lustrec / src / clock_calculus.ml @ 52cfee34
History | View | Annotate | Download (31.2 KB)
1 |
(* ---------------------------------------------------------------------------- |
---|---|
2 |
* SchedMCore - A MultiCore Scheduling Framework |
3 |
* Copyright (C) 2009-2011, ONERA, Toulouse, FRANCE - LIFL, Lille, FRANCE |
4 |
* |
5 |
* This file is part of Prelude |
6 |
* |
7 |
* Prelude is free software; you can redistribute it and/or |
8 |
* modify it under the terms of the GNU Lesser General Public License |
9 |
* as published by the Free Software Foundation ; either version 2 of |
10 |
* the License, or (at your option) any later version. |
11 |
* |
12 |
* Prelude is distributed in the hope that it will be useful, but |
13 |
* WITHOUT ANY WARRANTY ; without even the implied warranty of |
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
15 |
* Lesser General Public License for more details. |
16 |
* |
17 |
* You should have received a copy of the GNU Lesser General Public |
18 |
* License along with this program ; if not, write to the Free Software |
19 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 |
20 |
* USA |
21 |
*---------------------------------------------------------------------------- *) |
22 |
|
23 |
(** Main clock-calculus module. Based on type inference algorithms with |
24 |
destructive unification. Uses a bit of subtyping for periodic clocks. *) |
25 |
|
26 |
(* Though it shares similarities with the typing module, no code |
27 |
is shared. Simple environments, very limited identifier scoping, no |
28 |
identifier redefinition allowed. *) |
29 |
open Utils |
30 |
open LustreSpec |
31 |
open Corelang |
32 |
open Clocks |
33 |
open Format |
34 |
|
35 |
let loc_of_cond loc_containing id = |
36 |
let pos_start = |
37 |
{loc_containing.Location.loc_end with |
38 |
Lexing.pos_cnum=loc_containing.Location.loc_end.Lexing.pos_cnum-(String.length id)} |
39 |
in |
40 |
{Location.loc_start = pos_start; |
41 |
Location.loc_end = loc_containing.Location.loc_end} |
42 |
|
43 |
(** [occurs cvar ck] returns true if the clock variable [cvar] occurs in |
44 |
clock [ck]. False otherwise. *) |
45 |
let rec occurs cvar ck = |
46 |
let ck = repr ck in |
47 |
match ck.cdesc with |
48 |
| Carrow (ck1, ck2) -> |
49 |
(occurs cvar ck1) || (occurs cvar ck2) |
50 |
| Ctuple ckl -> |
51 |
List.exists (occurs cvar) ckl |
52 |
| Con (ck',_,_) -> occurs cvar ck' |
53 |
| Pck_up (ck',_) -> occurs cvar ck' |
54 |
| Pck_down (ck',_) -> occurs cvar ck' |
55 |
| Pck_phase (ck',_) -> occurs cvar ck' |
56 |
| Cvar _ -> ck=cvar |
57 |
| Cunivar _ | Pck_const (_,_) -> false |
58 |
| Clink ck' -> occurs cvar ck' |
59 |
| Ccarrying (_,ck') -> occurs cvar ck' |
60 |
|
61 |
(* Clocks generalization *) |
62 |
let rec generalize_carrier cr = |
63 |
match cr.carrier_desc with |
64 |
| Carry_const _ |
65 |
| Carry_name -> |
66 |
if cr.carrier_scoped then |
67 |
raise (Scope_carrier cr); |
68 |
cr.carrier_desc <- Carry_var |
69 |
| Carry_var -> () |
70 |
| Carry_link cr' -> generalize_carrier cr' |
71 |
|
72 |
(** Promote monomorphic clock variables to polymorphic clock variables. *) |
73 |
(* Generalize by side-effects *) |
74 |
let rec generalize ck = |
75 |
match ck.cdesc with |
76 |
| Carrow (ck1,ck2) -> |
77 |
generalize ck1; generalize ck2 |
78 |
| Ctuple clist -> |
79 |
List.iter generalize clist |
80 |
| Con (ck',cr,_) -> generalize ck'; generalize_carrier cr |
81 |
| Cvar cset -> |
82 |
if ck.cscoped then |
83 |
raise (Scope_clock ck); |
84 |
ck.cdesc <- Cunivar cset |
85 |
| Pck_up (ck',_) -> generalize ck' |
86 |
| Pck_down (ck',_) -> generalize ck' |
87 |
| Pck_phase (ck',_) -> generalize ck' |
88 |
| Pck_const (_,_) | Cunivar _ -> () |
89 |
| Clink ck' -> |
90 |
generalize ck' |
91 |
| Ccarrying (cr,ck') -> |
92 |
generalize_carrier cr; generalize ck' |
93 |
|
94 |
let try_generalize ck_node loc = |
95 |
try |
96 |
generalize ck_node |
97 |
with (Scope_carrier cr) -> |
98 |
raise (Error (loc, Carrier_extrusion (ck_node, cr))) |
99 |
| (Scope_clock ck) -> |
100 |
raise (Error (loc, Clock_extrusion (ck_node, ck))) |
101 |
|
102 |
(* Clocks instanciation *) |
103 |
let instantiate_carrier cr inst_cr_vars = |
104 |
let cr = carrier_repr cr in |
