lustrec / src / mutation.ml @ 5d5139a5
History  View  Annotate  Download (26.4 KB)
1  

2 
(* Comments in function fold_mutate 
3  
4 
TODO: check if we can generate more cases. The following lines were 
5 
cylcing and missing to detect that the enumaration was complete, 
6 
leading to a non terminating process. The current setting is harder 
7 
but may miss enumerating some cases. To be checked! 
8 

9  
10 
*) 
11  
12  
13 
open LustreSpec 
14 
open Corelang 
15 
open Log 
16 
open Format 
17  
18 
let random_seed = ref 0 
19 
let threshold_delay = 95 
20 
let threshold_inc_int = 97 
21 
let threshold_dec_int = 97 
22 
let threshold_random_int = 96 
23 
let threshold_switch_int = 100 (* not implemented yet *) 
24 
let threshold_random_float = 100 (* not used yet *) 
25 
let threshold_negate_bool_var = 95 
26 
let threshold_arith_op = 95 
27 
let threshold_rel_op = 95 
28 
let threshold_bool_op = 95 
29  
30 
let int_consts = ref [] 
31  
32 
let rename_app id = 
33 
let node = Corelang.node_from_name id in 
34 
let is_imported = 
35 
match node.top_decl_desc with 
36 
 ImportedNode _ > true 
37 
 _ > false 
38 
in 
39 
if !Options.no_mutation_suffix  is_imported then 
40 
id 
41 
else 
42 
id ^ "_mutant" 
43  
44 
(************************************************************************************) 
45 
(* Gathering constants in the code *) 
46 
(************************************************************************************) 
47  
48 
module IntSet = Set.Make (struct type t = int let compare = compare end) 
49 
module OpCount = Mmap.Make (struct type t = string let compare = compare end) 
50  
51 
type records = { 
52 
consts: IntSet.t; 
53 
nb_consts: int; 
54 
nb_boolexpr: int; 
55 
nb_pre: int; 
56 
nb_op: int OpCount.t; 
57 
} 
58  
59 
let arith_op = ["+" ; "" ; "*" ; "/"] 
60 
let bool_op = ["&&"; ""; "xor"; "impl"] 
61 
let rel_op = ["<" ; "<=" ; ">" ; ">=" ; "!=" ; "=" ] 
62 
let ops = arith_op @ bool_op @ rel_op 
63 
let all_ops = "not" :: ops 
64  
65 
let empty_records = 
66 
{consts=IntSet.empty; nb_consts=0; nb_boolexpr=0; nb_pre=0; nb_op=OpCount.empty} 
67  
68 
let records = ref empty_records 
69  
70 
let merge_records records_list = 
71 
let merge_record r1 r2 = 
72 
{ 
73 
consts = IntSet.union r1.consts r2.consts; 
74  
75 
nb_consts = r1.nb_consts + r2.nb_consts; 
76 
nb_boolexpr = r1.nb_boolexpr + r2.nb_boolexpr; 
77 
nb_pre = r1.nb_pre + r2.nb_pre; 
78  
79 
nb_op = OpCount.merge (fun op r1opt r2opt > 
80 
match r1opt, r2opt with 
81 
 None, _ > r2opt 
82 
 _, None > r1opt 
83 
 Some x, Some y > Some (x+y) 
84 
) r1.nb_op r2.nb_op 
85 
} 
86 
in 
87 
List.fold_left merge_record empty_records records_list 
88 

