches q1 hl2 else
304
   if t1 > t2 then (t2, h2) :: join_branches hl1 q2
305
   else (t1, List.fold_right join_guards h1 h2) :: join_branches q1 q2
306

    
307
and join_guards inst1 insts2 =
308
 match inst1, insts2 with
309
 | _                   , []                               ->
310
   [inst1]
311
 | MBranch (x1, hl1), MBranch (x2, hl2) :: q when x1 = x2 ->
312
   MBranch (x1, join_branches (sort_handlers hl1) (sort_handlers hl2))
313
   :: q
314
 | _ -> inst1 :: insts2
315

    
316
let join_guards_list insts =
317
 List.fold_right join_guards insts []
318

    
319
(* specialize predefined (polymorphic) operators
320
   wrt their instances, so that the C semantics
321
   is preserved *)
322
let specialize_to_c expr =
323
 match expr.expr_desc with
324
 | Expr_appl (id, e, r) ->
325
   if List.exists (fun e -> Types.is_bool_type e.expr_type) (expr_list_of_expr e)
326
   then let id =
327
	  match id with
328
	  | "="  -> "equi"
329
	  | "!=" -> "xor"
330
	  | _    -> id in
331
	{ expr with expr_desc = Expr_appl (id, e, r) }
332
   else expr
333
 | _ -> expr
334

    
335
let specialize_op expr =
336
  match !Options.output with
337
  | "C" -> specialize_to_c expr
338
  | _   -> expr
339

    
340
let rec translate_expr node ((m, si, j, d, s) as args) expr =
341
  let expr = specialize_op expr in
342
  let value_desc = 
343
    match expr.expr_desc with
344
    | Expr_const v                     -> Cst v
345
    | Expr_ident x                     -> (translate_ident node args x).value_desc
346
    | Expr_array el                    -> Array (List.map (translate_expr node args) el)
347
    | Expr_access (t, i)               -> Access (translate_expr node args t, translate_expr node args (expr_of_dimension i))
348
    | Expr_power  (e, n)               -> Power  (translate_expr node args e, translate_expr node args (expr_of_dimension n))
349
    | Expr_tuple _
350
    | Expr_arrow _ 
351
    | Expr_fby _
352
    | Expr_pre _                       -> (Printers.pp_expr Format.err_formatter expr; Format.pp_print_flush Format.err_formatter (); raise NormalizationError)
353
    | Expr_when    (e1, _, _)          -> (translate_expr node args e1).value_desc
354
    | Expr_merge   (x, _)              -> raise NormalizationError
355
    | Expr_appl (id, e, _) when Basic_library.is_expr_internal_fun expr ->
356
      let nd = node_from_name id in
357
      Fun (node_name nd, List.map (translate_expr node args) (expr_list_of_expr e))
358
    | Expr_ite (g,t,e) -> (
359
      (* special treatment depending on the active backend. For horn backend, ite
360
	 are preserved in expression. While they are removed for C or Java
361
	 backends. *)
362
      match !Options.output with
363
      | "horn" -> 
364
	 Fun ("ite", [translate_expr node args g; translate_expr node args t; translate_expr node args e])
365
      | "C" | "java" | _ -> 
366
	 (Format.eprintf "Normalization error for backend %s: %a@."
367
	    !Options.output
368
	    Printers.pp_expr expr;
369
	  raise NormalizationError)
370
    )
371
    | _                   -> raise NormalizationError
372
  in
373
  mk_val value_desc expr.expr_type
374

    
375
let translate_guard node args expr =
376
  match expr.expr_desc with
377
  | Expr_ident x  -> translate_ident node args x
378
  | _ -> (Format.eprintf "internal error: translate_guard %s %a@." node.node_id Printers.pp_expr expr;assert false)
379

    
380
let rec translate_act node ((m, si, j, d, s) as args) (y, expr) =
381
  match expr.expr_desc with
382
  | Expr_ite   (c, t, e) -> let g = translate_guard node args c in
383
			    conditional g
384
                              [translate_act node args (y, t)]
385
                              [translate_act node args (y, e)]
386
  | Expr_merge (x, hl)   -> MBranch (translate_ident node args x,
387
                                     List.map (fun (t,  h) -> t, [translate_act node args (y, h)]) hl)
388
  | _                    -> MLocalAssign (y, translate_expr node args expr)
389

    
390
let reset_instance node args i r c =
391
  match r with
392
  | None        -> []
393
  | Some r      -> let g = translate_guard node args r in
394
                   [control_on_clock node args c (conditional g [MReset i] [MNoReset i])]
395