105 |
match cr.carrier_desc with |
106 |
| Carry_const _ |
107 |
| Carry_name -> cr |
108 |
| Carry_link _ -> |
109 |
failwith "Internal error" |
110 |
| Carry_var -> |
111 |
try |
112 |
List.assoc cr.carrier_id !inst_cr_vars |
113 |
with Not_found -> |
114 |
let cr_var = new_carrier Carry_name true in |
115 |
inst_cr_vars := (cr.carrier_id,cr_var)::!inst_cr_vars; |
116 |
cr_var |
117 |
|
118 |
(** Downgrade polymorphic clock variables to monomorphic clock variables *) |
119 |
(* inst_ck_vars ensures that a polymorphic variable is instanciated with |
120 |
the same monomorphic variable if it occurs several times in the same |
121 |
type. inst_cr_vars is the same for carriers. *) |
122 |
let rec instantiate inst_ck_vars inst_cr_vars ck = |
123 |
match ck.cdesc with |
124 |
| Carrow (ck1,ck2) -> |
125 |
{ck with cdesc = |
126 |
Carrow ((instantiate inst_ck_vars inst_cr_vars ck1), |
127 |
(instantiate inst_ck_vars inst_cr_vars ck2))} |
128 |
| Ctuple cklist -> |
129 |
{ck with cdesc = Ctuple |
130 |
(List.map (instantiate inst_ck_vars inst_cr_vars) cklist)} |
131 |
| Con (ck',c,l) -> |
132 |
let c' = instantiate_carrier c inst_cr_vars in |
133 |
{ck with cdesc = Con ((instantiate inst_ck_vars inst_cr_vars ck'),c',l)} |
134 |
| Cvar _ | Pck_const (_,_) -> ck |
135 |
| Pck_up (ck',k) -> |
136 |
{ck with cdesc = Pck_up ((instantiate inst_ck_vars inst_cr_vars ck'),k)} |
137 |
| Pck_down (ck',k) -> |
138 |
{ck with cdesc = Pck_down ((instantiate inst_ck_vars inst_cr_vars ck'),k)} |
139 |
| Pck_phase (ck',q) -> |
140 |
{ck with cdesc = Pck_phase ((instantiate inst_ck_vars inst_cr_vars ck'),q)} |
141 |
| Clink ck' -> |
142 |
{ck with cdesc = Clink (instantiate inst_ck_vars inst_cr_vars ck')} |
143 |
| Ccarrying (cr,ck') -> |
144 |
let cr' = instantiate_carrier cr inst_cr_vars in |
145 |
{ck with cdesc = |
146 |
Ccarrying (cr',instantiate inst_ck_vars inst_cr_vars ck')} |
147 |
| Cunivar cset -> |
148 |
try |
149 |
List.assoc ck.cid !inst_ck_vars |
150 |
with Not_found -> |
151 |
let var = new_ck (Cvar cset) true in |
152 |
inst_ck_vars := (ck.cid, var)::!inst_ck_vars; |
153 |
var |
154 |
|
155 |
(** [subsume pck1 cset1] subsumes clock [pck1] by clock subset |
156 |
[cset1]. The clock constraint is actually recursively transfered to |
157 |
the clock variable appearing in [pck1] *) |
158 |
let subsume pck1 cset1 = |
159 |
let rec aux pck cset = |
160 |
match cset with |
161 |
| CSet_all -> |
162 |
() |
163 |
| CSet_pck (k,(a,b)) -> |
164 |
match pck.cdesc with |
165 |
| Cvar cset' -> |
166 |
pck.cdesc <- Cvar (intersect cset' cset) |
167 |
| Pck_up (pck',k') -> |
168 |
let rat = if a=0 then (0,1) else (a,b*k') in |
169 |
aux pck' (CSet_pck ((k*k'),rat)) |
170 |
| Pck_down (pck',k') -> |
171 |
let k''=k/(gcd k k') in |
172 |
aux pck' (CSet_pck (k'',(a*k',b))) |
173 |
| Pck_phase (pck',(a',b')) -> |
174 |
let (a'',b'')= max_rat (sum_rat (a,b) (-a',b')) (0,1) in |
175 |
aux pck' (CSet_pck (k, (a'',b''))) |
176 |
| Pck_const (n,(a',b')) -> |
177 |
if n mod k <> 0 || (max_rat (a,b) (a',b')) <> (a',b') then |
178 |
raise (Subsume (pck1, cset1)) |
179 |
| Clink pck' -> |
180 |
aux pck' cset |
181 |
| Cunivar _ -> () |
182 |
| Ccarrying (_,ck') -> |
183 |
aux ck' cset |
184 |
| _ -> raise (Subsume (pck1, cset1)) |
185 |
in |
186 |
aux pck1 cset1 |
187 |
|
188 |
let rec update_scope_carrier scoped cr = |
189 |
if (not scoped) then |
190 |
begin |
191 |
cr.carrier_scoped <- scoped; |
192 |
match cr.carrier_desc with |
193 |
| Carry_const _ | Carry_name | Carry_var -> () |
194 |
| Carry_link cr' -> update_scope_carrier scoped cr' |
195 |
end |
196 |
|
197 |
let rec update_scope scoped ck = |
198 |
if (not scoped) then |
199 |
begin |
200 |
ck.cscoped <- scoped; |
201 |
match ck.cdesc with |
202 |
| Carrow (ck1,ck2) -> |
203 |
update_scope scoped ck1; update_scope scoped ck2 |
204 |
| Ctuple clist -> |
205 |
List.iter (update_scope scoped) clist |
206 |
| Con (ck',cr,_) -> update_scope scoped ck'(*; update_scope_carrier scoped cr*) |
207 |
| Cvar cset -> |
208 |
ck.cdesc <- Cvar cset |
209 |
| Pck_up (ck',_) -> update_scope scoped ck' |
210 |
| Pck_down (ck',_) -> update_scope scoped ck' |
211 |
| Pck_phase (ck',_) -> update_scope scoped ck' |
212 |