89 
let compute_records_const_value c = 
90 
match c with 
91 
 Const_int i > {empty_records with consts = IntSet.singleton i; nb_consts = 1} 
92 
 _ > empty_records 
93  
94 
let rec compute_records_expr expr = 
95 
let boolexpr = 
96 
if (Types.repr expr.expr_type).Types.tdesc = Types.Tbool then 
97 
{empty_records with nb_boolexpr = 1} 
98 
else 
99 
empty_records 
100 
in 
101 
let subrec = 
102 
match expr.expr_desc with 
103 
 Expr_const c > compute_records_const_value c 
104 
 Expr_tuple l > merge_records (List.map compute_records_expr l) 
105 
 Expr_ite (i,t,e) > 
106 
merge_records (List.map compute_records_expr [i;t;e]) 
107 
 Expr_arrow (e1, e2) > 
108 
merge_records (List.map compute_records_expr [e1;e2]) 
109 
 Expr_pre e > 
110 
merge_records ( 
111 
({empty_records with nb_pre = 1}) 
112 
::[compute_records_expr e]) 
113 
 Expr_appl (op_id, args, r) > 
114 
if List.mem op_id ops then 
115 
merge_records ( 
116 
({empty_records with nb_op = OpCount.singleton op_id 1}) 
117 
::[compute_records_expr args]) 
118 
else 
119 
compute_records_expr args 
120 
 _ > empty_records 
121 
in 
122 
merge_records [boolexpr;subrec] 
123  
124 
let compute_records_eq eq = compute_records_expr eq.eq_rhs 
125  
126 
let compute_records_node nd = 
127 
let eqs, auts = get_node_eqs nd in 
128 
assert (auts=[]); (* Automaton should be expanded by now *) 
129 
merge_records (List.map compute_records_eq eqs) 
130  
131 
let compute_records_top_decl td = 
132 
match td.top_decl_desc with 
133 
 Node nd > compute_records_node nd 
134 
 Const cst > compute_records_const_value cst.const_value 
135 
 _ > empty_records 
136  
137 
let compute_records prog = 
138 
merge_records (List.map compute_records_top_decl prog) 
139  
140 
(*****************************************************************) 
141 
(* Random mutation *) 
142 
(*****************************************************************) 
143  
144 
let check_mut e1 e2 = 
145 
let rec eq e1 e2 = 
146 
match e1.expr_desc, e2.expr_desc with 
147 
 Expr_const c1, Expr_const c2 > c1 = c2 
148 
 Expr_ident id1, Expr_ident id2 > id1 = id2 
149 
 Expr_tuple el1, Expr_tuple el2 > List.length el1 = List.length el2 && List.for_all2 eq el1 el2 
150 
 Expr_ite (i1, t1, e1), Expr_ite (i2, t2, e2) > eq i1 i2 && eq t1 t2 && eq e1 e2 
151 
 Expr_arrow (x1, y1), Expr_arrow (x2, y2) > eq x1 x2 && eq y1 y2 
152 
 Expr_pre e1, Expr_pre e2 > eq e1 e2 
153 
 Expr_appl (id1, e1, _), Expr_appl (id2, e2, _) > id1 = id2 && eq e1 e2 
154 
 _ > false 
155 
in 
156 
if not (eq e1 e2) then 
157 
Some (e1, e2) 
158 
else 
159 
None 
160  
161 
let mk_cst_expr c = mkexpr Location.dummy_loc (Expr_const c) 
162  
163 
let rdm_mutate_int i = 
164 
if Random.int 100 > threshold_inc_int then 
165 
i+1 
166 
else if Random.int 100 > threshold_dec_int then 
167 
i1 
168 
else if Random.int 100 > threshold_random_int then 
169 
Random.int 10 
170 
else if Random.int 100 > threshold_switch_int then 
171 
let idx = Random.int (List.length !int_consts) in 
172 
List.nth !int_consts idx 
173 
else 
174 
i 
175 

176 
let rdm_mutate_real r = 
177 
if Random.int 100 > threshold_random_float then 
178 
(* interval [0, bound] for random values *) 
179 
let bound = 10 in 
180 
(* max number of digits after comma *) 
181 
let digits = 5 in 
182 
(* number of digits after comma *) 
183 
let shift = Random.int (digits + 1) in 
184 
let eshift = 10. ** (float_of_int shift) in 
185 
let i = Random.int (1 + bound * (int_of_float eshift)) in 
186 
let f = float_of_int i /. eshift in 
187 
(Num.num_of_int i, shift, string_of_float f) 
188 
else 
189 
r 
190  
191 
let rdm_mutate_op op = 
192 
match op with 
193 
 "+"  ""  "*"  "/" when Random.int 100 > threshold_arith_op > 
194 
let filtered = List.filter (fun x > x <> op) ["+"; ""; "*"; "/"] in 
195 
List.nth filtered (Random.int 3) 
196 
 "&&"  ""  "xor"  "impl" when Random.int 100 > threshold_bool_op > 
197 
let filtered = List.filter (fun x > x <> op) ["&&"; ""; "xor"; "impl"] in 
198 
List.nth filtered (Random.int 3) 
199 
 "<"  "<="  ">"  ">="  "!="  "=" when Random.int 100 > threshold_rel_op > 
200 
let filtered = List.filter (fun x > x <> op) ["<"; "<="; ">"; ">="; "!="; "="] in 
201 
List.nth filtered (Random.int 5) 
202 
 _ > op 
203  
204  
205 
let rdm_mutate_var expr = 
206 
match (Types.repr expr.expr_type).Types.tdesc with 
207 
 Types.Tbool > 
208 
(* if Random.int 100 > threshold_negate_bool_var then *) 
209 
let new_e = mkpredef_call expr.expr_loc "not" [expr] in 
210 
Some (expr, new_e), new_e 
211 
(* else *) 
212 
(* expr *) 
213 
 _ > None, expr 
214 

