lustrec / src / dimension.ml @ 53206908
History | View | Annotate | Download (10.9 KB)
1 |
(********************************************************************) |
---|---|
2 |
(* *) |
3 |
(* The LustreC compiler toolset / The LustreC Development Team *) |
4 |
(* Copyright 2012 - -- ONERA - CNRS - INPT *) |
5 |
(* *) |
6 |
(* LustreC is free software, distributed WITHOUT ANY WARRANTY *) |
7 |
(* under the terms of the GNU Lesser General Public License *) |
8 |
(* version 2.1. *) |
9 |
(* *) |
10 |
(********************************************************************) |
11 |
|
12 |
open Format |
13 |
|
14 |
type dim_expr = |
15 |
{mutable dim_desc: dim_desc; |
16 |
dim_loc: Location.t; |
17 |
dim_id: int} |
18 |
|
19 |
and dim_desc = |
20 |
| Dbool of bool |
21 |
| Dint of int |
22 |
| Dident of Utils.ident |
23 |
| Dappl of Utils.ident * dim_expr list |
24 |
| Dite of dim_expr * dim_expr * dim_expr |
25 |
| Dlink of dim_expr |
26 |
| Dvar |
27 |
| Dunivar |
28 |
|
29 |
exception Unify of dim_expr * dim_expr |
30 |
exception InvalidDimension |
31 |
|
32 |
let new_id = ref (-1) |
33 |
|
34 |
let mkdim loc dim = |
35 |
incr new_id; |
36 |
{ dim_loc = loc; |
37 |
dim_id = !new_id; |
38 |
dim_desc = dim;} |
39 |
|
40 |
let mkdim_var () = |
41 |
incr new_id; |
42 |
{ dim_loc = Location.dummy_loc; |
43 |
dim_id = !new_id; |
44 |
dim_desc = Dvar;} |
45 |
|
46 |
let mkdim_ident loc id = |
47 |
incr new_id; |
48 |
{ dim_loc = loc; |
49 |
dim_id = !new_id; |
50 |
dim_desc = Dident id;} |
51 |
|
52 |
let mkdim_bool loc b = |
53 |
incr new_id; |
54 |
{ dim_loc = loc; |
55 |
dim_id = !new_id; |
56 |
dim_desc = Dbool b;} |
57 |
|
58 |
let mkdim_int loc i = |
59 |
incr new_id; |
60 |
{ dim_loc = loc; |
61 |
dim_id = !new_id; |
62 |
dim_desc = Dint i;} |
63 |
|
64 |
let mkdim_appl loc f args = |
65 |
incr new_id; |
66 |
{ dim_loc = loc; |
67 |
dim_id = !new_id; |
68 |
dim_desc = Dappl (f, args);} |
69 |
|
70 |
let mkdim_ite loc i t e = |
71 |
incr new_id; |
72 |
{ dim_loc = loc; |
73 |
dim_id = !new_id; |
74 |
dim_desc = Dite (i, t, e);} |
75 |
|
76 |
let rec pp_dimension fmt dim = |
77 |
(*fprintf fmt "<%d>" (Obj.magic dim: int);*) |
78 |
match dim.dim_desc with |
79 |
| Dident id -> |
80 |
fprintf fmt "%s" id |
81 |
| Dint i -> |
82 |
fprintf fmt "%d" i |
83 |
| Dbool b -> |
84 |
fprintf fmt "%B" b |
85 |
| Dite (i, t, e) -> |
86 |
fprintf fmt "if %a then %a else %a" |
87 |
pp_dimension i pp_dimension t pp_dimension e |
88 |
| Dappl (f, [arg]) -> |
89 |
fprintf fmt "(%s%a)" f pp_dimension arg |
90 |
| Dappl (f, [arg1; arg2]) -> |
91 |
fprintf fmt "(%a%s%a)" pp_dimension arg1 f pp_dimension arg2 |
92 |
| Dappl (_, _) -> assert false |
93 |
| Dlink dim' -> fprintf fmt "%a" pp_dimension dim' |
94 |
| Dvar -> fprintf fmt "_%s" (Utils.name_of_dimension dim.dim_id) |
95 |
| Dunivar -> fprintf fmt "'%s" (Utils.name_of_dimension dim.dim_id) |
96 |
|
97 |
let rec multi_dimension_product loc dim_list = |
98 |
match dim_list with |
99 |
| [] -> mkdim_int loc 1 |
100 |
| [d] -> d |
101 |
| d::q -> mkdim_appl loc "*" [d; multi_dimension_product loc q] |
102 |
|
103 |
(* Builds a dimension expr representing 0<=d *) |
104 |
let check_bound loc d = |
105 |