| Pck_const (_,_) | Cunivar _ -> () |
213 |
| Clink ck' -> |
214 |
update_scope scoped ck' |
215 |
| Ccarrying (cr,ck') -> |
216 |
update_scope_carrier scoped cr; update_scope scoped ck' |
217 |
end |
218 |
|
219 |
(* Unifies two static pclocks. *) |
220 |
let unify_static_pck ck1 ck2 = |
221 |
if (period ck1 <> period ck2) || (phase ck1 <> phase ck2) then |
222 |
raise (Unify (ck1,ck2)) |
223 |
|
224 |
(* Unifies two clock carriers *) |
225 |
let unify_carrier cr1 cr2 = |
226 |
let cr1 = carrier_repr cr1 in |
227 |
let cr2 = carrier_repr cr2 in |
228 |
if cr1=cr2 then () |
229 |
else |
230 |
match cr1.carrier_desc, cr2.carrier_desc with |
231 |
| Carry_const id1, Carry_const id2 -> |
232 |
if id1 <> id2 then raise (Mismatch (cr1, cr2)) |
233 |
| Carry_const _, Carry_name -> |
234 |
begin |
235 |
cr2.carrier_desc <- Carry_link cr1; |
236 |
update_scope_carrier cr2.carrier_scoped cr1 |
237 |
end |
238 |
| Carry_name, Carry_const _ -> |
239 |
begin |
240 |
cr1.carrier_desc <- Carry_link cr2; |
241 |
update_scope_carrier cr1.carrier_scoped cr2 |
242 |
end |
243 |
| Carry_name, Carry_name -> |
244 |
if cr1.carrier_id < cr2.carrier_id then |
245 |
begin |
246 |
cr2.carrier_desc <- Carry_link cr1; |
247 |
update_scope_carrier cr2.carrier_scoped cr1 |
248 |
end |
249 |
else |
250 |
begin |
251 |
cr1.carrier_desc <- Carry_link cr2; |
252 |
update_scope_carrier cr1.carrier_scoped cr2 |
253 |
end |
254 |
| _,_ -> assert false |
255 |
|
256 |
(* Semi-unifies two clock carriers *) |
257 |
let semi_unify_carrier cr1 cr2 = |
258 |
let cr1 = carrier_repr cr1 in |
259 |
let cr2 = carrier_repr cr2 in |
260 |
if cr1=cr2 then () |
261 |
else |
262 |
match cr1.carrier_desc, cr2.carrier_desc with |
263 |
| Carry_const id1, Carry_const id2 -> |
264 |
if id1 <> id2 then raise (Mismatch (cr1, cr2)) |
265 |
| Carry_const _, Carry_name -> |
266 |
begin |
267 |
cr2.carrier_desc <- Carry_link cr1; |
268 |
update_scope_carrier cr2.carrier_scoped cr1 |
269 |
end |
270 |
| Carry_name, Carry_const _ -> raise (Mismatch (cr1, cr2)) |
271 |
| Carry_name, Carry_name -> |
272 |
if cr1.carrier_id < cr2.carrier_id then |
273 |
begin |
274 |
cr2.carrier_desc <- Carry_link cr1; |
275 |
update_scope_carrier cr2.carrier_scoped cr1 |
276 |
end |
277 |
else |
278 |
begin |
279 |
cr1.carrier_desc <- Carry_link cr2; |
280 |
update_scope_carrier cr1.carrier_scoped cr2 |
281 |
end |
282 |
| _,_ -> assert false |
283 |
|
284 |
(** [unify ck1 ck2] unifies clocks [ck1] and [ck2]. Raises [Unify |
285 |
(ck1,ck2)] if the clocks are not unifiable.*) |
286 |
let rec unify ck1 ck2 = |
287 |
let ck1 = repr ck1 in |
288 |
let ck2 = repr ck2 in |
289 |
if ck1=ck2 then |
290 |
() |
291 |
else |
292 |
let left_const = is_concrete_pck ck1 in |
293 |
let right_const = is_concrete_pck ck2 in |
294 |
if left_const && right_const then |
295 |
unify_static_pck ck1 ck2 |
296 |
else |
297 |
match ck1.cdesc,ck2.cdesc with |
298 |
| Cvar cset1,Cvar cset2-> |
299 |
if ck1.cid < ck2.cid then |
300 |
begin |
301 |
ck2.cdesc <- Clink (simplify ck1); |
302 |
update_scope ck2.cscoped ck1; |
303 |
subsume ck1 cset2 |
304 |
end |
305 |
else |
306 |
begin |
307 |
ck1.cdesc <- Clink (simplify ck2); |
308 |
update_scope ck1.cscoped ck2; |
309 |
subsume ck2 cset1 |
310 |
end |
311 |
| Cvar cset, Pck_up (_,_) | Cvar cset, Pck_down (_,_) |
312 |
| Cvar cset, Pck_phase (_,_) | Cvar cset, Pck_const (_,_) -> |
313 |
if (occurs ck1 ck2) then |
314 |
begin |
315 |
if (simplify ck2 = ck1) then |
316 |
ck2.cdesc <- Clink (simplify ck1) |
317 |
else |
318 |
raise (Unify (ck1,ck2)); |
319 |
end |
320 |
else |
321 |
begin |
322 |
ck1.cdesc <- Clink (simplify ck2); |
323 |
subsume ck2 cset |
324 |
end |
325 |
| Pck_up (_,_), Cvar cset | Pck_down (_,_), Cvar cset |
326 |
| Pck_phase (_,_), Cvar cset | Pck_const (_,_), Cvar cset -> |
327 |
if (occurs ck2 ck1) then |
328 |
begin |
329 |
if ((simplify ck1) = ck2) then |
330 |
ck1.cdesc <- Clink (simplify ck2) |
331 |
else |
332 |
raise (Unify (ck1,ck2)); |
333 |
end |
334 |
else |
335 |
begin |
336 |
ck2.cdesc <- Clink (simplify ck1); |
337 |
subsume ck1 cset |
338 |
end |
339 |
| (Cvar cset,_) when (not (occurs ck1 ck2)) -> |
340 |
subsume ck2 cset; |
341 |
update_scope ck1.cscoped ck2; |
