lustrec / src / causality.ml @ 58a463e7
History  View  Annotate  Download (19.4 KB)
1 
(********************************************************************) 

2 
(* *) 
3 
(* The LustreC compiler toolset / The LustreC Development Team *) 
4 
(* Copyright 2012   ONERA  CNRS  INPT  LIFL *) 
5 
(* *) 
6 
(* LustreC is free software, distributed WITHOUT ANY WARRANTY *) 
7 
(* under the terms of the GNU Lesser General Public License *) 
8 
(* version 2.1. *) 
9 
(* *) 
10 
(* This file was originally from the Prelude compiler *) 
11 
(* *) 
12 
(********************************************************************) 
13  
14  
15 
(** Simple modular syntactic causality analysis. Can reject correct 
16 
programs, especially if the program is not flattened first. *) 
17 
open Utils 
18 
open LustreSpec 
19 
open Corelang 
20 
open Graph 
21 
open Format 
22  
23 
exception Cycle of ident list 
24  
25 
module IdentDepGraph = Graph.Imperative.Digraph.ConcreteBidirectional (IdentModule) 
26  
27 
(* Dependency of mem variables on mem variables is cut off 
28 
by duplication of some mem vars into local node vars. 
29 
Thus, cylic dependency errors may only arise between nomem vars. 
30 
nonmem variables are: 
31 
 inputs: not needed for causality/scheduling, needed only for detecting useless vars 
32 
 read mems (fake vars): same remark as above. 
33 
 outputs: decoupled from mems, if necessary 
34 
 locals 
35 
 instance vars (fake vars): simplify causality analysis 
36  
37 
global constants are not part of the dependency graph. 
38  
39 
no_mem' = combinational(no_mem, mem); 
40 
=> (mem > no_mem' > no_mem) 
41  
42 
mem' = pre(no_mem, mem); 
43 
=> (mem' > no_mem), (mem > mem') 
44  
45 
Global roadmap: 
46 
 compute two dep graphs g (nonmem/nonmem&mem) and g' (mem/mem) 
47 
 check cycles in g (a cycle means a dependency error) 
48 
 break cycles in g' (it's legal !): 
49 
 check cycles in g' 
50 
 if any, introduce aux var to break cycle, then start afresh 
51 
 insert g' into g 
52 
 return g 
53 
*) 
54  
55 
(* Tests whether [v] is a root of graph [g], i.e. a source *) 
56 
let is_graph_root v g = 
57 
IdentDepGraph.in_degree g v = 0 
58  
59 
(* Computes the set of graph roots, i.e. the sources of acyclic graph [g] *) 
60 
let graph_roots g = 
61 
IdentDepGraph.fold_vertex 
62 
(fun v roots > if is_graph_root v g then v::roots else roots) 
63 
g [] 
64  
65 
let add_edges src tgt g = 
66 
(*List.iter (fun s > List.iter (fun t > Format.eprintf "add %s > %s@." s t) tgt) src;*) 
67 
List.iter 
68 
(fun s > 
69 
List.iter 
70 
(fun t > IdentDepGraph.add_edge g s t) 
71 
tgt) 
72 
src; 
73 
g 
74  
75 
let add_vertices vtc g = 
76 
(*List.iter (fun t > Format.eprintf "add %s@." t) vtc;*) 
77 
List.iter (fun v > IdentDepGraph.add_vertex g v) vtc; 
78 
g 
79  
80 
let new_graph () = 
81 
IdentDepGraph.create () 
82  
83 
module ExprDep = struct 
84  
85 
let instance_var_cpt = ref 0 
86  
87 
(* read vars represent input/mem readonly vars, 
88 
they are not part of the program/schedule, 
89 
as they are not assigned, 
90 
but used to compute useless inputs/mems. 