mkdim_appl loc "<=" [mkdim_int loc 0; d] |
106 |
|
107 |
(* Builds a dimension expr representing 0<=i<d *) |
108 |
let check_access loc d i = |
109 |
mkdim_appl loc "&&" |
110 |
[mkdim_appl loc "<=" [mkdim_int loc 0; i]; |
111 |
mkdim_appl loc "<" [i; d]] |
112 |
|
113 |
let rec repr dim = |
114 |
match dim.dim_desc with |
115 |
| Dlink dim' -> repr dim' |
116 |
| _ -> dim |
117 |
|
118 |
let rec is_eq_dimension d1 d2 = |
119 |
let d1 = repr d1 in |
120 |
let d2 = repr d2 in |
121 |
d1.dim_id = d2.dim_id || |
122 |
match d1.dim_desc, d2.dim_desc with |
123 |
| Dappl (f1, args1), Dappl (f2, args2) -> |
124 |
f1 = f2 && List.length args1 = List.length args2 && List.for_all2 is_eq_dimension args1 args2 |
125 |
| Dite (c1, t1, e1), Dite (c2, t2, e2) -> |
126 |
is_eq_dimension c1 c2 && is_eq_dimension t1 t2 && is_eq_dimension e1 e2 |
127 |
| Dint i1 , Dint i2 -> i1 = i2 |
128 |
| Dbool b1 , Dbool b2 -> b1 = b2 |
129 |
| Dident id1, Dident id2 -> id1 = id2 |
130 |
| _ -> false |
131 |
|
132 |
let is_dimension_const dim = |
133 |
match (repr dim).dim_desc with |
134 |
| Dint _ |
135 |
| Dbool _ -> true |
136 |
| _ -> false |
137 |
|
138 |
let size_const_dimension dim = |
139 |
match (repr dim).dim_desc with |
140 |
| Dint i -> i |
141 |
| Dbool b -> if b then 1 else 0 |
142 |
| _ -> (Format.eprintf "internal error: size_const_dimension %a@." pp_dimension dim; assert false) |
143 |
|
144 |
let rec is_polymorphic dim = |
145 |
match dim.dim_desc with |
146 |
| Dident _ |
147 |
| Dint _ |
148 |
| Dbool _ |
149 |
| Dvar -> false |
150 |
| Dite (i, t, e) -> |
151 |
is_polymorphic i || is_polymorphic t || is_polymorphic e |
152 |
| Dappl (_, args) -> List.exists is_polymorphic args |
153 |
| Dlink dim' -> is_polymorphic dim' |
154 |
| Dunivar -> true |
155 |
|
156 |
(* Normalizes a dimension expression, i.e. canonicalize all polynomial |
157 |
sub-expressions, where unsupported operations (eg. '/') are treated |
158 |
as variables. |
159 |
*) |
160 |
|
161 |
let rec factors dim = |
162 |
match dim.dim_desc with |
163 |
| Dappl (f, args) when f = "*" -> List.flatten (List.map factors args) |
164 |
| _ -> [dim] |
165 |
|
166 |
let rec factors_constant fs = |
167 |
match fs with |
168 |
| [] -> 1 |
169 |
| f::q -> |
170 |
match f.dim_desc with |
171 |
| Dint i -> i * (factors_constant q) |
172 |
| _ -> factors_constant q |
173 |
|
174 |
let norm_factors fs = |
175 |
let k = factors_constant fs in |
176 |
let nk = List.filter (fun d -> not (is_dimension_const d)) fs in |
177 |
(k, List.sort Pervasives.compare nk) |
178 |
|
179 |
let rec terms dim = |
180 |
match dim.dim_desc with |
181 |
| Dappl (f, args) when f = "+" -> List.flatten (List.map terms args) |
182 |
| _ -> [dim] |
183 |
|
184 |
let rec normalize dim = |
185 |
dim |
186 |
(* |
187 |
let rec unnormalize loc l = |
188 |
let l = List.sort (fun (k, l) (k', l') -> compare l l') (List.map (fun (k, l) -> (k, List.sort compare l)) l) in |
189 |
match l with |
190 |
| [] -> mkdim_int loc 0 |
191 |
| t::q -> |
192 |
List.fold_left (fun res (k, l) -> mkdim_appl loc "+" res (mkdim_appl loc "*" (mkdim_int loc k) l)) t q |
193 |
*) |
194 |
let copy copy_dim_vars dim = |
195 |
let rec cp dim = |
196 |
match dim.dim_desc with |
197 |
| Dbool _ |
198 |
| Dint _ -> dim |
199 |
| Dident id -> mkdim_ident dim.dim_loc id |
200 |
| Dite (c, t, e) -> mkdim_ite dim.dim_loc (cp c) (cp t) (cp e) |
201 |
| Dappl (id, args) -> mkdim_appl dim.dim_loc id (List.map cp args) |
202 |
| Dlink dim' -> cp dim' |
203 |
| Dunivar -> assert false |
204 |
| Dvar -> |
205 |
try |
206 |
List.assoc dim.dim_id !copy_dim_vars |
207 |
with Not_found -> |
208 |
let var = mkdim dim.dim_loc Dvar in |
209 |
copy_dim_vars := (dim.dim_id, var)::!copy_dim_vars; |
210 |
var |
211 |
in cp dim |
212 |
|
213 |
(* Partially evaluates a 'simple' dimension expr [dim], i.e. an expr containing only int and bool |
214 |
constructs, with conditionals. [eval_const] is a typing environment for static values. [eval_op] is an evaluation env for basic operators. The argument [dim] is modified in-place. |
215 |
*) |
216 |
let rec eval eval_op eval_const dim = |
217 |
match dim.dim_desc with |
218 |
| Dbool _ |
219 |
| Dint _ -> () |
220 |
| Dident id -> |
221 |
(match eval_const id with |
222 |
| Some val_dim -> dim.dim_desc <- Dlink val_dim |
223 |
| None -> (Format.eprintf "invalid %a@." pp_dimension dim; raise InvalidDimension)) |
224 |
| Dite (c, t, e) -> |
225 |
begin |
226 |
eval eval_op eval_const c; |
227 |
eval eval_op eval_const t; |
228 |
eval eval_op eval_const e; |
229 |
match (repr c).dim_desc with |
230 |
| Dbool b -> dim.dim_desc <- Dlink (if b then t else e) |
231 |
| _ -> () |
232 |
end |
233 |
| Dappl (id, args) -> |
234 |
begin |
235 |
List.iter (eval eval_op eval_const) args; |
236 |
if List.for_all is_dimension_const args |
237 |
then dim.dim_desc <- Env.lookup_value eval_op id (List.map (fun d -> (repr d).dim_desc) args) |
238 |
end |
239 |
| Dlink dim' -> |
240 |
begin |
241 |
eval eval_op eval_const dim'; |
242 |
dim.dim_desc <- Dlink (repr dim') |
243 |
end |
244 |
| Dvar -> () |
245 |
| Dunivar -> assert false |
246 |
|
247 |
let uneval const univar = |
248 |
let univar = repr univar in |
249 |
match univar.dim_desc with |
250 |
| Dunivar -> univar.dim_desc <- Dident const |
251 |
| _ -> assert false |
252 |
|
253 |
(** [occurs dvar dim] returns true if the dimension variable [dvar] occurs in |
254 |
dimension expression [dim]. False otherwise. *) |
255 |
let rec occurs dvar dim = |
256 |
let dim = repr dim in |
257 |
match dim.dim_desc with |
258 |
| Dvar -> dim.dim_id = dvar.dim_id |
259 |
| Dident _ |
260 |
| Dint _ |
261 |
| Dbool _ |
262 |
| Dunivar -> false |
263 |
| Dite (i, t, e) -> |
264 |
occurs dvar i || occurs dvar t || occurs dvar e |
265 |
| Dappl (_, args) -> List.exists (occurs dvar) args |
266 |
| Dlink _ -> assert false |
267 |
|
268 |
(* Promote monomorphic dimension variables to polymorphic variables. |
269 |
Generalize by side-effects *) |
270 |
let rec generalize dim = |
271 |
match dim.dim_desc with |
272 |
| Dvar -> dim.dim_desc <- Dunivar |
273 |
| Dident _ |
274 |
| Dint _ |
275 |
| Dbool _ |
276 |
| Dunivar -> () |
277 |
| Dite (i, t, e) -> |
278 |
generalize i; generalize t; generalize e |
279 |
| Dappl (_, args) -> List.iter generalize args |
280 |
| Dlink dim' -> generalize dim' |
281 |
|
282 |
(* Instantiate polymorphic dimension variables to monomorphic variables. |