342 |
ck1.cdesc <- Clink (simplify ck2) |
343 |
| (_, (Cvar cset)) when (not (occurs ck2 ck1)) -> |
344 |
subsume ck1 cset; |
345 |
update_scope ck2.cscoped ck1; |
346 |
ck2.cdesc <- Clink (simplify ck1) |
347 |
| Ccarrying (cr1,ck1'),Ccarrying (cr2,ck2') -> |
348 |
unify_carrier cr1 cr2; |
349 |
unify ck1' ck2' |
350 |
| Ccarrying (_,_),_ | _,Ccarrying (_,_) -> |
351 |
raise (Unify (ck1,ck2)) |
352 |
| Carrow (c1,c2), Carrow (c1',c2') -> |
353 |
unify c1 c1'; unify c2 c2' |
354 |
| Ctuple ckl1, Ctuple ckl2 -> |
355 |
if (List.length ckl1) <> (List.length ckl2) then |
356 |
raise (Unify (ck1,ck2)); |
357 |
List.iter2 unify ckl1 ckl2 |
358 |
| Con (ck',c1,l1), Con (ck'',c2,l2) when l1=l2 -> |
359 |
unify_carrier c1 c2; |
360 |
unify ck' ck'' |
361 |
| Pck_const (i,r), Pck_const (i',r') -> |
362 |
if i<>i' || r <> r' then |
363 |
raise (Unify (ck1,ck2)) |
364 |
| (_, Pck_up (pck2',k)) when (not right_const) -> |
365 |
let ck1' = simplify (new_ck (Pck_down (ck1,k)) true) in |
366 |
unify ck1' pck2' |
367 |
| (_,Pck_down (pck2',k)) when (not right_const) -> |
368 |
subsume ck1 (CSet_pck (k,(0,1))); |
369 |
let ck1' = simplify (new_ck (Pck_up (ck1,k)) true) in |
370 |
unify ck1' pck2' |
371 |
| (_,Pck_phase (pck2',(a,b))) when (not right_const) -> |
372 |
subsume ck1 (CSet_pck (b,(a,b))); |
373 |
let ck1' = simplify (new_ck (Pck_phase (ck1,(-a,b))) true) in |
374 |
unify ck1' pck2' |
375 |
| Pck_up (pck1',k),_ -> |
376 |
let ck2' = simplify (new_ck (Pck_down (ck2,k)) true) in |
377 |
unify pck1' ck2' |
378 |
| Pck_down (pck1',k),_ -> |
379 |
subsume ck2 (CSet_pck (k,(0,1))); |
380 |
let ck2' = simplify (new_ck (Pck_up (ck2,k)) true) in |
381 |
unify pck1' ck2' |
382 |
| Pck_phase (pck1',(a,b)),_ -> |
383 |
subsume ck2 (CSet_pck (b,(a,b))); |
384 |
let ck2' = simplify (new_ck (Pck_phase (ck2,(-a,b))) true) in |
385 |
unify pck1' ck2' |
386 |
| Cunivar _, _ | _, Cunivar _ -> () |
387 |
| _,_ -> raise (Unify (ck1,ck2)) |
388 |
|
389 |
(** [unify ck1 ck2] semi-unifies clocks [ck1] and [ck2]. Raises [Unify |
390 |
(ck1,ck2)] if the clocks are not semi-unifiable.*) |
391 |
let rec semi_unify ck1 ck2 = |
392 |
let ck1 = repr ck1 in |
393 |
let ck2 = repr ck2 in |
394 |
if ck1=ck2 then |
395 |
() |
396 |
else |
397 |
match ck1.cdesc,ck2.cdesc with |
398 |
| Cvar cset1,Cvar cset2-> |
399 |
if ck1.cid < ck2.cid then |
400 |
begin |
401 |
ck2.cdesc <- Clink (simplify ck1); |
402 |
update_scope ck2.cscoped ck1 |
403 |
end |
404 |
else |
405 |
begin |
406 |
ck1.cdesc <- Clink (simplify ck2); |
407 |
update_scope ck1.cscoped ck2 |
408 |
end |
409 |
| (Cvar cset,_) -> raise (Unify (ck1,ck2)) |
410 |
| (_, (Cvar cset)) when (not (occurs ck2 ck1)) -> |
411 |
update_scope ck2.cscoped ck1; |
412 |
ck2.cdesc <- Clink (simplify ck1) |
413 |
| Ccarrying (cr1,ck1'),Ccarrying (cr2,ck2') -> |
414 |
semi_unify_carrier cr1 cr2; |
415 |
semi_unify ck1' ck2' |
416 |
| Ccarrying (_,_),_ | _,Ccarrying (_,_) -> |
417 |
raise (Unify (ck1,ck2)) |
418 |
| Carrow (c1,c2), Carrow (c1',c2') -> |
419 |
begin |
420 |
semi_unify c1 c1'; |
421 |
semi_unify c2 c2' |
422 |
end |
423 |
| Ctuple ckl1, Ctuple ckl2 -> |
424 |
if (List.length ckl1) <> (List.length ckl2) then |
425 |
raise (Unify (ck1,ck2)); |
426 |
List.iter2 semi_unify ckl1 ckl2 |
427 |
| Con (ck',c1,l1), Con (ck'',c2,l2) when l1=l2 -> |
428 |
semi_unify_carrier c1 c2; |
429 |
semi_unify ck' ck'' |
430 |
| Cunivar _, _ | _, Cunivar _ -> () |
431 |
| _,_ -> raise (Unify (ck1,ck2)) |
432 |
|
433 |
(* Returns the value corresponding to a pclock (integer) factor |
434 |
expression. Expects a constant expression (checked by typing). *) |
435 |
let int_factor_of_expr e = |
436 |
match e.expr_desc with |
437 |
| Expr_const |
438 |
(Const_int i) -> i |
439 |
| _ -> failwith "Internal error: int_factor_of_expr" |
440 |
|
441 |
(* Unifies all the clock variables in the clock type of a tuple |
442 |
expression, so that the clock type only uses at most one clock variable *) |
443 |
let unify_tuple_clock ref_ck_opt ck = |
444 |
let ck_var = ref ref_ck_opt in |
445 |
let rec aux ck = |
446 |
match (repr ck).cdesc with |
447 |
| Con _ |
448 |
| Cvar _ -> |
449 |
begin |
450 |
match !ck_var with |
451 |
| None -> |