    
396
let translate_eq node ((m, si, j, d, s) as args) eq =
397
  (* Format.eprintf "translate_eq %a with clock %a@." Printers.pp_node_eq eq Clocks.print_ck eq.eq_rhs.expr_clock;  *)
398
  match eq.eq_lhs, eq.eq_rhs.expr_desc with
399
  | [x], Expr_arrow (e1, e2)                     ->
400
     let var_x = get_node_var x node in
401
     let o = new_instance node arrow_top_decl eq.eq_rhs.expr_tag in
402
     let c1 = translate_expr node args e1 in
403
     let c2 = translate_expr node args e2 in
404
     (m,
405
      MReset o :: si,
406
      Utils.IMap.add o (arrow_top_decl, []) j,
407
      d,
408
      (control_on_clock node args eq.eq_rhs.expr_clock (MStep ([var_x], o, [c1;c2]))) :: s)
409
  | [x], Expr_pre e1 when ISet.mem (get_node_var x node) d     ->
410
     let var_x = get_node_var x node in
411
     (ISet.add var_x m,
412
      si,
413
      j,
414
      d,
415
      control_on_clock node args eq.eq_rhs.expr_clock (MStateAssign (var_x, translate_expr node args e1)) :: s)
416
  | [x], Expr_fby (e1, e2) when ISet.mem (get_node_var x node) d ->
417
     let var_x = get_node_var x node in
418
     (ISet.add var_x m,
419
      MStateAssign (var_x, translate_expr node args e1) :: si,
420
      j,
421
      d,
422
      control_on_clock node args eq.eq_rhs.expr_clock (MStateAssign (var_x, translate_expr node args e2)) :: s)
423

    
424
  | p  , Expr_appl (f, arg, r) when not (Basic_library.is_expr_internal_fun eq.eq_rhs) ->
425
     let var_p = List.map (fun v -> get_node_var v node) p in
426
     let el = expr_list_of_expr arg in
427
     let vl = List.map (translate_expr node args) el in
428
     let node_f = node_from_name f in
429
     let call_f =
430
       node_f,
431
       NodeDep.filter_static_inputs (node_inputs node_f) el in
432
     let o = new_instance node node_f eq.eq_rhs.expr_tag in
433
     let env_cks = List.fold_right (fun arg cks -> arg.expr_clock :: cks) el [eq.eq_rhs.expr_clock] in
434
     let call_ck = Clock_calculus.compute_root_clock (Clock_predef.ck_tuple env_cks) in
435
     (*Clocks.new_var true in
436
       Clock_calculus.unify_imported_clock (Some call_ck) eq.eq_rhs.expr_clock eq.eq_rhs.expr_loc;
437
       Format.eprintf "call %a: %a: %a@," Printers.pp_expr eq.eq_rhs Clocks.print_ck (Clock_predef.ck_tuple env_cks) Clocks.print_ck call_ck;*)
438
     (m,
439
      (if Stateless.check_node node_f then si else MReset o :: si),
440
      Utils.IMap.add o call_f j,
441
      d,
442
      (if Stateless.check_node node_f
443
       then []
444
       else reset_instance node args o r call_ck) @
445
	(control_on_clock node args call_ck (MStep (var_p, o, vl))) :: s)
446
  (*
447
    (* special treatment depending on the active backend. For horn backend, x = ite (g,t,e)
448
    are preserved. While they are replaced as if g then x = t else x = e in  C or Java
449
    backends. *)
450
    | [x], Expr_ite   (c, t, e)
451
    when (match !Options.output with | "horn" -> true | "C" | "java" | _ -> false)
452
    ->
453
    let var_x = get_node_var x node in
454
    (m,
455
    si,
456
    j,
457
    d,
458
    (control_on_clock node args eq.eq_rhs.expr_clock
459
    (MLocalAssign (var_x, translate_expr node args eq.eq_rhs))::s)
460
    )
461

    
462
  *)
463
  | [x], _                                       -> (
464
    let var_x = get_node_var x node in
465
    (m, si, j, d,
466
     control_on_clock
467
       node
468
       args
469
       eq.eq_rhs.expr_clock
470
       (translate_act node args (var_x, eq.eq_rhs)) :: s
471
    )
472
  )
473
  | _                                            ->
474
     begin
475
       Format.eprintf "internal error: Machine_code.translate_eq %a@?" Printers.pp_node_eq eq;
476
       assert false
477
     end
478

    
479
let find_eq xl eqs =
480
  let rec aux accu eqs =
481
      match eqs with
482
	| [] ->
483
	  begin
484
	    Format.eprintf "Looking for variables %a in the following equations@.%a@."
485
	      (Utils.fprintf_list ~sep:" , " (fun fmt v -> Format.fprintf fmt "%s" v)) xl
486
	      Printers.pp_node_eqs eqs;
487
	    assert false
488
	  end
489
	| hd::tl ->
490
	  if List.exists (fun x -> List.mem x hd.eq_lhs) xl then hd, accu@tl else aux (hd::accu) tl
491
    in
492
    aux [] eqs
493