215 
let rdm_mutate_pre orig_expr = 
216 
let new_e = Expr_pre orig_expr in 
217 
Some (orig_expr, {orig_expr with expr_desc = new_e}), new_e 
218  
219  
220 
let rdm_mutate_const_value c = 
221 
match c with 
222 
 Const_int i > Const_int (rdm_mutate_int i) 
223 
 Const_real (n, i, s) > let (n', i', s') = rdm_mutate_real (n, i, s) in Const_real (n', i', s') 
224 
 Const_array _ 
225 
 Const_string _ 
226 
 Const_struct _ 
227 
 Const_tag _ > c 
228  
229 
let rdm_mutate_const c = 
230 
let new_const = rdm_mutate_const_value c.const_value in 
231 
let mut = check_mut (mk_cst_expr c.const_value) (mk_cst_expr new_const) in 
232 
mut, { c with const_value = new_const } 
233  
234  
235 
let select_in_list list rdm_mutate_elem = 
236 
let selected = Random.int (List.length list) in 
237 
let mutation_opt, new_list, _ = 
238 
List.fold_right 
239 
(fun elem (mutation_opt, res, cpt) > if cpt = selected then 
240 
let mutation, new_elem = rdm_mutate_elem elem in 
241 
Some mutation, new_elem::res, cpt+1 else mutation_opt, elem::res, cpt+1) 
242 
list 
243 
(None, [], 0) 
244 
in 
245 
match mutation_opt with 
246 
 Some mut > mut, new_list 
247 
 _ > assert false 
248  
249  
250 
let rec rdm_mutate_expr expr = 
251 
let mk_e d = { expr with expr_desc = d } in 
252 
match expr.expr_desc with 
253 
 Expr_ident id > rdm_mutate_var expr 
254 
 Expr_const c > 
255 
let new_const = rdm_mutate_const_value c in 
256 
let mut = check_mut (mk_cst_expr c) (mk_cst_expr new_const) in 
257 
mut, mk_e (Expr_const new_const) 
258 
 Expr_tuple l > 
259 
let mut, l' = select_in_list l rdm_mutate_expr in 
260 
mut, mk_e (Expr_tuple l') 
261 
 Expr_ite (i,t,e) > ( 
262 
let mut, l = select_in_list [i; t; e] rdm_mutate_expr in 
263 
match l with 
264 
 [i'; t'; e'] > mut, mk_e (Expr_ite (i', t', e')) 
265 
 _ > assert false 
266 
) 
267 
 Expr_arrow (e1, e2) > ( 
268 
let mut, l = select_in_list [e1; e2] rdm_mutate_expr in 
269 
match l with 
270 
 [e1'; e2'] > mut, mk_e (Expr_arrow (e1', e2')) 
271 
 _ > assert false 
272 
) 
273 
 Expr_pre e > 
274 
let select_pre = Random.bool () in 
275 
if select_pre then 
276 
let mut, new_expr = rdm_mutate_pre expr in 
277 
mut, mk_e new_expr 
278 
else 
279 
let mut, e' = rdm_mutate_expr e in 
280 
mut, mk_e (Expr_pre e') 
281 
 Expr_appl (op_id, args, r) > 
282 
let select_op = Random.bool () in 
283 
if select_op then 
284 
let new_op_id = rdm_mutate_op op_id in 
285 
let new_e = mk_e (Expr_appl (new_op_id, args, r)) in 
286 
let mut = check_mut expr new_e in 
287 
mut, new_e 
288 
else 
289 
let mut, new_args = rdm_mutate_expr args in 
290 
mut, mk_e (Expr_appl (op_id, new_args, r)) 
291 
(* Other constructs are kept. 
292 
 Expr_fby of expr * expr 
293 
 Expr_array of expr list 
294 
 Expr_access of expr * Dimension.dim_expr 
295 
 Expr_power of expr * Dimension.dim_expr 
296 
 Expr_when of expr * ident * label 
297 
 Expr_merge of ident * (label * expr) list 
298 
 Expr_uclock of expr * int 
299 
 Expr_dclock of expr * int 
300 
 Expr_phclock of expr * rat *) 
301 
 _ > None, expr 
302 

303  
304 
let rdm_mutate_eq eq = 
305 
let mutation, new_rhs = rdm_mutate_expr eq.eq_rhs in 
306 
mutation, { eq with eq_rhs = new_rhs } 
307  
308 
let rnd_mutate_stmt stmt = 
309 
match stmt with 
310 
 Eq eq > let mut, new_eq = rdm_mutate_eq eq in 
311 
report ~level:1 
312 
(fun fmt > fprintf fmt "mutation: %a becomes %a@ " 
313 
Printers.pp_node_eq eq 
314 
Printers.pp_node_eq new_eq); 
315 
mut, Eq new_eq 
316 
 Aut aut > assert false 
317  
318 
let rdm_mutate_node nd = 
319 
let mutation, new_node_stmts = 
320 
select_in_list 
321 
nd.node_stmts rnd_mutate_stmt 
322 
in 
323 
mutation, { nd with node_stmts = new_node_stmts } 
324  
325 
let rdm_mutate_top_decl td = 
326 
match td.top_decl_desc with 
327 
 Node nd > 
328 
let mutation, new_node = rdm_mutate_node nd in 
329 
mutation, { td with top_decl_desc = Node new_node} 
330 
 Const cst > 
331 
let mut, new_cst = rdm_mutate_const cst in 
332 
mut, { td with top_decl_desc = Const new_cst } 
333 
 _ > None, td 
334 

335 
(* Create a single mutant with the provided random seed *) 
336 
let rdm_mutate_prog prog = 
337 
select_in_list prog rdm_mutate_top_decl 
338  
339 
let rdm_mutate nb prog = 
340 
let rec iterate nb res = 
341 
incr random_seed; 
342 
if nb <= 0 then 
343 
res 
344 
else ( 
345 
Random.init !random_seed; 
346 
let mutation, new_mutant = rdm_mutate_prog prog in 
347 
match mutation with 
348 
None > iterate nb res 
349 
 Some mutation > ( 
350 
if List.mem_assoc mutation res then ( 
351 
iterate nb res 
352 
) 
353 
else ( 
354 
report ~level:1 (fun fmt > fprintf fmt "%i mutants remaining@ " nb); 
355 
iterate (nb1) ((mutation, new_mutant)::res) 
356 
) 
357 
) 
358 
) 
359 
in 
360 
iterate nb [] 
361  
362  
363 
(*****************************************************************) 
364 
(* Random mutation *) 
365 
(*****************************************************************) 
366  
367 
type mutant_t = Boolexpr of int  Pre of int  Op of string * int * string  IncrIntCst of int  DecrIntCst of int  SwitchIntCst of int * int 
368  
369 
(* Denotes the parent node, the equation lhs and the location of the mutation *) 
370 
type mutation_loc = ident * ident list * Location.t 
371 
let target : mutant_t option ref = ref None 
372  
373 
let mutation_info : mutation_loc option ref = ref None 
374 
let current_node: ident option ref = ref None 
375 
let current_eq_lhs : ident list option ref = ref None 
376 
let current_loc : Location.t option ref = ref None 
377 

378 
let set_mutation_loc () = 
379 
target := None; 
380 
match !current_node, !current_eq_lhs, !current_loc with 
381 
 Some n, Some elhs, Some l > mutation_info := Some (n, elhs, l) 
382 
 _ > assert false (* Those global vars should be defined during the 
383 
visitor pattern execution *) 
384  
385 
let print_directive fmt d = 
386 
match d with 
387 
 Pre n > Format.fprintf fmt "pre %i" n 
388 
 Boolexpr n > Format.fprintf fmt "boolexpr %i" n 
389 
 Op (o, i, d) > Format.fprintf fmt "%s %i > %s" o i d 
390 
 IncrIntCst n > Format.fprintf fmt "incr int cst %i" n 
391 
 DecrIntCst n > Format.fprintf fmt "decr int cst %i" n 
392 
 SwitchIntCst (n, m) > Format.fprintf fmt "switch int cst %i > %i" n m 
393  
394 
let print_directive_json fmt d = 
395 
match d with 
396 
 Pre _ > Format.fprintf fmt "\"mutation\": \"pre\"" 
397 
 Boolexpr _ > Format.fprintf fmt "\"mutation\": \"not\"" 
398 
 Op (o, _, d) > Format.fprintf fmt "\"mutation\": \"op_conv\", \"from\": \"%s\", \"to\": \"%s\"" o d 
399 
 IncrIntCst n > Format.fprintf fmt "\"mutation\": \"cst_incr\"" 
400 
 DecrIntCst n > Format.fprintf fmt "\"mutation\": \"cst_decr\"" 
401 
 SwitchIntCst (n, m) > Format.fprintf fmt "\"mutation\": \"cst_switch\", \"to_cst\": \"%i\"" m 
402 

403 
let print_loc_json fmt (n,eqlhs, l) = 
404 
Format.fprintf fmt "\"node_id\": \"%s\", \"eq_lhs\": [%a], \"loc_line\": \"%i\"" 
405 
n 
406 
(Utils.fprintf_list ~sep:", " (fun fmt s > Format.fprintf fmt "\"%s\"" s)) eqlhs 
407 
(Location.loc_line l) 
408 