452 |
ck_var:=Some ck |
453 |
| Some v -> |
454 |
(* may fail *) |
455 |
unify v ck |
456 |
end |
457 |
| Ctuple cl -> |
458 |
List.iter aux cl |
459 |
| Carrow _ -> assert false (* should not occur *) |
460 |
| Ccarrying (_, ck1) -> |
461 |
aux ck1 |
462 |
| _ -> () |
463 |
in |
464 |
aux ck |
465 |
|
466 |
(* Unifies all the clock variables in the clock type of an imported |
467 |
node, so that the clock type only uses at most one base clock variable, |
468 |
that is, the activation clock of the node *) |
469 |
let unify_imported_clock ref_ck_opt ck = |
470 |
let ck_var = ref ref_ck_opt in |
471 |
let rec aux ck = |
472 |
match (repr ck).cdesc with |
473 |
| Cvar _ -> |
474 |
begin |
475 |
match !ck_var with |
476 |
| None -> |
477 |
ck_var:=Some ck |
478 |
| Some v -> |
479 |
(* cannot fail *) |
480 |
unify v ck |
481 |
end |
482 |
| Ctuple cl -> |
483 |
List.iter aux cl |
484 |
| Carrow (ck1,ck2) -> |
485 |
aux ck1; aux ck2 |
486 |
| Ccarrying (_, ck1) -> |
487 |
aux ck1 |
488 |
| Con (ck1, _, _) -> aux ck1 |
489 |
| _ -> () |
490 |
in |
491 |
aux ck |
492 |
|
493 |
(** [clock_uncarry ck] drops the possible carrier name from clock [ck] *) |
494 |
let clock_uncarry ck = |
495 |
let ck = repr ck in |
496 |
match ck.cdesc with |
497 |
| Ccarrying (_, ck') -> ck' |
498 |
| _ -> ck |
499 |
|
500 |
let try_unify ck1 ck2 loc = |
501 |
try |
502 |
unify ck1 ck2 |
503 |
with |
504 |
| Unify (ck1',ck2') -> |
505 |
raise (Error (loc, Clock_clash (ck1',ck2'))) |
506 |
| Subsume (ck,cset) -> |
507 |
raise (Error (loc, Clock_set_mismatch (ck,cset))) |
508 |
| Mismatch (cr1,cr2) -> |
509 |
raise (Error (loc, Carrier_mismatch (cr1,cr2))) |
510 |
|
511 |
let try_semi_unify ck1 ck2 loc = |
512 |
try |
513 |
semi_unify ck1 ck2 |
514 |
with |
515 |
| Unify (ck1',ck2') -> |
516 |
raise (Error (loc, Clock_clash (ck1',ck2'))) |
517 |
| Subsume (ck,cset) -> |
518 |
raise (Error (loc, Clock_set_mismatch (ck,cset))) |
519 |
| Mismatch (cr1,cr2) -> |
520 |
raise (Error (loc, Carrier_mismatch (cr1,cr2))) |
521 |
|
522 |
(* ck1 is a subtype of ck2 *) |
523 |
let rec sub_unify sub ck1 ck2 = |
524 |
match (repr ck1).cdesc, (repr ck2).cdesc with |
525 |
| Ctuple [c1] , Ctuple [c2] -> sub_unify sub c1 c2 |
526 |
| Ctuple cl1 , Ctuple cl2 -> |
527 |
if List.length cl1 <> List.length cl2 |
528 |
then raise (Unify (ck1, ck2)) |
529 |
else List.iter2 (sub_unify sub) cl1 cl2 |
530 |
| Ctuple [c1] , _ -> sub_unify sub c1 ck2 |
531 |
| _ , Ctuple [c2] -> sub_unify sub ck1 c2 |
532 |
| Con (c1, cr1, t1) , Con (c2, cr2, t2) when t1=t2 -> |
533 |
begin |
534 |
unify_carrier cr1 cr2; |
535 |
sub_unify sub c1 c2 |
536 |
end |
537 |
| Ccarrying (cr1, c1), Ccarrying (cr2, c2)-> |
538 |
begin |
539 |
unify_carrier cr1 cr2; |
540 |
sub_unify sub c1 c2 |
541 |
end |
542 |
| Ccarrying (_, c1) , _ when sub -> sub_unify sub c1 ck2 |
543 |
| _ -> unify ck1 ck2 |
544 |
|
545 |
let try_sub_unify sub ck1 ck2 loc = |
546 |
try |
547 |
sub_unify sub ck1 ck2 |
548 |
with |
549 |
| Unify (ck1',ck2') -> |
550 |
raise (Error (loc, Clock_clash (ck1',ck2'))) |
551 |
| Subsume (ck,cset) -> |
552 |
raise (Error (loc, Clock_set_mismatch (ck,cset))) |
553 |
| Mismatch (cr1,cr2) -> |
554 |
raise (Error (loc, Carrier_mismatch (cr1,cr2))) |
555 |
|
556 |
(* Clocks a list of arguments of Lustre builtin operators: |
557 |
- type each expression, remove carriers of clocks as |
558 |
carriers may only denote variables, not arbitrary expr. |
559 |
- try to unify these clocks altogether |
560 |
*) |
561 |
let rec clock_standard_args env expr_list = |
562 |
let ck_list = List.map (fun e -> clock_uncarry (clock_expr env e)) expr_list in |
563 |
let ck_res = new_var true in |
564 |
List.iter2 (fun e ck -> try_unify ck ck_res e.expr_loc) expr_list ck_list; |
565 |
ck_res |
566 |
|
567 |
(* emulates a subtyping relation between clocks c and (cr : c), |
568 |
used during node application only *) |
569 |
and clock_subtyping_arg env ?(sub=true) real_arg formal_clock = |
570 |
let loc = real_arg.expr_loc in |
571 |
let real_clock = clock_expr env real_arg in |
572 |
try_sub_unify sub real_clock formal_clock loc |
573 |
|
574 |
(* computes clocks for node application *) |
575 |
and clock_appl env f args clock_reset loc = |