91 
a mem read var represents a mem at the beginning of a cycle *) 
92 
let mk_read_var id = 
93 
sprintf "#%s" id 
94  
95 
(* instance vars represent node instance calls, 
96 
they are not part of the program/schedule, 
97 
but used to simplify causality analysis 
98 
*) 
99 
let mk_instance_var id = 
100 
incr instance_var_cpt; sprintf "!%s_%d" id !instance_var_cpt 
101  
102 
let is_read_var v = v.[0] = '#' 
103  
104 
let is_instance_var v = v.[0] = '!' 
105  
106 
let is_ghost_var v = is_instance_var v  is_read_var v 
107  
108 
let undo_read_var id = 
109 
assert (is_read_var id); 
110 
String.sub id 1 (String.length id  1) 
111  
112 
let undo_instance_var id = 
113 
assert (is_instance_var id); 
114 
String.sub id 1 (String.length id  1) 
115  
116 
let eq_memory_variables mems eq = 
117 
let rec match_mem lhs rhs mems = 
118 
match rhs.expr_desc with 
119 
 Expr_fby _ 
120 
 Expr_pre _ > List.fold_right ISet.add lhs mems 
121 
 Expr_tuple tl > 
122 
let lhs' = (transpose_list [lhs]) in 
123 
List.fold_right2 match_mem lhs' tl mems 
124 
 _ > mems in 
125 
match_mem eq.eq_lhs eq.eq_rhs mems 
126  
127 
let node_memory_variables nd = 
128 
List.fold_left eq_memory_variables ISet.empty (get_node_eqs nd) 
129  
130 
let node_input_variables nd = 
131 
List.fold_left (fun inputs v > ISet.add v.var_id inputs) ISet.empty nd.node_inputs 
132  
133 
let node_local_variables nd = 
134 
List.fold_left (fun locals v > ISet.add v.var_id locals) ISet.empty nd.node_locals 
135  
136 
let node_output_variables nd = 
137 
List.fold_left (fun outputs v > ISet.add v.var_id outputs) ISet.empty nd.node_outputs 
138  
139 
let node_auxiliary_variables nd = 
140 
ISet.diff (node_local_variables nd) (node_memory_variables nd) 
141  
142 
let node_variables nd = 
143 
let inputs = node_input_variables nd in 
144 
let inoutputs = List.fold_left (fun inoutputs v > ISet.add v.var_id inoutputs) inputs nd.node_outputs in 
145 
List.fold_left (fun vars v > ISet.add v.var_id vars) inoutputs nd.node_locals 
146  
147 
(* computes the equivalence relation relating variables 
148 
in the same equation lhs, under the form of a table 
149 
of class representatives *) 
150 
let node_eq_equiv nd = 
151 
let eq_equiv = Hashtbl.create 23 in 
152 
List.iter (fun eq > 
153 
let first = List.hd eq.eq_lhs in 
154 
List.iter (fun v > Hashtbl.add eq_equiv v first) eq.eq_lhs 
155 
) 
156 
(get_node_eqs nd); 
157 
eq_equiv 
158  
159 
(* Create a tuple of right dimension, according to [expr] type, *) 
160 
(* filled with variable [v] *) 
161 
let adjust_tuple v expr = 
162 
match expr.expr_type.Types.tdesc with 
163 
 Types.Ttuple tl > duplicate v (List.length tl) 
164 
 _ > [v] 
165  
166  
167 
(* Add dependencies from lhs to rhs in [g, g'], *) 
168 
(* nomem/nomem and mem/nomem in g *) 
169 