    
494
(* Sort the set of equations of node [nd] according
495
   to the computed schedule [sch]
496
*)
497
let sort_equations_from_schedule nd sch =
498
  (* Format.eprintf "%s schedule: %a@." *)
499
  (* 		 nd.node_id *)
500
  (* 		 (Utils.fprintf_list ~sep:" ; " Scheduling.pp_eq_schedule) sch; *)
501
  let split_eqs = Splitting.tuple_split_eq_list (get_node_eqs nd) in
502
  let eqs_rev, remainder =
503
    List.fold_left
504
      (fun (accu, node_eqs_remainder) vl ->
505
       if List.exists (fun eq -> List.exists (fun v -> List.mem v eq.eq_lhs) vl) accu
506
       then
507
	 (accu, node_eqs_remainder)
508
       else
509
	 let eq_v, remainder = find_eq vl node_eqs_remainder in
510
	 eq_v::accu, remainder
511
      )
512
      ([], split_eqs)
513
      sch
514
  in
515
  begin
516
    if List.length remainder > 0 then (
517
      Format.eprintf "Equations not used are@.%a@.Full equation set is:@.%a@.@?"
518
		     Printers.pp_node_eqs remainder
519
      		     Printers.pp_node_eqs (get_node_eqs nd);
520
      assert false);
521
    List.rev eqs_rev
522
  end
523

    
524
let constant_equations nd =
525
 List.fold_right (fun vdecl eqs ->
526
   if vdecl.var_dec_const
527
   then
528
     { eq_lhs = [vdecl.var_id];
529
       eq_rhs = Utils.desome vdecl.var_dec_value;
530
       eq_loc = vdecl.var_loc
531
     } :: eqs
532
   else eqs)
533
   nd.node_locals []
534

    
535
let translate_eqs node args eqs =
536
  List.fold_right (fun eq args -> translate_eq node args eq) eqs args;;
537

    
538
let translate_decl nd sch =
539
  (*Log.report ~level:1 (fun fmt -> Printers.pp_node fmt nd);*)
540

    
541
  let sorted_eqs = sort_equations_from_schedule nd sch in
542
  let constant_eqs = constant_equations nd in
543

    
544
  (* In case of non functional backend (eg. C), additional local variables have
545
     to be declared for each assert *)
546
  let new_locals, assert_instrs, nd_node_asserts =
547
    let exprl = List.map (fun assert_ -> assert_.assert_expr ) nd.node_asserts in
548
    if Corelang.functional_backend () then
549
      [], [], exprl  
550
    else (* Each assert(e) is associated to a fresh variable v and declared as
551
	    v=e; assert (v); *)
552
      let _, vars, eql, assertl =
553
	List.fold_left (fun (i, vars, eqlist, assertlist) expr ->
554
	  let loc = expr.expr_loc in
555
	  let var_id = nd.node_id ^ "_assert_" ^ string_of_int i in
556
	  let assert_var =
557
	    mkvar_decl
558
	      loc
559
	      ~orig:false (* fresh var *)
560
	      (var_id,
561
	       mktyp loc Tydec_bool,
562
	       mkclock loc Ckdec_any,
563
	       false, (* not a constant *)
564
	       None (* no default value *)
565
	      )
566
	  in
567
	  assert_var.var_type <- Types.new_ty (Types.Tbool); 
568
	  let eq = mkeq loc ([var_id], expr) in
569
	  (i+1, assert_var::vars, eq::eqlist, {expr with expr_desc = Expr_ident var_id}::assertlist)
570
	) (1, [], [], []) exprl
571
      in
572
      vars, eql, assertl
573
  in
574
  let locals_list = nd.node_locals @ new_locals in
575

    
576
  let nd = { nd with node_locals = locals_list } in
577
  let init_args = ISet.empty, [], Utils.IMap.empty, List.fold_right (fun l -> ISet.add l) locals_list ISet.empty, [] in
578
  (* memories, init instructions, node calls, local variables (including memories), step instrs *)
579
  let m0, init0, j0, locals0, s0 = translate_eqs nd init_args constant_eqs in
580
  assert (ISet.is_empty m0);
581
  assert (init0 = []);
582
  assert (Utils.IMap.is_empty j0);
583
  let m, init, j, locals, s = translate_eqs nd (m0, init0, j0, locals0, []) (sorted_eqs@assert_instrs) in
584
  let mmap = Utils.IMap.fold (fun i n res -> (i, n)::res) j [] in
585
  {
586
    mname = nd;
587
    mmemory = ISet.elements m;
588
    mcalls = mmap;
589
    minstances = List.filter (fun (_, (n,_)) -> not (Stateless.check_node n)) mmap;
590
    minit = init;
591
    mconst = s0;
592
    mstatic = List.filter (fun v -> v.var_dec_const) nd.node_inputs;
593
    mstep = {
594
      step_inputs = nd.node_inputs;
595
      step_outputs = nd.node_outputs;
596
      step_locals = ISet.elements (ISet.diff locals m);
597
      step_checks = List.map (fun d -> d.Dimension.dim_loc, translate_expr nd init_args (expr_of_dimension d)) nd.node_checks;
598
      step_instrs = (
599
	(* special treatment depending on the active backend. For horn backend,
600
	   common branches are not merged while they are in C or Java
601
	   backends. *)
602
	(*match !Options.output with
603
	| "horn" -> s
604
	| "C" | "java" | _ ->*) join_guards_list s
605
      );
606
      step_asserts = List.map (translate_expr nd init_args) nd_node_asserts;
607
    };
608
    mspec = nd.node_spec;
609
    mannot = nd.node_annot;
610
  }
611

    
612
(** takes the global declarations and the scheduling associated to each node *)
613
let translate_prog decls node_schs =
614
  let nodes = get_nodes decls in
615
  List.map
616
    (fun decl ->
617
     let node = node_of_top decl in
618
      let sch = (Utils.IMap.find node.node_id node_schs).Scheduling.schedule in
619
      translate_decl node sch
620
    ) nodes
621

    
622
let get_machine_opt name machines =
623
  List.fold_left
624
    (fun res m ->
625
      match res with
626
      | Some _ -> res
627
      | None -> if m.mname.node_id = name then Some m else None)
628
    None machines
629

    
630
let get_const_assign m id =
631
  try
632
    match (List.find (fun instr -> match instr with MLocalAssign (v, _) -> v == id | _ -> false) m.mconst) with
633
    | MLocalAssign (_, e) -> e
634
    | _                   -> assert false
635
  with Not_found -> assert false
636

    
637

    
638
let value_of_ident loc m id =
639
  (* is is a state var *)
640
  try
641
    let v = List.find (fun v -> v.var_id = id) m.mmemory
642
    in mk_val (StateVar v) v.var_type 
643
  with Not_found ->
644
    try (* id is a node var *)
645
      let v = get_node_var id m.mname
646
      in mk_val (LocalVar v) v.var_type
647
  with Not_found ->
648
    try (* id is a constant *)
649
      let c = Corelang.var_decl_of_const (const_of_top (Hashtbl.find Corelang.consts_table id))
650
      in mk_val (LocalVar c) c.var_type
651
    with Not_found ->
652
      (* id is a tag *)
653
      let t = Const_tag id
654
      in mk_val (Cst t) (Typing.type_const loc t)
655

    
656
(* type of internal fun used in dimension expression *)
657
let type_of_value_appl f args =
658
  if List.mem f Basic_library.arith_funs
659
  then (List.hd args).value_type
660
  else Type_predef.type_bool
661

    
662
let rec value_of_dimension m dim =
663
  match dim.Dimension.dim_desc with
664
  | Dimension.Dbool b         ->
665
     mk_val (Cst (Const_tag (if b then Corelang.tag_true else Corelang.tag_false))) Type_predef.type_bool
666
  | Dimension.Dint i          ->
667
     mk_val (Cst (Const_int i)) Type_predef.type_int
668
  | Dimension.Dident v        -> value_of_ident dim.Dimension.dim_loc m v
669
  | Dimension.Dappl (f, args) ->
670
     let vargs = List.map (value_of_dimension m) args
671
     in mk_val (Fun (f, vargs)) (type_of_value_appl f vargs) 
672
  | Dimension.Dite (i, t, e)  ->
673
     (match List.map (value_of_dimension m) [i; t; e] with
674
     | [vi; vt; ve] -> mk_val (Fun ("ite", [vi; vt; ve])) vt.value_type
675
     | _            -> assert false)
676
  | Dimension.Dlink dim'      -> value_of_dimension m dim'
677
  | _                         -> assert false
678

    
679
let rec dimension_of_value value =
680
  match value.value_desc with
681
  | Cst (Const_tag t) when t = Corelang.tag_true  -> Dimension.mkdim_bool  Location.dummy_loc true
682
  | Cst (Const_tag t) when t = Corelang.tag_false -> Dimension.mkdim_bool  Location.dummy_loc false
683
  | Cst (Const_int i)                             -> Dimension.mkdim_int   Location.dummy_loc i
684
  | LocalVar v                                    -> Dimension.mkdim_ident Location.dummy_loc v.var_id
685
  | Fun (f, args)                                 -> Dimension.mkdim_appl  Location.dummy_loc f (List.map dimension_of_value args)
686
  | _                                             -> assert false
687

    
688
(* Local Variables: *)
689
(* compile-command:"make -C .." *)
690
(* End: *)