576 |
let cfun = clock_ident false env f loc in |
577 |
let cins, couts = split_arrow cfun in |
578 |
let cins = clock_list_of_clock cins in |
579 |
let args = expr_list_of_expr args in |
580 |
List.iter2 (clock_subtyping_arg env) args cins; |
581 |
unify_imported_clock (Some clock_reset) cfun; |
582 |
couts |
583 |
|
584 |
and clock_ident nocarrier env id loc = |
585 |
clock_expr ~nocarrier:nocarrier env (expr_of_ident id loc) |
586 |
|
587 |
and clock_carrier env c loc ce = |
588 |
let expr_c = expr_of_ident c loc in |
589 |
let ck = clock_expr ~nocarrier:false env expr_c in |
590 |
let cr = new_carrier Carry_name (*Carry_const c*) ck.cscoped in |
591 |
let ckcarry = new_ck (Ccarrying (cr,ce)) ck.cscoped in |
592 |
try_unify ck ckcarry expr_c.expr_loc; |
593 |
cr |
594 |
|
595 |
(** [clock_expr env expr] performs the clock calculus for expression [expr] in |
596 |
environment [env] *) |
597 |
and clock_expr ?(nocarrier=true) env expr = |
598 |
let resulting_ck = |
599 |
match expr.expr_desc with |
600 |
| Expr_const cst -> |
601 |
let ck = new_var true in |
602 |
expr.expr_clock <- ck; |
603 |
ck |
604 |
| Expr_ident v -> |
605 |
let ckv = |
606 |
try |
607 |
Env.lookup_value env v |
608 |
with Not_found -> |
609 |
failwith ("Internal error, variable \""^v^"\" not found") |
610 |
in |
611 |
let ck = instantiate (ref []) (ref []) ckv in |
612 |
expr.expr_clock <- ck; |
613 |
ck |
614 |
| Expr_array elist -> |
615 |
let ck = clock_standard_args env elist in |
616 |
expr.expr_clock <- ck; |
617 |
ck |
618 |
| Expr_access (e1, d) -> |
619 |
(* dimension, being a static value, doesn't need to be clocked *) |
620 |
let ck = clock_standard_args env [e1] in |
621 |
expr.expr_clock <- ck; |
622 |
ck |
623 |
| Expr_power (e1, d) -> |
624 |
(* dimension, being a static value, doesn't need to be clocked *) |
625 |
let ck = clock_standard_args env [e1] in |
626 |
expr.expr_clock <- ck; |
627 |
ck |
628 |
| Expr_tuple elist -> |
629 |
let ck = new_ck (Ctuple (List.map (clock_expr env) elist)) true in |
630 |
expr.expr_clock <- ck; |
631 |
ck |
632 |
| Expr_ite (c, t, e) -> |
633 |
let ck_c = clock_standard_args env [c] in |
634 |
let ck = clock_standard_args env [t; e] in |
635 |
(* Here, the branches may exhibit a tuple clock, not the condition *) |
636 |
unify_tuple_clock (Some ck_c) ck; |
637 |
expr.expr_clock <- ck; |
638 |
ck |
639 |
| Expr_appl (id, args, r) -> |
640 |
(try |
641 |
(* for a modular compilation scheme, all inputs/outputs must share the same clock ! |
642 |
this is also the reset clock ! |
643 |
*) |
644 |
let cr = |
645 |
match r with |
646 |
| None -> new_var true |
647 |
| Some (x, _) -> let loc_r = loc_of_cond expr.expr_loc x in |
648 |
let expr_r = expr_of_ident x loc_r in |
649 |
clock_expr env expr_r in |
650 |
let couts = clock_appl env id args cr expr.expr_loc in |
651 |
expr.expr_clock <- couts; |
652 |
couts |
653 |
with exn -> ( |
654 |
Format.eprintf "Current expr: %a@." Printers.pp_expr expr; |
655 |
raise exn |
656 |
)) |
657 |
| Expr_fby (e1,e2) |
658 |
| Expr_arrow (e1,e2) -> |
659 |
let ck = clock_standard_args env [e1; e2] in |
660 |
expr.expr_clock <- ck; |
661 |
ck |
662 |
| Expr_pre e -> (* todo : deal with phases as in tail ? *) |
663 |
let ck = clock_standard_args env [e] in |
664 |
expr.expr_clock <- ck; |
665 |
ck |
666 |
| Expr_when (e,c,l) -> |
667 |
let ce = clock_standard_args env [e] in |
668 |
let c_loc = loc_of_cond expr.expr_loc c in |
669 |
let cr = clock_carrier env c c_loc ce in |
670 |
let ck = new_ck (Con (ce,cr,l)) true in |
671 |
let cr' = new_carrier (Carry_const c) ck.cscoped in |
672 |
let ck' = new_ck (Con (ce,cr',l)) true in |
673 |
expr.expr_clock <- ck'; |
674 |
ck |
675 |
| Expr_merge (c,hl) -> |
676 |
let cvar = new_var true in |
677 |
let cr = clock_carrier env c expr.expr_loc cvar in |
678 |
List.iter (fun (t, h) -> clock_subtyping_arg env h (new_ck (Con (cvar,cr,t)) true)) hl; |
679 |
expr.expr_clock <- cvar; |
680 |
cvar |
681 |
| Expr_uclock (e,k) -> |
682 |
let pck = clock_expr env e in |
683 |
if not (can_be_pck pck) then |
684 |
raise (Error (e.expr_loc, Not_pck)); |
685 |
if k = 0 then |
686 |
raise (Error (expr.expr_loc, Factor_zero)); |
687 |
(try |