283 |
Also duplicates the whole term structure (but the constant sub-terms). |
284 |
*) |
285 |
let rec instantiate inst_dim_vars dim = |
286 |
let dim = repr dim in |
287 |
match dim.dim_desc with |
288 |
| Dvar |
289 |
| Dident _ |
290 |
| Dint _ |
291 |
| Dbool _ -> dim |
292 |
| Dite (i, t, e) -> |
293 |
mkdim_ite dim.dim_loc |
294 |
(instantiate inst_dim_vars i) |
295 |
(instantiate inst_dim_vars t) |
296 |
(instantiate inst_dim_vars e) |
297 |
| Dappl (f, args) -> mkdim_appl dim.dim_loc f (List.map (instantiate inst_dim_vars) args) |
298 |
| Dlink dim' -> assert false (*mkdim dim.dim_loc (Dlink (instantiate inst_dim_vars dim'))*) |
299 |
| Dunivar -> |
300 |
try |
301 |
List.assoc dim.dim_id !inst_dim_vars |
302 |
with Not_found -> |
303 |
let var = mkdim dim.dim_loc Dvar in |
304 |
inst_dim_vars := (dim.dim_id, var)::!inst_dim_vars; |
305 |
var |
306 |
|
307 |
(** destructive unification of [dim1] and [dim2]. |
308 |
Raises [Unify (t1,t2)] if the types are not unifiable. |
309 |
if [semi] unification is required, |
310 |
[dim1] should furthermore be an instance of [dim2] *) |
311 |
let unify ?(semi=false) dim1 dim2 = |
312 |
let rec unif dim1 dim2 = |
313 |
let dim1 = repr dim1 in |
314 |
let dim2 = repr dim2 in |
315 |
if dim1.dim_id = dim2.dim_id then () else |
316 |
match dim1.dim_desc, dim2.dim_desc with |
317 |
| Dunivar, _ |
318 |
| _ , Dunivar -> assert false |
319 |
| Dvar , Dvar -> |
320 |
if dim1.dim_id < dim2.dim_id |
321 |
then dim2.dim_desc <- Dlink dim1 |
322 |
else dim1.dim_desc <- Dlink dim2 |
323 |
| Dvar , _ when (not semi) && not (occurs dim1 dim2) -> |
324 |
dim1.dim_desc <- Dlink dim2 |
325 |
| _ , Dvar when not (occurs dim2 dim1) -> |
326 |
dim2.dim_desc <- Dlink dim1 |
327 |
| Dite(i1, t1, e1), Dite(i2, t2, e2) -> |
328 |
begin |
329 |
unif i1 i2; |
330 |
unif t1 t2; |
331 |
unif e1 e2 |
332 |
end |
333 |
| Dappl(f1, args1), Dappl(f2, args2) when f1 = f2 && List.length args1 = List.length args2 -> |
334 |
List.iter2 unif args1 args2 |
335 |
| Dbool b1, Dbool b2 when b1 = b2 -> () |
336 |
| Dint i1 , Dint i2 when i1 = i2 -> () |
337 |
| Dident id1, Dident id2 when id1 = id2 -> () |
338 |
| _ -> raise (Unify (dim1, dim2)) |
339 |
in unif dim1 dim2 |
340 |
|
341 |
let rec expr_replace_var fvar e = |
342 |
{ e with dim_desc = expr_replace_var_desc fvar e.dim_desc } |
343 |
and expr_replace_var_desc fvar e = |
344 |
let re = expr_replace_var fvar in |
345 |
match e with |
346 |
| Dvar |
347 |
| Dunivar |
348 |
| Dbool _ |
349 |
| Dint _ -> e |
350 |
| Dident v -> Dident (fvar v) |
351 |
| Dappl (id, el) -> Dappl (id, List.map re el) |
352 |
| Dite (g,t,e) -> Dite (re g, re t, re e) |
353 |
| Dlink e -> Dlink (re e) |
354 |
|
355 |
let rec expr_replace_expr fvar e = |
356 |
{ e with dim_desc = expr_replace_expr_desc fvar e.dim_desc } |
357 |
and expr_replace_expr_desc fvar e = |
358 |
let re = expr_replace_expr fvar in |
359 |
match e with |
360 |
| Dvar |
361 |
| Dunivar |
362 |
| Dbool _ |
363 |
| Dint _ -> e |
364 |
| Dident v -> (fvar v).dim_desc |
365 |
| Dappl (id, el) -> Dappl (id, List.map re el) |
366 |
| Dite (g,t,e) -> Dite (re g, re t, re e) |
367 |
| Dlink e -> Dlink (re e) |