409 
let fold_mutate_int i = 
410 
if Random.int 100 > threshold_inc_int then 
411 
i+1 
412 
else if Random.int 100 > threshold_dec_int then 
413 
i1 
414 
else if Random.int 100 > threshold_random_int then 
415 
Random.int 10 
416 
else if Random.int 100 > threshold_switch_int then 
417 
try 
418 
let idx = Random.int (List.length !int_consts) in 
419 
List.nth !int_consts idx 
420 
with _ > i 
421 
else 
422 
i 
423 

424 
let fold_mutate_float f = 
425 
if Random.int 100 > threshold_random_float then 
426 
Random.float 10. 
427 
else 
428 
f 
429  
430 
let fold_mutate_op op = 
431 
(* match op with *) 
432 
(*  "+"  ""  "*"  "/" when Random.int 100 > threshold_arith_op > *) 
433 
(* let filtered = List.filter (fun x > x <> op) ["+"; ""; "*"; "/"] in *) 
434 
(* List.nth filtered (Random.int 3) *) 
435 
(*  "&&"  ""  "xor"  "impl" when Random.int 100 > threshold_bool_op > *) 
436 
(* let filtered = List.filter (fun x > x <> op) ["&&"; ""; "xor"; "impl"] in *) 
437 
(* List.nth filtered (Random.int 3) *) 
438 
(*  "<"  "<="  ">"  ">="  "!="  "=" when Random.int 100 > threshold_rel_op > *) 
439 
(* let filtered = List.filter (fun x > x <> op) ["<"; "<="; ">"; ">="; "!="; "="] in *) 
440 
(* List.nth filtered (Random.int 5) *) 
441 
(*  _ > op *) 
442 
match !target with 
443 
 Some (Op(op_orig, 0, op_new)) when op_orig = op > ( 
444 
set_mutation_loc (); 
445 
op_new 
446 
) 
447 
 Some (Op(op_orig, n, op_new)) when op_orig = op > ( 
448 
target := Some (Op(op_orig, n1, op_new)); 
449 
op 
450 
) 
451 
 _ > if List.mem op Basic_library.internal_funs then op else rename_app op 
452  
453  
454 
let fold_mutate_var expr = 
455 
(* match (Types.repr expr.expr_type).Types.tdesc with *) 
456 
(*  Types.Tbool > *) 
457 
(* (\* if Random.int 100 > threshold_negate_bool_var then *\) *) 
458 
(* mkpredef_unary_call Location.dummy_loc "not" expr *) 
459 
(* (\* else *\) *) 
460 
(* (\* expr *\) *) 
461 
(*  _ > 
462 
*)expr 
463  
464 
let fold_mutate_boolexpr expr = 
465 
match !target with 
466 
 Some (Boolexpr 0) > ( 
467 
set_mutation_loc (); 
468  
469 
mkpredef_call expr.expr_loc "not" [expr] 
470 
) 
471 
 Some (Boolexpr n) > 
472 
(target := Some (Boolexpr (n1)); expr) 
473 
 _ > expr 
474 

475 
let fold_mutate_pre orig_expr e = 
476 
match !target with 
477 
Some (Pre 0) > ( 
478 
set_mutation_loc (); 
479 
Expr_pre ({orig_expr with expr_desc = Expr_pre e}) 
480 
) 
481 
 Some (Pre n) > ( 
482 
target := Some (Pre (n1)); 
483 
Expr_pre e 
484 
) 
485 
 _ > Expr_pre e 
486 