688 |
subsume pck (CSet_pck (k,(0,1))) |
689 |
with Subsume (ck,cset) -> |
690 |
raise (Error (e.expr_loc, Clock_set_mismatch (ck,CSet_pck (k,(0,1)))))); |
691 |
let ck = new_ck (Pck_up (pck,k)) true in |
692 |
expr.expr_clock <- ck; |
693 |
ck |
694 |
| Expr_dclock (e,k) -> |
695 |
let pck = clock_expr env e in |
696 |
if not (can_be_pck pck) then |
697 |
raise (Error (e.expr_loc, Not_pck)); |
698 |
if k = 0 then |
699 |
raise (Error (expr.expr_loc, Factor_zero)); |
700 |
(try |
701 |
subsume pck (CSet_pck (1,(0,1))) |
702 |
with Subsume (ck,cset) -> |
703 |
raise (Error (e.expr_loc, Clock_set_mismatch (ck,CSet_pck (1,(0,1)))))); |
704 |
let ck = new_ck (Pck_down (pck,k)) true in |
705 |
expr.expr_clock <- ck; |
706 |
ck |
707 |
| Expr_phclock (e,(a,b)) -> |
708 |
let pck = clock_expr env e in |
709 |
if not (can_be_pck pck) then |
710 |
raise (Error (e.expr_loc, Not_pck)); |
711 |
let (a,b) = simplify_rat (a,b) in |
712 |
(try |
713 |
subsume pck (CSet_pck (b,(0,1))) |
714 |
with Subsume (ck,cset) -> |
715 |
raise (Error (e.expr_loc, Clock_set_mismatch (ck,CSet_pck (b,(0,1)))))); |
716 |
let ck = new_ck (Pck_phase (pck,(a,b))) true in |
717 |
expr.expr_clock <- ck; |
718 |
ck |
719 |
in |
720 |
Log.report ~level:3 (fun fmt -> Format.fprintf fmt "Clock of expr %a: %a@." Printers.pp_expr expr Clocks.print_ck resulting_ck); |
721 |
resulting_ck |
722 |
|
723 |
let clock_of_vlist vars = |
724 |
let ckl = List.map (fun v -> v.var_clock) vars in |
725 |
clock_of_clock_list ckl |
726 |
|
727 |
(** [clock_eq env eq] performs the clock-calculus for equation [eq] in |
728 |
environment [env] *) |
729 |
let clock_eq env eq = |
730 |
let expr_lhs = expr_of_expr_list eq.eq_loc (List.map (fun v -> expr_of_ident v eq.eq_loc) eq.eq_lhs) in |
731 |
let ck_rhs = clock_expr env eq.eq_rhs in |
732 |
clock_subtyping_arg env expr_lhs ck_rhs |
733 |
|
734 |
|
735 |
(* [clock_coreclock cck] returns the clock_expr corresponding to clock |
736 |
declaration [cck] *) |
737 |
let clock_coreclock env cck id loc scoped = |
738 |
match cck.ck_dec_desc with |
739 |
| Ckdec_any -> new_var scoped |
740 |
| Ckdec_pclock (n,(a,b)) -> |
741 |
let ck = new_ck (Pck_const (n,(a,b))) scoped in |
742 |
if n mod b <> 0 then raise (Error (loc,Invalid_const ck)); |
743 |
ck |
744 |
| Ckdec_bool cl -> |
745 |
let temp_env = Env.add_value env id (new_var true) in |
746 |
(* We just want the id to be present in the environment *) |
747 |
let dummy_id_expr = expr_of_ident id loc in |
748 |
let when_expr = |
749 |
List.fold_left |
750 |
(fun expr (x,l) -> |
751 |
{expr_tag = new_tag (); |
752 |
expr_desc = Expr_when (expr,x,l); |
753 |
expr_type = Types.new_var (); |
754 |
expr_clock = new_var scoped; |
755 |
expr_delay = Delay.new_var (); |
756 |
expr_loc = loc; |
757 |
expr_annot = None}) |
758 |
dummy_id_expr cl |
759 |
in |
760 |
clock_expr temp_env when_expr |
761 |
|
762 |
(* Clocks a variable declaration *) |
763 |
let clock_var_decl scoped env vdecl = |
764 |
let ck = clock_coreclock env vdecl.var_dec_clock vdecl.var_id vdecl.var_loc scoped in |
765 |
let ck = |
766 |
(* WTF ???? |
767 |
if vdecl.var_dec_const |
768 |
then |
769 |
(try_generalize ck vdecl.var_loc; ck) |
770 |
else |
771 |
*) |
772 |
if Types.is_clock_type vdecl.var_type |
773 |
then new_ck (Ccarrying ((new_carrier Carry_name scoped),ck)) scoped |
774 |
else ck in |
775 |
vdecl.var_clock <- ck; |
776 |
Env.add_value env vdecl.var_id ck |
777 |
|
778 |
(* Clocks a variable declaration list *) |
779 |
let clock_var_decl_list env scoped l = |
780 |
List.fold_left (clock_var_decl scoped) env l |
781 |
|
782 |
(** [clock_node env nd] performs the clock-calculus for node [nd] in |
783 |
environment [env]. |
784 |
Generalization of clocks wrt scopes follows this rule: |
785 |
- generalize inputs (unscoped). |
786 |
- generalize outputs. As they are scoped, only clocks coming from inputs |
787 |
are allowed to be generalized. |
788 |
- generalize locals. As outputs don't depend on them (checked the step before), |
789 |
they can be generalized. |
790 |
*) |
791 |
let clock_node env loc nd = |
792 |
(* let is_main = nd.node_id = !Options.main_node in *) |
793 |
let new_env = clock_var_decl_list env false nd.node_inputs in |
