Project

General

Profile

Revision 59020713 src/machine_code.ml

View differences:

src/machine_code.ml
20 20

  
21 21

  
22 22
       
23
(* translate_<foo> : node -> context -> <foo> -> machine code/expression *)
23
(* translate_<foo> : vars -> context -> <foo> -> machine code/expression *)
24 24
(* the context contains  m : state aka memory variables  *)
25 25
(*                      si : initialization instructions *)
26 26
(*                       j : node aka machine instances  *)
27 27
(*                       d : local variables             *)
28 28
(*                       s : step instructions           *)
29
let translate_ident node (m, si, j, d, s) id =
29
let translate_ident vars _ (* (m, si, j, d, s) *) id =
30 30
  (* Format.eprintf "trnaslating ident: %s@." id; *)
31
  try (* id is a node var *)
32
    let var_id = get_node_var id node in
31
  try (* id is a var that shall be visible here , ie. in vars *)
32
    let var_id = get_var id vars in
33 33
    mk_val (Var var_id) var_id.var_type
34 34
  with Not_found ->
35 35
    try (* id is a constant *)
36
      let vdecl = (Corelang.var_decl_of_const (const_of_top (Hashtbl.find Corelang.consts_table id))) in
36
      let vdecl = (Corelang.var_decl_of_const
37
                     (const_of_top (Hashtbl.find Corelang.consts_table id)))
38
      in
37 39
      mk_val (Var vdecl) vdecl.var_type
38 40
    with Not_found ->
39 41
      (* id is a tag *)
40
      (* DONE construire une liste des enum declarés et alors chercher dedans la liste
41
	 qui contient id *)
42
      (* DONE construire une liste des enum declarés et alors chercher
43
         dedans la liste qui contient id *)
42 44
      try
43 45
        let typ = (typedef_of_top (Hashtbl.find Corelang.tag_table id)).tydef_id in
44 46
        mk_val (Cst (Const_tag id)) (Type_predef.type_const typ)
45
      with Not_found -> (Format.eprintf "internal error: Machine_code.translate_ident %s" id;
47
      with Not_found -> (Format.eprintf
48
                           "internal error: Machine_code.translate_ident %s"
49
                           id;
46 50
                         assert false)
47 51

  
48
let rec control_on_clock node ((m, si, j, d, s) as args) ck inst =
52
let rec control_on_clock vars ((m, si, j, d, s) as args) ck inst =
49 53
 match (Clocks.repr ck).cdesc with
50 54
 | Con    (ck1, cr, l) ->
51 55
   let id  = Clocks.const_of_carrier cr in
52
   control_on_clock node args ck1 (mkinstr
56
   control_on_clock vars args ck1 (mkinstr
53 57
				     (* TODO il faudrait prendre le lustre
54 58
					associé à instr et rajouter print_ck_suffix
55 59
					ck) de clocks.ml *)
56
				     (MBranch (translate_ident node args id,
60
				     (MBranch (translate_ident vars args id,
57 61
					       [l, [inst]] )))
58 62
 | _                   -> inst
59 63

  
......
79 83
  | "C" -> specialize_to_c expr
80 84
  | _   -> expr
81 85

  
82
let rec translate_expr node ((m, si, j, d, s) as args) expr =
86
let rec translate_expr vars ((m, si, j, d, s) as args) expr =
83 87
  let expr = specialize_op expr in
88
  (* all calls are using the same arguments (vars for the variable
89
     enviroment and args for computed memories). No fold constructs
90
     here. We can do partial evaluation of translate_expr *)
91
  let translate_expr = translate_expr vars args in 
84 92
  let value_desc = 
85 93
    match expr.expr_desc with
86 94
    | Expr_const v                     -> Cst v
87
    | Expr_ident x                     -> (translate_ident node args x).value_desc
88
    | Expr_array el                    -> Array (List.map (translate_expr node args) el)
89
    | Expr_access (t, i)               -> Access (translate_expr node args t, translate_expr node args (expr_of_dimension i))
90
    | Expr_power  (e, n)               -> Power  (translate_expr node args e, translate_expr node args (expr_of_dimension n))
95
    | Expr_ident x                     -> (translate_ident vars args x).value_desc
96
    | Expr_array el                    -> Array (List.map translate_expr el)
97
    | Expr_access (t, i)               -> Access (translate_expr t,
98
                                                  translate_expr 
99
                                                    (expr_of_dimension i))
100
    | Expr_power  (e, n)               -> Power  (translate_expr e,
101
                                                  translate_expr
102
                                                    (expr_of_dimension n))
91 103
    | Expr_tuple _
92
    | Expr_arrow _ 
93
    | Expr_fby _
94
    | Expr_pre _                       -> (Printers.pp_expr Format.err_formatter expr; Format.pp_print_flush Format.err_formatter (); raise NormalizationError)
95
    | Expr_when    (e1, _, _)          -> (translate_expr node args e1).value_desc
104
      | Expr_arrow _ 
105
      | Expr_fby _
106
      | Expr_pre _                       -> (Printers.pp_expr
107
                                               Format.err_formatter expr;
108
                                             Format.pp_print_flush
109
                                               Format.err_formatter ();
110
                                             raise NormalizationError)
111
                                          
112
    | Expr_when    (e1, _, _)          -> (translate_expr e1).value_desc
96 113
    | Expr_merge   (x, _)              -> raise NormalizationError
97 114
    | Expr_appl (id, e, _) when Basic_library.is_expr_internal_fun expr ->
98
      let nd = node_from_name id in
99
      Fun (node_name nd, List.map (translate_expr node args) (expr_list_of_expr e))
115
       let nd = node_from_name id in
116
       Fun (node_name nd, List.map translate_expr (expr_list_of_expr e))
100 117
    | Expr_ite (g,t,e) -> (
101 118
      (* special treatment depending on the active backend. For horn backend, ite
102 119
	 are preserved in expression. While they are removed for C or Java
103 120
	 backends. *)
104 121
      match !Options.output with
105 122
      | "horn" -> 
106
	 Fun ("ite", [translate_expr node args g; translate_expr node args t; translate_expr node args e])
123
	 Fun ("ite", [translate_expr g; translate_expr t; translate_expr e])
107 124
      | "C" | "java" | _ -> 
108 125
	 (Format.eprintf "Normalization error for backend %s: %a@."
109 126
	    !Options.output
......
114 131
  in
115 132
  mk_val value_desc expr.expr_type
116 133

  
117
let translate_guard node args expr =
134
let translate_guard vars args expr =
118 135
  match expr.expr_desc with
119
  | Expr_ident x  -> translate_ident node args x
120
  | _ -> (Format.eprintf "internal error: translate_guard %s %a@." node.node_id Printers.pp_expr expr;assert false)
136
  | Expr_ident x  -> translate_ident vars args x
137
  | _ -> (Format.eprintf "internal error: translate_guard %a@."
138
            Printers.pp_expr expr;
139
          assert false)
121 140

  
122
let rec translate_act node ((m, si, j, d, s) as args) (y, expr) =
141
let rec translate_act vars ((m, si, j, d, s) as args) (y, expr) =
142
  let translate_act = translate_act vars args in
143
  let translate_guard = translate_guard vars args in
144
  let translate_ident = translate_ident vars args in
145
  let translate_expr = translate_expr vars args in
123 146
  let eq = Corelang.mkeq Location.dummy_loc ([y.var_id], expr) in
124 147
  match expr.expr_desc with
125
  | Expr_ite   (c, t, e) -> let g = translate_guard node args c in
148
  | Expr_ite   (c, t, e) -> let g = translate_guard c in
126 149
			    mk_conditional ?lustre_eq:(Some eq) g
127
                              [translate_act node args (y, t)]
128
                              [translate_act node args (y, e)]
129
  | Expr_merge (x, hl)   -> mkinstr ?lustre_eq:(Some eq) (MBranch (translate_ident node args x,
130
                                     List.map (fun (t,  h) -> t, [translate_act node args (y, h)]) hl))
131
  | _                    -> mkinstr ?lustre_eq:(Some eq)  (MLocalAssign (y, translate_expr node args expr))
150
                              [translate_act (y, t)]
151
                              [translate_act (y, e)]
152
  | Expr_merge (x, hl)   -> mkinstr ?lustre_eq:(Some eq)
153
                              (MBranch (translate_ident x,
154
                                        List.map (fun (t,  h) ->
155
                                            t, [translate_act (y, h)])
156
                                          hl))
157
  | _                    -> mkinstr ?lustre_eq:(Some eq)
158
                              (MLocalAssign (y, translate_expr expr))
132 159

  
133
let reset_instance node args i r c =
160
let reset_instance vars args i r c =
134 161
  match r with
135 162
  | None        -> []
136
  | Some r      -> let g = translate_guard node args r in
137
                   [control_on_clock node args c (mk_conditional g [mkinstr (MReset i)] [mkinstr (MNoReset i)])]
163
  | Some r      -> let g = translate_guard vars args r in
164
                   [control_on_clock
165
                      vars
166
                      args
167
                      c
168
                      (mk_conditional
169
                         g
170
                         [mkinstr (MReset i)]
171
                         [mkinstr (MNoReset i)])
172
                   ]
173

  
174
let translate_eq vars ((m, si, j, d, s) as args) eq =
175
  let translate_expr = translate_expr vars args in
176
  let translate_act = translate_act vars args in
177
  let control_on_clock = control_on_clock vars args in
178
  let reset_instance = reset_instance vars args in
138 179

  
139
let translate_eq node ((m, si, j, d, s) as args) eq =
140
  (* Format.eprintf "translate_eq %a with clock %a@." Printers.pp_node_eq eq Clocks.print_ck eq.eq_rhs.expr_clock;  *)
180
  (* Format.eprintf "translate_eq %a with clock %a@." 
181
     Printers.pp_node_eq eq Clocks.print_ck eq.eq_rhs.expr_clock;  *)
141 182
  match eq.eq_lhs, eq.eq_rhs.expr_desc with
142 183
  | [x], Expr_arrow (e1, e2)                     ->
143
     let var_x = get_node_var x node in
144
     let o = new_instance node Arrow.arrow_top_decl eq.eq_rhs.expr_tag in
145
     let c1 = translate_expr node args e1 in
146
     let c2 = translate_expr node args e2 in
184
     let var_x = get_var x vars in
185
     let o = new_instance Arrow.arrow_top_decl eq.eq_rhs.expr_tag in
186
     let c1 = translate_expr e1 in
187
     let c2 = translate_expr e2 in
147 188
     (m,
148 189
      mkinstr (MReset o) :: si,
149 190
      Utils.IMap.add o (Arrow.arrow_top_decl, []) j,
150 191
      d,
151
      (control_on_clock node args eq.eq_rhs.expr_clock (mkinstr ?lustre_eq:(Some eq) (MStep ([var_x], o, [c1;c2])))) :: s)
152
  | [x], Expr_pre e1 when VSet.mem (get_node_var x node) d     ->
153
     let var_x = get_node_var x node in
192
      (control_on_clock eq.eq_rhs.expr_clock (mkinstr ?lustre_eq:(Some eq) (MStep ([var_x], o, [c1;c2])))) :: s)
193
  | [x], Expr_pre e1 when VSet.mem (get_var x vars) d     ->
194
     let var_x = get_var x vars in
154 195
     (VSet.add var_x m,
155 196
      si,
156 197
      j,
157 198
      d,
158
      control_on_clock node args eq.eq_rhs.expr_clock (mkinstr ?lustre_eq:(Some eq) (MStateAssign (var_x, translate_expr node args e1))) :: s)
159
  | [x], Expr_fby (e1, e2) when VSet.mem (get_node_var x node) d ->
160
     let var_x = get_node_var x node in
199
      control_on_clock eq.eq_rhs.expr_clock (mkinstr ?lustre_eq:(Some eq) (MStateAssign (var_x, translate_expr e1))) :: s)
200
  | [x], Expr_fby (e1, e2) when VSet.mem (get_var x vars) d ->
201
     let var_x = get_var x vars in
161 202
     (VSet.add var_x m,
162
      mkinstr ?lustre_eq:(Some eq) (MStateAssign (var_x, translate_expr node args e1)) :: si,
203
      mkinstr ?lustre_eq:(Some eq) (MStateAssign (var_x, translate_expr e1)) :: si,
163 204
      j,
164 205
      d,
165
      control_on_clock node args eq.eq_rhs.expr_clock (mkinstr ?lustre_eq:(Some eq) (MStateAssign (var_x, translate_expr node args e2))) :: s)
206
      control_on_clock eq.eq_rhs.expr_clock (mkinstr ?lustre_eq:(Some eq) (MStateAssign (var_x, translate_expr e2))) :: s)
166 207

  
167 208
  | p  , Expr_appl (f, arg, r) when not (Basic_library.is_expr_internal_fun eq.eq_rhs) ->
168
     let var_p = List.map (fun v -> get_node_var v node) p in
209
     let var_p = List.map (fun v -> get_var v vars) p in
169 210
     let el = expr_list_of_expr arg in
170
     let vl = List.map (translate_expr node args) el in
211
     let vl = List.map translate_expr el in
171 212
     let node_f = node_from_name f in
172 213
     let call_f =
173 214
       node_f,
174 215
       NodeDep.filter_static_inputs (node_inputs node_f) el in
175
     let o = new_instance node node_f eq.eq_rhs.expr_tag in
216
     let o = new_instance node_f eq.eq_rhs.expr_tag in
176 217
     let env_cks = List.fold_right (fun arg cks -> arg.expr_clock :: cks) el [eq.eq_rhs.expr_clock] in
177 218
     let call_ck = Clock_calculus.compute_root_clock (Clock_predef.ck_tuple env_cks) in
178 219
     (*Clocks.new_var true in
......
184 225
      d,
185 226
      (if Stateless.check_node node_f
186 227
       then []
187
       else reset_instance node args o r call_ck) @
188
	(control_on_clock node args call_ck (mkinstr ?lustre_eq:(Some eq) (MStep (var_p, o, vl)))) :: s)
228
       else reset_instance o r call_ck) @
229
	(control_on_clock call_ck (mkinstr ?lustre_eq:(Some eq) (MStep (var_p, o, vl)))) :: s)
189 230
  (*
190 231
    (* special treatment depending on the active backend. For horn backend, x = ite (g,t,e)
191 232
    are preserved. While they are replaced as if g then x = t else x = e in  C or Java
......
204 245

  
205 246
  *)
206 247
  | [x], _                                       -> (
207
    let var_x = get_node_var x node in
248
    let var_x = get_var x vars in
208 249
    (m, si, j, d,
209 250
     control_on_clock
210
       node
211
       args
212 251
       eq.eq_rhs.expr_clock
213
       (translate_act node args (var_x, eq.eq_rhs)) :: s
252
       (translate_act (var_x, eq.eq_rhs)) :: s
214 253
    )
215 254
  )
216 255
  | _                                            ->
......
235 274
let translate_eqs node args eqs =
236 275
  List.fold_right (fun eq args -> translate_eq node args eq) eqs args;;
237 276

  
238
let translate_decl nd sch =
239
  (*Log.report ~level:1 (fun fmt -> Printers.pp_node fmt nd);*)
240
  let schedule = sch.Scheduling_type.schedule in
241
  let sorted_eqs = Scheduling.sort_equations_from_schedule nd schedule in
242
  let constant_eqs = constant_equations nd in
243

  
244
  (* In case of non functional backend (eg. C), additional local variables have
245
     to be declared for each assert *)
246
  let new_locals, assert_instrs, nd_node_asserts =
277
let process_asserts nd =
278
  
247 279
    let exprl = List.map (fun assert_ -> assert_.assert_expr ) nd.node_asserts in
248 280
    if Backends.is_functional () then
249 281
      [], [], exprl  
......
267 299
	  in
268 300
	  assert_var.var_type <- Type_predef.type_bool (* Types.new_ty (Types.Tbool) *); 
269 301
	  let eq = mkeq loc ([var_id], expr) in
270
	  (i+1, assert_var::vars, eq::eqlist, {expr with expr_desc = Expr_ident var_id}::assertlist)
302
          (i+1, assert_var::vars, eq::eqlist, {expr with expr_desc = Expr_ident var_id}::assertlist)
271 303
	) (1, [], [], []) exprl
272 304
      in
273 305
      vars, eql, assertl
274
  in
275
  let locals_list = nd.node_locals @ new_locals in
306
  
307
let translate_decl nd sch =
308
  (*Log.report ~level:1 (fun fmt -> Printers.pp_node fmt nd);*)
309
  let schedule = sch.Scheduling_type.schedule in
310
  let sorted_eqs = Scheduling.sort_equations_from_schedule nd schedule in
311
  let constant_eqs = constant_equations nd in
276 312

  
313
  (* In case of non functional backend (eg. C), additional local variables have
314
     to be declared for each assert *)
315
  let new_locals, assert_instrs, nd_node_asserts = process_asserts nd in
316
  let locals_list = nd.node_locals @ new_locals in
277 317
  let nd = { nd with node_locals = locals_list } in
318
  let vars = get_node_vars nd in
319
  
278 320
  let init_args = VSet.empty, [], Utils.IMap.empty, List.fold_right (fun l -> VSet.add l) locals_list VSet.empty, [] in
279 321
  (* memories, init instructions, node calls, local variables (including memories), step instrs *)
280
  let m0, init0, j0, locals0, s0 = translate_eqs nd init_args constant_eqs in
322

  
323
  let m0, init0, j0, locals0, s0 =
324
    translate_eqs vars init_args constant_eqs
325
  in
326

  
281 327
  assert (VSet.is_empty m0);
282 328
  assert (init0 = []);
283 329
  assert (Utils.IMap.is_empty j0);
284
  let m, init, j, locals, s as context_with_asserts = translate_eqs nd (m0, init0, j0, locals0, []) (assert_instrs@sorted_eqs) in
330

  
331
  let m, init, j, locals, s as context_with_asserts =
332
    translate_eqs
333
      vars
334
      (m0, init0, j0, locals0, [])
335
      (assert_instrs@sorted_eqs)
336
  in
285 337
  let mmap = Utils.IMap.fold (fun i n res -> (i, n)::res) j [] in
286 338
  {
287 339
    mname = nd;
......
295 347
      step_inputs = nd.node_inputs;
296 348
      step_outputs = nd.node_outputs;
297 349
      step_locals = VSet.elements (VSet.diff locals m);
298
      step_checks = List.map (fun d -> d.Dimension.dim_loc, translate_expr nd init_args (expr_of_dimension d)) nd.node_checks;
350
      step_checks = List.map (fun d -> d.Dimension.dim_loc,
351
                                       translate_expr vars init_args
352
                                         (expr_of_dimension d))
353
                      nd.node_checks;
299 354
      step_instrs = (
300 355
	(* special treatment depending on the active backend. For horn backend,
301 356
	   common branches are not merged while they are in C or Java
......
308 363
	else
309 364
	  s
310 365
      );
311
      step_asserts = List.map (translate_expr nd context_with_asserts) nd_node_asserts;
366
      step_asserts = List.map (translate_expr vars context_with_asserts) nd_node_asserts;
312 367
    };
313 368
    mspec = nd.node_spec;
314 369
    mannot = nd.node_annot;

Also available in: Unified diff