(* mem/mem in g' *) 
170 
(* match (lhs_is_mem, ISet.mem x mems) with 
171 
 (false, true ) > (add_edges [x] lhs g, 
172 
g') 
173 
 (false, false) > (add_edges lhs [x] g, 
174 
g') 
175 
 (true , false) > (add_edges lhs [x] g, 
176 
g') 
177 
 (true , true ) > (g, 
178 
add_edges [x] lhs g') 
179 
*) 
180 
let add_eq_dependencies mems inputs node_vars eq (g, g') = 
181 
let add_var lhs_is_mem lhs x (g, g') = 
182 
if is_instance_var x  ISet.mem x node_vars then 
183 
if ISet.mem x mems 
184 
then 
185 
let g = add_edges lhs [mk_read_var x] g in 
186 
if lhs_is_mem 
187 
then 
188 
(g, add_edges [x] lhs g') 
189 
else 
190 
(add_edges [x] lhs g, g') 
191 
else 
192 
let x = if ISet.mem x inputs then mk_read_var x else x in 
193 
(add_edges lhs [x] g, g') 
194 
else (add_edges lhs [mk_read_var x] g, g') (* x is a global constant, treated as a read var *) in 
195 
(* Add dependencies from [lhs] to rhs clock [ck]. *) 
196 
let rec add_clock lhs_is_mem lhs ck g = 
197 
(*Format.eprintf "add_clock %a@." Clocks.print_ck ck;*) 
198 
match (Clocks.repr ck).Clocks.cdesc with 
199 
 Clocks.Con (ck', cr, _) > add_var lhs_is_mem lhs (Clocks.const_of_carrier cr) (add_clock lhs_is_mem lhs ck' g) 
200 
 Clocks.Ccarrying (_, ck') > add_clock lhs_is_mem lhs ck' g 
201 
 _ > g 
202 
in 
203 
let rec add_dep lhs_is_mem lhs rhs g = 
204 
(* Add mashup dependencies for a userdefined node instance [lhs] = [f]([e]) *) 
205 
(* i.e every input is connected to every output, through a ghost var *) 
206 
let mashup_appl_dependencies f e g = 
207 
let f_var = mk_instance_var (sprintf "%s_%d" f eq.eq_loc.Location.loc_start.Lexing.pos_lnum) in 
208 
List.fold_right (fun rhs > add_dep lhs_is_mem (adjust_tuple f_var rhs) rhs) 
209 
(expr_list_of_expr e) (add_var lhs_is_mem lhs f_var g) 
210 
in 
211 
match rhs.expr_desc with 
212 
 Expr_const _ > g 
213 
 Expr_fby (e1, e2) > add_dep true lhs e2 (add_dep false lhs e1 g) 
214 
 Expr_pre e > add_dep true lhs e g 
215 
 Expr_ident x > add_var lhs_is_mem lhs x (add_clock lhs_is_mem lhs rhs.expr_clock g) 
216 
 Expr_access (e1, _) 
217 
 Expr_power (e1, _) > add_dep lhs_is_mem lhs e1 g 
218 
 Expr_array a > List.fold_right (add_dep lhs_is_mem lhs) a g 
219 
 Expr_tuple t > List.fold_right2 (fun l r > add_dep lhs_is_mem [l] r) lhs t g 
220 
 Expr_merge (c, hl) > add_var lhs_is_mem lhs c (List.fold_right (fun (_, h) > add_dep lhs_is_mem lhs h) hl g) 
221 
 Expr_ite (c, t, e) > add_dep lhs_is_mem lhs c (add_dep lhs_is_mem lhs t (add_dep lhs_is_mem lhs e g)) 
222 
 Expr_arrow (e1, e2) > add_dep lhs_is_mem lhs e2 (add_dep lhs_is_mem lhs e1 g) 
223 
 Expr_when (e, c, _) > add_dep lhs_is_mem lhs e (add_var lhs_is_mem lhs c g) 
224 
 Expr_appl (f, e, None) > 
225 
if Basic_library.is_internal_fun f 
226 
(* tuple componentwise dependency for internal operators *) 
227 
then 
228 
List.fold_right (add_dep lhs_is_mem lhs) (expr_list_of_expr e) g 
229 
(* mashed up dependency for userdefined operators *) 
230 
else 
231 
mashup_appl_dependencies f e g 
232 
 Expr_appl (f, e, Some c) > 
233 
mashup_appl_dependencies f e (add_dep lhs_is_mem lhs c g) 
234 
in 
235 
let g = 
236 
List.fold_left 
237 
(fun g lhs > if ISet.mem lhs mems then add_vertices [lhs; mk_read_var lhs] g else add_vertices [lhs] g) g eq.eq_lhs in 
238 
add_dep false eq.eq_lhs eq.eq_rhs (g, g') 
239 

240  
241 
(* Returns the dependence graph for node [n] *) 
242 
let dependence_graph mems inputs node_vars n = 
243 
instance_var_cpt := 0; 
244 
let g = new_graph (), new_graph () in 
245 
(* Basic dependencies *) 
246 
let g = List.fold_right (add_eq_dependencies mems inputs node_vars) (get_node_eqs n) g in 
247 
g 
248  
249 
end 
250  
251 
module NodeDep = struct 
252  
253 
module ExprModule = 
254 
struct 
255 
type t = expr 
256 
let compare = compare 
257 
let hash n = Hashtbl.hash n 
258 
let equal n1 n2 = n1 = n2 
259 
end 
260  
261 
module ESet = Set.Make(ExprModule) 
262  
263 
let rec get_expr_calls prednode expr = 
264 
match expr.expr_desc with 
265 
 Expr_const _ 
266 
 Expr_ident _ > ESet.empty 
267 
 Expr_access (e, _) 
268 
 Expr_power (e, _) > get_expr_calls prednode e 
269 
 Expr_array t 
270 
 Expr_tuple t > List.fold_right (fun x set > ESet.union (get_expr_calls prednode x) set) t ESet.empty 
271 
 Expr_merge (_,hl) > List.fold_right (fun (_,h) set > ESet.union (get_expr_calls prednode h) set) hl ESet.empty 
272 
 Expr_fby (e1,e2) 
273 
 Expr_arrow (e1,e2) > ESet.union (get_expr_calls prednode e1) (get_expr_calls prednode e2) 
274 
 Expr_ite (c, t, e) > ESet.union (get_expr_calls prednode c) (ESet.union (get_expr_calls prednode t) (get_expr_calls prednode e)) 
275 
 Expr_pre e 
276 
 Expr_when (e,_,_) > get_expr_calls prednode e 
277 
 Expr_appl (id,e, _) > 
278 
if not (Basic_library.is_internal_fun id) && prednode id 
279 
then ESet.add expr (get_expr_calls prednode e) 
280 
else (get_expr_calls prednode e) 
281  
282 
let get_callee expr = 
283 
match expr.expr_desc with 
284 
 Expr_appl (id, args, _) > Some (id, expr_list_of_expr args) 
285 
 _ > None 
286  
287 
let get_calls prednode eqs = 
288 
let deps = 
289 
List.fold_left 
290 
(fun accu eq > ESet.union accu (get_expr_calls prednode eq.eq_rhs)) 
291 
ESet.empty 
292 
eqs in 
293 
ESet.elements deps 
294  
295 
let dependence_graph prog = 
296 
let g = new_graph () in 
297 
let g = List.fold_right 
298 
(fun td accu > (* for each node we add its dependencies *) 
299 
match td.top_decl_desc with 
300 
 Node nd > 
301 
(*Format.eprintf "Computing deps of node %s@.@?" nd.node_id; *) 
302 
let accu = add_vertices [nd.node_id] accu in 
303 
let deps = List.map (fun e > fst (desome (get_callee e))) (get_calls (fun _ > true) (get_node_eqs nd)) in 
304 
(*Format.eprintf "%a@.@?" (Utils.fprintf_list ~sep:"@." Format.pp_print_string) deps; *) 
305 
add_edges [nd.node_id] deps accu 
306 
 _ > assert false (* should not happen *) 
307 

308 
) prog g in 
309 
g 
310  
311 
let rec filter_static_inputs inputs args = 
312 
match inputs, args with 
313 
 [] , [] > [] 
314 
 v::vq, a::aq > if v.var_dec_const then (dimension_of_expr a) :: filter_static_inputs vq aq else filter_static_inputs vq aq 
315 
 _ > assert false 
316  
317 
let compute_generic_calls prog = 
318 
List.iter 
319 
(fun td > 
320 
match td.top_decl_desc with 
321 
 Node nd > 
322 
let prednode n = is_generic_node (Hashtbl.find node_table n) in 
323 
nd.node_gencalls < get_calls prednode (get_node_eqs nd) 
324 
 _ > () 
325 

326 
) prog 
327  
328 
end 
329  
330 
module CycleDetection = struct 
331  
332 
(*  Look for cycles in a dependency graph *) 
333 
module Cycles = Graph.Components.Make (IdentDepGraph) 
334  
335 
let mk_copy_var n id = 
336 
let used name = 
337 
(List.exists (fun v > v.var_id = name) n.node_locals) 
338 
 (List.exists (fun v > v.var_id = name) n.node_inputs) 
339 
 (List.exists (fun v > v.var_id = name) n.node_outputs) 
340 
in mk_new_name used id 
341  
342 
let mk_copy_eq n var = 
343 
let var_decl = get_node_var var n in 
344 
let cp_var = mk_copy_var n var in 
345 
let expr = 
346 
{ expr_tag = Utils.new_tag (); 
347 
expr_desc = Expr_ident var; 
348 
expr_type = var_decl.var_type; 
349 
expr_clock = var_decl.var_clock; 
350 
expr_delay = Delay.new_var (); 
351 
expr_annot = None; 
352 
expr_loc = var_decl.var_loc } in 
353 
{ var_decl with var_id = cp_var; var_orig = false }, 
354 
mkeq var_decl.var_loc ([cp_var], expr) 
355  
356 
let wrong_partition g partition = 
357 
match partition with 
358 
 [id] > IdentDepGraph.mem_edge g id id 
359 
 _::_::_ > true 
360 
 [] > assert false 
361  
362 
(* Checks that the dependency graph [g] does not contain a cycle. Raises 
363 
[Cycle partition] if the succession of dependencies [partition] forms a cycle *) 
364 
let check_cycles g = 
365 
let scc_l = Cycles.scc_list g in 
366 
List.iter (fun partition > 
367 
if wrong_partition g partition then 
368 
raise (Cycle partition) 
369 
else () 
370 
) scc_l 
371  
372 
(* Creates the subgraph of [g] restricted to vertices and edges in partition *) 
373 
let copy_partition g partition = 
374 
let copy_g = IdentDepGraph.create () in 
375 
IdentDepGraph.iter_edges 
376 
(fun src tgt > 
377 
if List.mem src partition && List.mem tgt partition 
378 
then IdentDepGraph.add_edge copy_g src tgt) 
379 
g 
380  
381 

382 
(* Breaks dependency cycles in a graph [g] by inserting aux variables. 
383 
[head] is a head of a nontrivial scc of [g]. 
384 
In Lustre, this is legal only for mem/mem cycles *) 
385 
let break_cycle head cp_head g = 
386 
let succs = IdentDepGraph.succ g head in 
387 
IdentDepGraph.add_edge g head cp_head; 
388 
IdentDepGraph.add_edge g cp_head (ExprDep.mk_read_var head); 
389 
List.iter 
390 
(fun s > 
391 
IdentDepGraph.remove_edge g head s; 
392 
IdentDepGraph.add_edge g s cp_head) 
393 
succs 
394  
395 
(* Breaks cycles of the dependency graph [g] of memory variables [mems] 
396 
belonging in node [node]. Returns: 
397 
 a list of new auxiliary variable declarations 
398 
 a list of new equations 
399 
 a modified acyclic version of [g] 
400 
*) 
401 
let break_cycles node mems g = 
402 
let (mem_eqs, non_mem_eqs) = List.partition (fun eq > List.exists (fun v > ISet.mem v mems) eq.eq_lhs) (get_node_eqs node) in 
403 
let rec break vdecls mem_eqs g = 
404 
let scc_l = Cycles.scc_list g in 
405 
let wrong = List.filter (wrong_partition g) scc_l in 
406 
match wrong with 
407 
 [] > (vdecls, non_mem_eqs@mem_eqs, g) 
408 
 [head]::_ > 
409 
begin 
410 
IdentDepGraph.remove_edge g head head; 
411 
break vdecls mem_eqs g 
412 
end 
413 
 (head::part)::_ > 
414 
begin 
415 
let vdecl_cp_head, cp_eq = mk_copy_eq node head in 
416 
let pvar v = List.mem v part in 
417 
let fvar v = if v = head then vdecl_cp_head.var_id else v in 
418 
let mem_eqs' = List.map (eq_replace_rhs_var pvar fvar) mem_eqs in 
419 
break_cycle head vdecl_cp_head.var_id g; 
420 
break (vdecl_cp_head::vdecls) (cp_eq::mem_eqs') g 
421 
end 
422 
 _ > assert false 
423 
in break [] mem_eqs g 
424  
425 
end 
426  
427 
(* Module used to compute static disjunction of variables based upon their clocks. *) 
428 
module Disjunction = 
429 
struct 
430 
module ClockedIdentModule = 
431 
struct 
432 
type t = var_decl 
433 
let root_branch vdecl = Clocks.root vdecl.var_clock, Clocks.branch vdecl.var_clock 
434 
let compare v1 v2 = compare (root_branch v2, v2.var_id) (root_branch v1, v1.var_id) 
435 
end 
436  
437 
module CISet = Set.Make(ClockedIdentModule) 
438  
439 
(* map: var > list of disjoint vars, sorted in increasing branch length order, 
440 
maybe removing shorter branches *) 
441 
type disjoint_map = (ident, CISet.t) Hashtbl.t 
442  
443 
let pp_ciset fmt t = 
444 
begin 
445 
Format.fprintf fmt "{@ "; 
446 
CISet.iter (fun s > Format.fprintf fmt "%a@ " Printers.pp_var_name s) t; 
447 
Format.fprintf fmt "}@." 
448 
end 
449  
450 
let clock_disjoint_map vdecls = 
451 
let map = Hashtbl.create 23 in 
452 
begin 
453 
List.iter 
454 
(fun v1 > let disj_v1 = 
455 
List.fold_left 
456 
(fun res v2 > if Clocks.disjoint v1.var_clock v2.var_clock then CISet.add v2 res else res) 
457 
CISet.empty 
458 
vdecls in 
459 
(* disjoint vdecls are stored in increasing branch length order *) 
460 
Hashtbl.add map v1.var_id disj_v1) 
461 
vdecls; 
462 
(map : disjoint_map) 
463 
end 
464  
465 
(* merge variables [v] and [v'] in disjunction [map]. Then: 
466 
 the mapping v' becomes v' > (map v) inter (map v') 
467 
 the mapping v > ... then disappears 
468 
 other mappings become x > (map x) \ (if v in x then v else v') 
469 
*) 
470 
let merge_in_disjoint_map map v v' = 
471 
begin 
472 
Hashtbl.replace map v'.var_id (CISet.inter (Hashtbl.find map v.var_id) (Hashtbl.find map v'.var_id)); 
473 
Hashtbl.remove map v.var_id; 
474 
Hashtbl.iter (fun x map_x > Hashtbl.replace map x (CISet.remove (if CISet.mem v map_x then v else v') map_x)) map; 
475 
end 
476  
477 
(* replace variable [v] by [v'] in disjunction [map]. 
478 
[v'] is a dead variable. Then: 
479 
 the mapping v' becomes v' > (map v) 
480 
 the mapping v > ... then disappears 
481 
 all mappings become x > ((map x) \ { v}) union ({v'} if v in map x) 
482 
*) 
483 
let replace_in_disjoint_map map v v' = 
484 
begin 
485 
Hashtbl.replace map v'.var_id (Hashtbl.find map v.var_id); 
486 
Hashtbl.remove map v.var_id; 
487 
Hashtbl.iter (fun x mapx > Hashtbl.replace map x (if CISet.mem v mapx then CISet.add v' (CISet.remove v mapx) else CISet.remove v' mapx)) map; 
488 
end 
489  
490 
(* remove variable [v] in disjunction [map]. Then: 
491 
 the mapping v > ... then disappears 
492 
 all mappings become x > (map x) \ { v} 
493 
*) 
494 
let remove_in_disjoint_map map v = 
495 
begin 
496 
Hashtbl.remove map v.var_id; 
497 
Hashtbl.iter (fun x mapx > Hashtbl.replace map x (CISet.remove v mapx)) map; 
498 
end 
499  
500 
let pp_disjoint_map fmt map = 
501 
begin 
502 
Format.fprintf fmt "{ /* disjoint map */@."; 
503 
Hashtbl.iter (fun k v > Format.fprintf fmt "%s # { %a }@." k (Utils.fprintf_list ~sep:", " Printers.pp_var_name) (CISet.elements v)) map; 
504 
Format.fprintf fmt "}@." 
505 
end 
506 
end 
507  
508 
let pp_dep_graph fmt g = 
509 
begin 
510 
Format.fprintf fmt "{ /* graph */@."; 
511 
IdentDepGraph.iter_edges (fun s t > Format.fprintf fmt "%s > %s@." s t) g; 
512 
Format.fprintf fmt "}@." 
513 
end 
514  
515 
let pp_error fmt trace = 
516 
fprintf fmt "@.Causality error, cyclic data dependencies: %a@." 
517 
(fprintf_list ~sep:", " pp_print_string) trace 
518  
519 
(* Merges elements of graph [g2] into graph [g1] *) 
520 
let merge_with g1 g2 = 
521 
begin 
522 
IdentDepGraph.iter_vertex (fun v > IdentDepGraph.add_vertex g1 v) g2; 
523 
IdentDepGraph.iter_edges (fun s t > IdentDepGraph.add_edge g1 s t) g2 
524 
end 
525  
526 
let add_external_dependency outputs mems g = 
527 
let caller ="!!_world" in 
528 
begin 
529 
IdentDepGraph.add_vertex g caller; 
530 
ISet.iter (fun o > IdentDepGraph.add_edge g caller o) outputs; 
531 
ISet.iter (fun m > IdentDepGraph.add_edge g caller m) mems; 
532 
end 
533  
534 
let global_dependency node = 
535 
let mems = ExprDep.node_memory_variables node in 
536 
let inputs = ExprDep.node_input_variables node in 
537 
let outputs = ExprDep.node_output_variables node in 
538 
let node_vars = ExprDep.node_variables node in 
539 
let (g_non_mems, g_mems) = ExprDep.dependence_graph mems inputs node_vars node in 
540 
(*Format.eprintf "g_non_mems: %a" pp_dep_graph g_non_mems; 
541 
Format.eprintf "g_mems: %a" pp_dep_graph g_mems;*) 
542 
CycleDetection.check_cycles g_non_mems; 
543 
let (vdecls', eqs', g_mems') = CycleDetection.break_cycles node mems g_mems in 
544 
(*Format.eprintf "g_mems': %a" pp_dep_graph g_mems';*) 
545 
begin 
546 
merge_with g_non_mems g_mems'; 
547 
add_external_dependency outputs mems g_non_mems; 
548 
{ node with node_stmts = List.map (fun eq > Eq eq) eqs'; node_locals = vdecls'@node.node_locals }, 
549 
g_non_mems 
550 
end 
551  
552 
(* Local Variables: *) 
553 
(* compilecommand:"make C .." *) 
554 
(* End: *) 