794 |
let new_env = clock_var_decl_list new_env true nd.node_outputs in |
795 |
let new_env = clock_var_decl_list new_env false nd.node_locals in |
796 |
List.iter (clock_eq new_env) nd.node_eqs; |
797 |
let ck_ins = clock_of_vlist nd.node_inputs in |
798 |
let ck_outs = clock_of_vlist nd.node_outputs in |
799 |
let ck_node = new_ck (Carrow (ck_ins,ck_outs)) false in |
800 |
unify_imported_clock None ck_node; |
801 |
Log.report ~level:3 (fun fmt -> print_ck fmt ck_node); |
802 |
(* Local variables may contain first-order carrier variables that should be generalized. |
803 |
That's not the case for types. *) |
804 |
List.iter (fun vdecl -> try_generalize vdecl.var_clock vdecl.var_loc) nd.node_inputs; |
805 |
List.iter (fun vdecl -> try_generalize vdecl.var_clock vdecl.var_loc) nd.node_outputs; |
806 |
List.iter (fun vdecl -> try_generalize vdecl.var_clock vdecl.var_loc) nd.node_locals; |
807 |
(* TODO : Xavier pourquoi ai je cette erreur ? *) |
808 |
(* if (is_main && is_polymorphic ck_node) then |
809 |
raise (Error (loc,(Cannot_be_polymorphic ck_node))); |
810 |
*) |
811 |
Log.report ~level:3 (fun fmt -> print_ck fmt ck_node); |
812 |
nd.node_clock <- ck_node; |
813 |
Env.add_value env nd.node_id ck_node |
814 |
|
815 |
|
816 |
let check_imported_pclocks loc ck_node = |
817 |
let pck = ref None in |
818 |
let rec aux ck = |
819 |
match ck.cdesc with |
820 |
| Carrow (ck1,ck2) -> aux ck1; aux ck2 |
821 |
| Ctuple cl -> List.iter aux cl |
822 |
| Con (ck',_,_) -> aux ck' |
823 |
| Pck_up (_,_) | Pck_down (_,_) | Pck_phase (_,_) -> |
824 |
raise (Error (loc, (Invalid_imported_clock ck_node))) |
825 |
| Pck_const (n,p) -> |
826 |
begin |
827 |
match !pck with |
828 |
| None -> pck := Some (n,p) |
829 |
| Some (n',p') -> |
830 |
if (n,p) <> (n',p') then |
831 |
raise (Error (loc, (Invalid_imported_clock ck_node))) |
832 |
end |
833 |
| Clink ck' -> aux ck' |
834 |
| Ccarrying (_,ck') -> aux ck' |
835 |
| Cvar _ | Cunivar _ -> |
836 |
match !pck with |
837 |
| None -> () |
838 |
| Some (_,_) -> |
839 |
raise (Error (loc, (Invalid_imported_clock ck_node))) |
840 |
in |
841 |
aux ck_node |
842 |
|
843 |
let clock_imported_node env loc nd = |
844 |
let new_env = clock_var_decl_list env false nd.nodei_inputs in |
845 |
ignore(clock_var_decl_list new_env false nd.nodei_outputs); |
846 |
let ck_ins = clock_of_vlist nd.nodei_inputs in |
847 |
let ck_outs = clock_of_vlist nd.nodei_outputs in |
848 |
let ck_node = new_ck (Carrow (ck_ins,ck_outs)) false in |
849 |
unify_imported_clock None ck_node; |
850 |
check_imported_pclocks loc ck_node; |
851 |
try_generalize ck_node loc; |
852 |
nd.nodei_clock <- ck_node; |
853 |
Env.add_value env nd.nodei_id ck_node |
854 |
|
855 |
let clock_top_consts env clist = |
856 |
List.fold_left (fun env cdecl -> |
857 |
let ck = new_var false in |
858 |
try_generalize ck cdecl.const_loc; |
859 |
Env.add_value env cdecl.const_id ck) env clist |
860 |
|
861 |
let clock_top_decl env decl = |
862 |
match decl.top_decl_desc with |
863 |
| Node nd -> |
864 |
clock_node env decl.top_decl_loc nd |
865 |
| ImportedNode nd -> |
866 |
clock_imported_node env decl.top_decl_loc nd |
867 |
| Consts clist -> |
868 |
clock_top_consts env clist |
869 |
| Open _ -> |
870 |
env |
871 |
|
872 |
let clock_prog env decls = |
873 |
List.fold_left (fun e decl -> clock_top_decl e decl) env decls |
874 |
|
875 |
(* Once the Lustre program is fully clocked, |
876 |
we must get back to the original description of clocks, |
877 |
with constant parameters, instead of unifiable internal variables. *) |
878 |
|
879 |
(* The following functions aims at 'unevaluating' carriers occuring in clock expressions, |
880 |
i.e. replacing unifiable second_order variables with the original carrier names. |
881 |
Once restored in this formulation, clocks may be meaningfully printed. |
882 |
*) |
883 |
let uneval_vdecl_generics vdecl = |
884 |
(*Format.eprintf "Clock_calculus.uneval_vdecl_generics %a@." Printers.pp_node_var vdecl;*) |
885 |
if Types.is_clock_type vdecl.var_type |
886 |
then |
887 |
match get_carrier_name vdecl.var_clock with |
888 |
| None -> (Format.eprintf "internal error: %a@." print_ck vdecl.var_clock; assert false) |
889 |
| