Project

General

Profile

Statistics
| Branch: | Tag: | Revision:

lustrec / src / parser_lustre.mly @ 5c1184ad

History | View | Annotate | Download (15.4 KB)

1
/* ----------------------------------------------------------------------------
2
 * SchedMCore - A MultiCore Scheduling Framework
3
 * Copyright (C) 2009-2011, ONERA, Toulouse, FRANCE - LIFL, Lille, FRANCE
4
 *
5
 * This file is part of Prelude
6
 *
7
 * Prelude is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public License
9
 * as published by the Free Software Foundation ; either version 2 of
10
 * the License, or (at your option) any later version.
11
 *
12
 * Prelude is distributed in the hope that it will be useful, but
13
 * WITHOUT ANY WARRANTY ; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with this program ; if not, write to the Free Software
19
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
20
 * USA
21
 *---------------------------------------------------------------------------- */
22

    
23
%{
24
open LustreSpec
25
open Corelang
26
open Dimension
27
open Utils
28

    
29
let mktyp x = mktyp (Location.symbol_rloc ()) x
30
let mkclock x = mkclock (Location.symbol_rloc ()) x
31
let mkvar_decl x = mkvar_decl (Location.symbol_rloc ()) x
32
let mkexpr x = mkexpr (Location.symbol_rloc ()) x
33
let mkeq x = mkeq (Location.symbol_rloc ()) x
34
let mkassert x = mkassert (Location.symbol_rloc ()) x
35
let mktop_decl x = mktop_decl (Location.symbol_rloc ()) x
36
let mkpredef_call x = mkpredef_call (Location.symbol_rloc ()) x
37
let mkpredef_unary_call x = mkpredef_unary_call (Location.symbol_rloc ()) x
38

    
39
let mkdim_int i = mkdim_int (Location.symbol_rloc ()) i
40
let mkdim_bool b = mkdim_bool (Location.symbol_rloc ()) b
41
let mkdim_ident id = mkdim_ident (Location.symbol_rloc ()) id
42
let mkdim_appl f args = mkdim_appl (Location.symbol_rloc ()) f args
43
let mkdim_ite i t e = mkdim_ite (Location.symbol_rloc ()) i t e
44

    
45
%}
46

    
47
%token <int> INT
48
%token <string> REAL
49
%token <float> FLOAT
50
%token AUTOMATON STATE UNTIL UNLESS RESTART RESUME LAST
51
%token STATELESS ASSERT OPEN QUOTE FUNCTION
52
%token <string> IDENT
53
%token <LustreSpec.expr_annot> ANNOT
54
%token <LustreSpec.node_annot> NODESPEC
55
%token LBRACKET RBRACKET LCUR RCUR LPAR RPAR SCOL COL COMMA COLCOL 
56
%token AMPERAMPER BARBAR NOT POWER
57
%token IF THEN ELSE
58
%token UCLOCK DCLOCK PHCLOCK TAIL
59
%token MERGE FBY WHEN WHENNOT EVERY
60
%token NODE LET TEL RETURNS VAR IMPORTED SENSOR ACTUATOR WCET TYPE CONST
61
%token STRUCT ENUM
62
%token TINT TFLOAT TREAL TBOOL TCLOCK
63
%token RATE DUE
64
%token EQ LT GT LTE GTE NEQ
65
%token AND OR XOR IMPL
66
%token MULT DIV MOD
67
%token MINUS PLUS UMINUS
68
%token PRE ARROW
69

    
70
%token EOF
71

    
72
%nonassoc COMMA
73
%left MERGE IF
74
%nonassoc ELSE
75
%right ARROW FBY
76
%left WHEN WHENNOT UCLOCK DCLOCK PHCLOCK
77
%right COLCOL
78
%right IMPL
79
%left OR XOR BARBAR
80
%left AND AMPERAMPER
81
%left NOT
82
%nonassoc INT
83
%nonassoc EQ LT GT LTE GTE NEQ
84
%left MINUS PLUS
85
%left MULT DIV MOD
86
%left UMINUS
87
%left POWER
88
%left PRE LAST
89
%nonassoc RBRACKET
90
%nonassoc LBRACKET
91

    
92
%start prog
93
%type <Corelang.top_decl list> prog
94
%start header
95
%type <Corelang.top_decl list> header
96

    
97
%%
98

    
99
prog:
100
    typ_def_list top_decl_list EOF {$1;(List.rev $2)}
101

    
102
header:
103
    typ_def_list top_decl_header_list EOF {$1;(List.rev $2)}
104

    
105
top_decl_list:
106
  top_decl {[$1]}
107
| top_decl_list top_decl {$2::$1}
108

    
109

    
110
top_decl_header_list:
111
  top_decl_header {[$1]}
112
| top_decl_header_list top_decl_header {$2::$1}
113

    
114

    
115
top_decl_header:
116
| NODE IDENT LPAR vdecl_list SCOL_opt RPAR RETURNS LPAR vdecl_list SCOL_opt RPAR stateless_opt SCOL
117
    {let nd = mktop_decl (ImportedNode
118
                            {nodei_id = $2;
119
                             nodei_type = Types.new_var ();
120
                             nodei_clock = Clocks.new_var true;
121
                             nodei_inputs = List.rev $4;
122
                             nodei_outputs = List.rev $9;
123
			     nodei_stateless = $12;
124
			     nodei_spec = None})
125
    in
126
    Hashtbl.add node_table $2 nd; nd}
127

    
128
| nodespec_list NODE IDENT LPAR vdecl_list SCOL_opt RPAR RETURNS LPAR vdecl_list SCOL_opt RPAR stateless_opt SCOL
129
    {let nd = mktop_decl (ImportedNode
130
                            {nodei_id = $3;
131
                             nodei_type = Types.new_var ();
132
                             nodei_clock = Clocks.new_var true;
133
                             nodei_inputs = List.rev $5;
134
                             nodei_outputs = List.rev $10;
135
			     nodei_stateless = $13;
136
			     nodei_spec = Some $1})
137
    in
138
    Hashtbl.add node_table $3 nd; nd}
139

    
140
| FUNCTION IDENT LPAR vdecl_list SCOL_opt RPAR RETURNS LPAR vdecl_list SCOL_opt RPAR SCOL
141
    {let nd = mktop_decl (ImportedNode
142
                            {nodei_id = $2;
143
                             nodei_type = Types.new_var ();
144
			     nodei_clock = Clocks.new_var true;
145
                             nodei_inputs = List.rev $4;
146
                             nodei_outputs = List.rev $9;
147
			     nodei_stateless = true;
148
			     nodei_spec = None})
149
     in
150
     Hashtbl.add node_table $2 nd; nd}
151

    
152
| nodespec_list FUNCTION IDENT LPAR vdecl_list SCOL_opt RPAR RETURNS LPAR vdecl_list SCOL_opt RPAR SCOL
153
    {let nd = mktop_decl (ImportedNode
154
                            {nodei_id = $3;
155
                             nodei_type = Types.new_var ();
156
			     nodei_clock = Clocks.new_var true;
157
                             nodei_inputs = List.rev $5;
158
                             nodei_outputs = List.rev $10;
159
			     nodei_stateless = true;
160
			     nodei_spec = Some $1})
161
     in
162
    Hashtbl.add node_table $3 nd; nd}
163

    
164
top_decl:
165
| CONST cdecl_list { mktop_decl (Consts (List.rev $2)) }
166

    
167
| NODE IDENT LPAR vdecl_list SCOL_opt RPAR RETURNS LPAR vdecl_list SCOL_opt RPAR SCOL_opt locals LET eq_list TEL 
168
    {let eqs, asserts, annots = $15 in
169
     let nd = mktop_decl (Node
170
                            {node_id = $2;
171
                             node_type = Types.new_var ();
172
                             node_clock = Clocks.new_var true;
173
                             node_inputs = List.rev $4;
174
                             node_outputs = List.rev $9;
175
                             node_locals = List.rev $13;
176
			     node_gencalls = [];
177
			     node_checks = [];
178
			     node_asserts = asserts; 
179
                             node_eqs = eqs;
180
			     node_spec = None;
181
			     node_annot = match annots with [] -> None | _ -> Some annots})
182
    in
183
    Hashtbl.add node_table $2 nd; nd}
184

    
185
| nodespec_list NODE IDENT LPAR vdecl_list SCOL_opt RPAR RETURNS LPAR vdecl_list SCOL_opt RPAR SCOL_opt locals LET eq_list TEL 
186
    {let eqs, asserts, annots = $16 in
187
     let nd = mktop_decl (Node
188
                            {node_id = $3;
189
                             node_type = Types.new_var ();
190
                             node_clock = Clocks.new_var true;
191
                             node_inputs = List.rev $5;
192
                             node_outputs = List.rev $10;
193
                             node_locals = List.rev $14;
194
			     node_gencalls = [];
195
			     node_checks = [];
196
			     node_asserts = asserts; 
197
                             node_eqs = eqs;
198
			     node_spec = Some $1;
199
			     node_annot = match annots with [] -> None | _ -> Some annots})
200
    in
201
    Hashtbl.add node_table $3 nd; nd}
202

    
203
| OPEN QUOTE IDENT QUOTE { mktop_decl (Open $3) }
204

    
205
nodespec_list:
206
NODESPEC { $1 }
207
| NODESPEC nodespec_list { LustreSpec.merge_node_annot $1 $2 }
208

    
209
stateless_opt:
210
   { false }
211
| STATELESS {true}
212

    
213
typ_def_list:
214
    /* empty */ {}
215
| typ_def SCOL typ_def_list {$1;$3}
216

    
217
typ_def:
218
  TYPE IDENT EQ typeconst {
219
    try
220
      Hashtbl.add type_table (Tydec_const $2) (Corelang.get_repr_type $4)
221
    with Not_found-> raise (Corelang.Unbound_type ($4, Location.symbol_rloc())) }
222
| TYPE IDENT EQ ENUM LCUR tag_list RCUR { Hashtbl.add type_table (Tydec_const $2) (Tydec_enum ($6 (Tydec_const $2))) }
223
| TYPE IDENT EQ STRUCT LCUR field_list RCUR { Hashtbl.add type_table (Tydec_const $2) Tydec_any }
224

    
225
array_typ_decl:
226
                            { fun typ -> typ }
227
 | POWER dim array_typ_decl { fun typ -> $3 (Tydec_array ($2, typ)) }
228

    
229
typeconst:
230
  TINT array_typ_decl  { $2 Tydec_int }
231
| TBOOL array_typ_decl { $2 Tydec_bool  }
232
| TREAL array_typ_decl { $2 Tydec_real  }
233
| TFLOAT array_typ_decl { $2 Tydec_float }
234
| IDENT array_typ_decl { $2 (Tydec_const $1) }
235
| TBOOL TCLOCK  { Tydec_clock Tydec_bool }
236
| IDENT TCLOCK  { Tydec_clock (Tydec_const $1) }
237

    
238
tag_list:
239
  IDENT
240
  { (fun t -> if Hashtbl.mem tag_table $1
241
             then raise (Corelang.Already_bound_label ($1, t, Location.symbol_rloc ()))
242
             else (Hashtbl.add tag_table $1 t; $1 :: [])) }
243
| tag_list COMMA IDENT
244
  { (fun t -> if Hashtbl.mem tag_table $3
245
             then raise (Corelang.Already_bound_label ($3, t, Location.symbol_rloc ()))
246
             else (Hashtbl.add tag_table $3 t; $3 :: ($1 t))) }
247

    
248
field_list:
249
   { [] }
250
| IDENT COL typeconst SCOL field_list { ($1, $3) :: $5 }
251

    
252
eq_list:
253
  { [], [], [] }
254
| eq eq_list {let eql, assertl, annotl = $2 in ($1::eql), assertl, annotl}
255
| assert_ eq_list {let eql, assertl, annotl = $2 in eql, ($1::assertl), annotl}
256
| ANNOT eq_list {let eql, assertl, annotl = $2 in eql, assertl, $1@annotl}
257
| automaton eq_list {let eql, assertl, annotl = $2 in ($1::eql), assertl, annotl}
258

    
259
automaton:
260
 AUTOMATON IDENT handler_list { failwith "not implemented" }
261

    
262
handler_list:
263
     { [] }
264
| handler handler_list { $1::$2 }
265

    
266
handler:
267
 STATE IDENT ARROW unless_list locals LET eq_list TEL until_list { () }
268

    
269
unless_list:
270
    { [] }
271
| unless unless_list { $1::$2 }
272

    
273
until_list:
274
    { [] }
275
| until until_list { $1::$2 }
276

    
277
unless:
278
  UNLESS expr RESTART IDENT { }
279
| UNLESS expr RESUME IDENT  { }
280

    
281
until:
282
  UNTIL expr RESTART IDENT { }
283
| UNTIL expr RESUME IDENT  { }
284

    
285
assert_:
286
| ASSERT expr SCOL {mkassert ($2)}
287

    
288
eq:
289
       ident_list      EQ expr SCOL {mkeq (List.rev $1,$3)}
290
| LPAR ident_list RPAR EQ expr SCOL {mkeq (List.rev $2,$5)}
291

    
292
tuple_expr:
293
    expr COMMA expr {[$3;$1]}
294
| tuple_expr COMMA expr {$3::$1}
295

    
296
// Same as tuple expr but accepting lists with single element
297
array_expr:
298
  expr {[$1]}
299
| expr COMMA array_expr {$1::$3}
300

    
301
dim_list:
302
  dim RBRACKET { fun base -> mkexpr (Expr_access (base, $1)) }
303
| dim RBRACKET LBRACKET dim_list { fun base -> $4 (mkexpr (Expr_access (base, $1))) }
304

    
305
expr:
306
/* constants */
307
  INT {mkexpr (Expr_const (Const_int $1))}
308
| REAL {mkexpr (Expr_const (Const_real $1))}
309
| FLOAT {mkexpr (Expr_const (Const_float $1))}
310
/* Idents or type enum tags */
311
| IDENT {
312
  if Hashtbl.mem tag_table $1
313
  then mkexpr (Expr_const (Const_tag $1))
314
  else mkexpr (Expr_ident $1)}
315
| LPAR ANNOT expr RPAR
316
    {update_expr_annot $3 $2}
317
| LPAR expr RPAR
318
    {$2}
319
| LPAR tuple_expr RPAR
320
    {mkexpr (Expr_tuple (List.rev $2))}
321

    
322
/* Array expressions */
323
| LBRACKET array_expr RBRACKET { mkexpr (Expr_array $2) }
324
| expr POWER dim { mkexpr (Expr_power ($1, $3)) }
325
| expr LBRACKET dim_list { $3 $1 }
326

    
327
/* Temporal operators */
328
| PRE expr 
329
    {mkexpr (Expr_pre $2)}
330
| expr ARROW expr 
331
    {mkexpr (Expr_arrow ($1,$3))}
332
| expr FBY expr 
333
    {(*mkexpr (Expr_fby ($1,$3))*)
334
      mkexpr (Expr_arrow ($1, mkexpr (Expr_pre $3)))}
335
| expr WHEN IDENT 
336
    {mkexpr (Expr_when ($1,$3,tag_true))}
337
| expr WHENNOT IDENT
338
    {mkexpr (Expr_when ($1,$3,tag_false))}
339
| expr WHEN IDENT LPAR IDENT RPAR
340
    {mkexpr (Expr_when ($1, $5, $3))}
341
| MERGE IDENT handler_expr_list
342
    {mkexpr (Expr_merge ($2,$3))}
343

    
344
/* Applications */
345
| IDENT LPAR expr RPAR
346
    {mkexpr (Expr_appl ($1, $3, None))}
347
| IDENT LPAR expr RPAR EVERY IDENT
348
    {mkexpr (Expr_appl ($1, $3, Some ($6, tag_true)))}
349
| IDENT LPAR expr RPAR EVERY IDENT LPAR IDENT RPAR
350
    {mkexpr (Expr_appl ($1, $3, Some ($8, $6))) }
351
| IDENT LPAR tuple_expr RPAR
352
    {mkexpr (Expr_appl ($1, mkexpr (Expr_tuple (List.rev $3)), None))}
353
| IDENT LPAR tuple_expr RPAR EVERY IDENT
354
    {mkexpr (Expr_appl ($1, mkexpr (Expr_tuple (List.rev $3)), Some ($6, tag_true))) }
355
| IDENT LPAR tuple_expr RPAR EVERY IDENT LPAR IDENT RPAR
356
    {mkexpr (Expr_appl ($1, mkexpr (Expr_tuple (List.rev $3)), Some ($8, $6))) }
357

    
358
/* Boolean expr */
359
| expr AND expr 
360
    {mkpredef_call "&&" [$1;$3]}
361
| expr AMPERAMPER expr 
362
    {mkpredef_call "&&" [$1;$3]}
363
| expr OR expr 
364
    {mkpredef_call "||" [$1;$3]}
365
| expr BARBAR expr 
366
    {mkpredef_call "||" [$1;$3]}
367
| expr XOR expr 
368
    {mkpredef_call "xor" [$1;$3]}
369
| NOT expr 
370
    {mkpredef_unary_call "not" $2}
371
| expr IMPL expr 
372
    {mkpredef_call "impl" [$1;$3]}
373

    
374
/* Comparison expr */
375
| expr EQ expr 
376
    {mkpredef_call "=" [$1;$3]}
377
| expr LT expr 
378
    {mkpredef_call "<" [$1;$3]}
379
| expr LTE expr 
380
    {mkpredef_call "<=" [$1;$3]}
381
| expr GT expr 
382
    {mkpredef_call ">" [$1;$3]}
383
| expr GTE  expr 
384
    {mkpredef_call ">=" [$1;$3]}
385
| expr NEQ expr 
386
    {mkpredef_call "!=" [$1;$3]}
387

    
388
/* Arithmetic expr */
389
| expr PLUS expr 
390
    {mkpredef_call "+" [$1;$3]}
391
| expr MINUS expr 
392
    {mkpredef_call "-" [$1;$3]}
393
| expr MULT expr 
394
    {mkpredef_call "*" [$1;$3]}
395
| expr DIV expr 
396
    {mkpredef_call "/" [$1;$3]}
397
| MINUS expr %prec UMINUS
398
  {mkpredef_unary_call "uminus" $2}
399
| expr MOD expr 
400
    {mkpredef_call "mod" [$1;$3]}
401

    
402
/* If */
403
| IF expr THEN expr ELSE expr
404
    {mkexpr (Expr_ite ($2, $4, $6))}
405

    
406
handler_expr_list:
407
   { [] }
408
| handler_expr handler_expr_list { $1 :: $2 }
409

    
410
handler_expr:
411
 LPAR IDENT ARROW expr RPAR { ($2, $4) }
412

    
413
signed_const_array:
414
| signed_const { [$1] }
415
| signed_const COMMA signed_const_array { $1 :: $3 }
416

    
417
signed_const:
418
  INT {Const_int $1}
419
| REAL {Const_real $1}
420
| FLOAT {Const_float $1}
421
| IDENT {Const_tag $1}
422
| MINUS INT {Const_int (-1 * $2)}
423
| MINUS REAL {Const_real ("-" ^ $2)}
424
| MINUS FLOAT {Const_float (-1. *. $2)}
425
| LBRACKET signed_const_array RBRACKET { Const_array $2 }
426

    
427
dim:
428
   INT { mkdim_int $1 }
429
| LPAR dim RPAR { $2 }
430
| IDENT { mkdim_ident $1 }
431
| dim AND dim 
432
    {mkdim_appl "&&" [$1;$3]}
433
| dim AMPERAMPER dim 
434
    {mkdim_appl "&&" [$1;$3]}
435
| dim OR dim 
436
    {mkdim_appl "||" [$1;$3]}
437
| dim BARBAR dim 
438
    {mkdim_appl "||" [$1;$3]}
439
| dim XOR dim 
440
    {mkdim_appl "xor" [$1;$3]}
441
| NOT dim 
442
    {mkdim_appl "not" [$2]}
443
| dim IMPL dim 
444
    {mkdim_appl "impl" [$1;$3]}
445

    
446
/* Comparison dim */
447
| dim EQ dim 
448
    {mkdim_appl "=" [$1;$3]}
449
| dim LT dim 
450
    {mkdim_appl "<" [$1;$3]}
451
| dim LTE dim 
452
    {mkdim_appl "<=" [$1;$3]}
453
| dim GT dim 
454
    {mkdim_appl ">" [$1;$3]}
455
| dim GTE  dim 
456
    {mkdim_appl ">=" [$1;$3]}
457
| dim NEQ dim 
458
    {mkdim_appl "!=" [$1;$3]}
459

    
460
/* Arithmetic dim */
461
| dim PLUS dim 
462
    {mkdim_appl "+" [$1;$3]}
463
| dim MINUS dim 
464
    {mkdim_appl "-" [$1;$3]}
465
| dim MULT dim 
466
    {mkdim_appl "*" [$1;$3]}
467
| dim DIV dim 
468
    {mkdim_appl "/" [$1;$3]}
469
| MINUS dim %prec UMINUS
470
  {mkdim_appl "uminus" [$2]}
471
| dim MOD dim 
472
    {mkdim_appl "mod" [$1;$3]}
473
/* If */
474
| IF dim THEN dim ELSE dim
475
    {mkdim_ite $2 $4 $6}
476

    
477
locals:
478
  {[]}
479
| VAR vdecl_list SCOL {$2}
480

    
481
vdecl_list:
482
    vdecl {$1}
483
| vdecl_list SCOL vdecl {$3 @ $1}
484

    
485
vdecl:
486
/* Useless no ?*/    ident_list
487
    {List.map mkvar_decl 
488
        (List.map (fun id -> (id, mktyp Tydec_any, mkclock Ckdec_any, false)) $1)}
489

    
490
| ident_list COL typeconst clock 
491
    {List.map mkvar_decl (List.map (fun id -> (id, mktyp $3, $4, false)) $1)}
492
| CONST ident_list COL typeconst /* static parameters don't have clocks */
493
    {List.map mkvar_decl (List.map (fun id -> (id, mktyp $4, mkclock Ckdec_any, true)) $2)}
494

    
495
cdecl_list:
496
  cdecl SCOL { [$1] }
497
| cdecl_list cdecl SCOL { $2::$1 }
498

    
499
cdecl:
500
    IDENT EQ signed_const {
501
      let c = {
502
	const_id = $1;
503
	const_loc = Location.symbol_rloc ();
504
        const_type = Types.new_var ();
505
	const_value = $3;
506
      } in
507
      Hashtbl.add consts_table $1 c; c
508
    }
509

    
510
clock:
511
    {mkclock Ckdec_any}
512
| when_list
513
    {mkclock (Ckdec_bool (List.rev $1))}
514

    
515
when_cond:
516
    WHEN IDENT {($2, tag_true)}
517
| WHENNOT IDENT {($2, tag_false)}
518
| WHEN IDENT LPAR IDENT RPAR {($4, $2)}
519

    
520
when_list:
521
    when_cond {[$1]}
522
| when_list when_cond {$2::$1}
523

    
524
ident_list:
525
  IDENT {[$1]}
526
| ident_list COMMA IDENT {$3::$1}
527

    
528
SCOL_opt:
529
    SCOL {} | {}