487 
let fold_mutate_const_value c = 
488 
match c with 
489 
 Const_int i > ( 
490 
match !target with 
491 
 Some (IncrIntCst 0) > (set_mutation_loc (); Const_int (i+1)) 
492 
 Some (DecrIntCst 0) > (set_mutation_loc (); Const_int (i1)) 
493 
 Some (SwitchIntCst (0, id)) > 
494 
(set_mutation_loc (); Const_int id) 
495 
 Some (IncrIntCst n) > (target := Some (IncrIntCst (n1)); c) 
496 
 Some (DecrIntCst n) > (target := Some (DecrIntCst (n1)); c) 
497 
 Some (SwitchIntCst (n, id)) > (target := Some (SwitchIntCst (n1, id)); c) 
498 
 _ > c) 
499 
 _ > c 
500  
501 
(* 
502 
match c with 
503 
 Const_int i > Const_int (fold_mutate_int i) 
504 
 Const_real s > Const_real s (* those are string, let's leave them *) 
505 
 Const_float f > Const_float (fold_mutate_float f) 
506 
 Const_array _ 
507 
 Const_tag _ > c 
508 
TODO 
509  
510 
*) 
511 
let fold_mutate_const c = 
512 
{ c with const_value = fold_mutate_const_value c.const_value } 
513  
514 
let rec fold_mutate_expr expr = 
515 
current_loc := Some expr.expr_loc; 
516 
let new_expr = 
517 
match expr.expr_desc with 
518 
 Expr_ident id > fold_mutate_var expr 
519 
 _ > ( 
520 
let new_desc = match expr.expr_desc with 
521 
 Expr_const c > Expr_const (fold_mutate_const_value c) 
522 
 Expr_tuple l > Expr_tuple (List.fold_right (fun e res > (fold_mutate_expr e)::res) l []) 
523 
 Expr_ite (i,t,e) > Expr_ite (fold_mutate_expr i, fold_mutate_expr t, fold_mutate_expr e) 
524 
 Expr_arrow (e1, e2) > Expr_arrow (fold_mutate_expr e1, fold_mutate_expr e2) 
525 
 Expr_pre e > fold_mutate_pre expr (fold_mutate_expr e) 
526 
 Expr_appl (op_id, args, r) > Expr_appl (fold_mutate_op op_id, fold_mutate_expr args, r) 
527 
(* Other constructs are kept. 
528 
 Expr_fby of expr * expr 
529 
 Expr_array of expr list 
530 
 Expr_access of expr * Dimension.dim_expr 
531 
 Expr_power of expr * Dimension.dim_expr 
532 
 Expr_when of expr * ident * label 
533 
 Expr_merge of ident * (label * expr) list 
534 
 Expr_uclock of expr * int 
535 
 Expr_dclock of expr * int 
536 
 Expr_phclock of expr * rat *) 
537 
 _ > expr.expr_desc 
538 

539 
in 
540 
{ expr with expr_desc = new_desc } 
541 
) 
542 
in 
543 
if (Types.repr expr.expr_type).Types.tdesc = Types.Tbool then 
544 
fold_mutate_boolexpr new_expr 
545 
else 
546 
new_expr 
547  
548 
let fold_mutate_eq eq = 
549 
current_eq_lhs := Some eq.eq_lhs; 
550 
{ eq with eq_rhs = fold_mutate_expr eq.eq_rhs } 
551  
552 
let fold_mutate_stmt stmt = 
553 
match stmt with 
554 
 Eq eq > Eq (fold_mutate_eq eq) 
555 
 Aut aut > assert false 
556  
557 
let fold_mutate_node nd = 
558 
current_node := Some nd.node_id; 
559 
{ nd with 
560 
node_stmts = 
561 
List.fold_right (fun stmt res > (fold_mutate_stmt stmt)::res) nd.node_stmts []; 
562 
node_id = rename_app nd.node_id 
563 
} 
564  
565 
let fold_mutate_top_decl td = 
566 
match td.top_decl_desc with 
567 
 Node nd > { td with top_decl_desc = Node (fold_mutate_node nd)} 
568 
 Const cst > { td with top_decl_desc = Const (fold_mutate_const cst)} 
569 
 _ > td 
570 

571 
(* Create a single mutant with the provided random seed *) 
572 
let fold_mutate_prog prog = 
573 
List.fold_right (fun e res > (fold_mutate_top_decl e)::res) prog [] 
574  
575 
let create_mutant prog directive = 
576 
target := Some directive; 
577 
let prog' = fold_mutate_prog prog in 
578 
let mutation_info = match !target , !mutation_info with 
579 
 None, Some mi > mi 
580 
 _ > ( 
581 
Format.eprintf "Failed when creating mutant for directive %a@.@?" print_directive directive; 
582 
let _ = match !target with Some dir' > Format.eprintf "New directive %a@.@?" print_directive dir'  _ > () in 
583 
assert false (* The mutation has not been performed. *) 
584 
) 
585 

586 
in 
587 
(* target := None; (* should happen only if no mutation occured during the 
588 
visit *)*) 
589 
prog', mutation_info 
590 

591  
592 
let op_mutation op = 
593 
let res = 
594 
let rem_op l = List.filter (fun e > e <> op) l in 
595 
if List.mem op arith_op then rem_op arith_op else 
596 
if List.mem op bool_op then rem_op bool_op else 
597 
if List.mem op rel_op then rem_op rel_op else 
598 
(Format.eprintf "Failing with op %s@." op; 
599 
assert false 
600 
) 
601 
in 
602 
(* Format.eprintf "Mutation op %s to [%a]@." op (Utils.fprintf_list ~sep:"," Format.pp_print_string) res; *) 
603 
res 
604  
605 
let rec remains select list = 
606 
match list with 
607 
[] > [] 
608 
 hd::tl > if select hd then tl else remains select tl 
609 

610 
let next_change m = 
611 
let res = 
612 
let rec first_op () = 
613 
try 
614 
let min_binding = OpCount.min_binding !records.nb_op in 
615 
Op (fst min_binding, 0, List.hd (op_mutation (fst min_binding))) 
616 
with Not_found > first_boolexpr () 
617 
and first_boolexpr () = 
618 
if !records.nb_boolexpr > 0 then 
619 
Boolexpr 0 
620 
else first_pre () 
621 
and first_pre () = 
622 
if !records.nb_pre > 0 then 
623 
Pre 0 
624 
else 
625 
first_op () 
626 
and first_intcst () = 
627 
if IntSet.cardinal !records.consts > 0 then 
628 
IncrIntCst 0 
629 
else 
630 
first_boolexpr () 
631 
in 
632 
match m with 
633 
 Boolexpr n > 
634 
if n+1 >= !records.nb_boolexpr then 
635 
first_pre () 
636 
else 
637 
Boolexpr (n+1) 
638 
 Pre n > 
639 
if n+1 >= !records.nb_pre then 
640 
first_op () 
641 
else Pre (n+1) 
642 
 Op (orig, id, mut_op) > ( 
643 
match remains (fun x > x = mut_op) (op_mutation orig) with 
644 
 next_op::_ > Op (orig, id, next_op) 
645 
 [] > if id+1 >= OpCount.find orig !records.nb_op then ( 
646 
match remains (fun (k1, _) > k1 = orig) (OpCount.bindings !records.nb_op) with 
647 
 [] > first_intcst () 
648 
 hd::_ > Op (fst hd, 0, List.hd (op_mutation (fst hd))) 
649 
) else 
650 
Op(orig, id+1, List.hd (op_mutation orig)) 
651 
) 
652 
 IncrIntCst n > 
653 
if n+1 >= IntSet.cardinal !records.consts then 
654 
DecrIntCst 0 
655 
else IncrIntCst (n+1) 
656 
 DecrIntCst n > 
657 
if n+1 >= IntSet.cardinal !records.consts then 
658 
SwitchIntCst (0, 0) 
659 
else DecrIntCst (n+1) 
660 
 SwitchIntCst (n, m) > 
661 
if m+1 > 1 + IntSet.cardinal !records.consts then 
662 
SwitchIntCst (n, m+1) 
663 
else if n+1 >= IntSet.cardinal !records.consts then 
664 
SwitchIntCst (n+1, 0) 
665 
else first_boolexpr () 
666  
667 
in 
668 
(* Format.eprintf "from: %a to: %a@." print_directive m print_directive res; *) 
669 
res 
670  
671 
let fold_mutate nb prog = 
672 
incr random_seed; 
673 
Random.init !random_seed; 
674 
(* Local references to keep track of generated directives *) 
675  
676 
(* build a set of integer 0, 1, ... n1 for input n *) 
677 
let cpt_to_intset cpt = 
678 
let arr = Array.init cpt (fun x > x) in 
679 
Array.fold_right IntSet.add arr IntSet.empty 
680 
in 
681 

682 
let possible_const_id = cpt_to_intset !records.nb_consts in 
683 
(* let possible_boolexpr_id = cpt_to_intset !records.nb_boolexpr in *) 
684 
(* let possible_pre_id = cpt_to_intset !records.nb_pre in *) 
685 

686 
let incremented_const_id = ref IntSet.empty in 
687 
let decremented_const_id = ref IntSet.empty in 
688 

689 
let create_new_incr_decr registered build = 
690 
let possible = IntSet.diff possible_const_id !registered > IntSet.elements in 
691 
let len = List.length possible in 
692 
if len <= 0 then 
693 
false, build (1) (* Should not be stored *) 
694 
else 
695 
let picked = List.nth possible (Random.int (List.length possible)) in 
696 
registered := IntSet.add picked !registered; 
697 
true, build picked 
698 
in 
699  
700  
701 
let module DblIntSet = Set.Make (struct type t = int * int let compare = compare end) in 
702 
let switch_const_id = ref DblIntSet.empty in 
703 
let switch_set = 
704 
if IntSet.cardinal !records.consts <= 1 then 
705 
DblIntSet.empty 
706 
else 
707 
(* First element is cst id (the ith cst) while second is the 
708 
ith element of the set of gathered constants 
709 
!record.consts *) 
710 
IntSet.fold (fun cst_id set > 
711 
IntSet.fold (fun ith_cst set > 
712 
DblIntSet.add (cst_id, ith_cst) set 
713 
) !records.consts set 
714 
) possible_const_id DblIntSet.empty 
715 
in 
716  
717 
let create_new_switch registered build = 
718 
let possible = DblIntSet.diff switch_set !registered > DblIntSet.elements in 
719 
let len = List.length possible in 
720 
if len <= 0 then 
721 
false, build (1,1) (* Should not be stored *) 
722 
else 
723 
let picked = List.nth possible (Random.int (List.length possible)) in 
724 
registered := DblIntSet.add picked !registered; 
725 
true, build picked 
726 
in 
727 

728 
let find_next_new mutants mutant = 
729 
let rec find_next_new init current = 
730 
if init = current  List.mem current mutants then raise Not_found else 
731  
732 
(* TODO: check if we can generate more cases. The following lines were 
733 
cylcing and missing to detect that the enumaration was complete, 
734 
leading to a non terminating process. The current setting is harder 
735 
but may miss enumerating some cases. To be checked! *) 
736 

737 
(* if List.mem current mutants then *) 
738 
(* find_next_new init (next_change current) *) 
739 
(* else *) 
740 
current 
741 
in 
742 
find_next_new mutant (next_change mutant) 
743 
in 
744 
(* Creating list of nb elements of mutants *) 
745 
let rec create_mutants_directives rnb mutants = 
746 
if rnb <= 0 then mutants 
747 
else 
748 
(* Initial list of transformation *) 
749 
let rec init_list x = if x <= 0 then [0] else x::(init_list (x1)) in 
750 
let init_list = init_list 5 in 
751 
(* We generate a random permutation of the list: the first item is the 
752 
transformation, the rest of the list act as fallback choices to make 
753 
sure we produce something *) 
754 
let shuffle l = 
755 
let nd = List.map (fun c > Random.bits (), c) l in 
756 
let sond = List.sort compare nd in 
757 
List.map snd sond 
758 
in 
759 
let transforms = shuffle init_list in 
760 
let rec apply_transform transforms = 
761 
let f id = 
762 
match id with 
763 
 5 > create_new_incr_decr incremented_const_id (fun x > IncrIntCst x) 
764 
 4 > create_new_incr_decr decremented_const_id (fun x > DecrIntCst x) 
765 
 3 > create_new_switch switch_const_id (fun (x,y) > SwitchIntCst(x, y)) 
766 
 2 > !records.nb_pre >0, Pre (try Random.int !records.nb_pre with _ > 0) 
767 
 1 > !records.nb_boolexpr > 0, Boolexpr (try Random.int !records.nb_boolexpr with _ > 0) 
768 
 0 > let bindings = OpCount.bindings !records.nb_op in 
769 
let bindings_len = List.length bindings in 
770 
let op, nb_op = List.nth bindings (try Random.int (List.length bindings) with _ > 0) in 
771 
let new_op = List.nth (op_mutation op) (try Random.int (List.length (op_mutation op)) with _ > 0) in 
772 
bindings_len > 0, Op (op, (try Random.int nb_op with _ > 0), new_op) 
773 
 _ > assert false 
774 
in 
775 
match transforms with 
776 
 [] > assert false 
777 
 [hd] > f hd 
778 
 hd::tl > let ok, random_mutation = f hd in 
779 
if ok then 
780 
ok, random_mutation 
781 
else 
782 
apply_transform tl 
783 
in 
784 
let ok, random_mutation = apply_transform transforms in 
785 
let stop_process () = 
786 
report ~level:1 (fun fmt > fprintf fmt 
787 
"Only %i mutants directives generated out of %i expected@ " 
788 
(nbrnb) 
789 
nb); 
790 
mutants 
791 
in 
792 
if not ok then 
793 
stop_process () 
794 
else if List.mem random_mutation mutants then 
795 
try 
796 
let new_mutant = (find_next_new mutants random_mutation) in 
797 
report ~level:2 (fun fmt > fprintf fmt " %i mutants directive generated out of %i expected@ " (nbrnb) nb); 
798 
create_mutants_directives (rnb1) (new_mutant::mutants) 
799 
with Not_found > ( 
800 
stop_process () 
801 
) 
802 
else ( 
803 
create_mutants_directives (rnb1) (random_mutation::mutants) 
804 
) 
805 
in 
806 
let mutants_directives = create_mutants_directives nb [] in 
807 
List.map (fun d > 
808 
let mutant, loc = create_mutant prog d in 
809 
d, loc, mutant ) mutants_directives 
810 

811  
812 
let mutate nb prog = 
813 
records := compute_records prog; 
814 
(* Format.printf "Records: %i pre, %i boolexpr" (\* , %a ops *\) *) 
815 
(* !records.nb_pre *) 
816 
(* !records.nb_boolexpr *) 
817 
(* (\* !records.op *\) *) 
818 
(* ; *) 
819 
fold_mutate nb prog 
820  
821  
822  
823  
824 
(* Local Variables: *) 
825 
(* compilecommand:"make C .." *) 
826 
(* End: *) 
827  
828 
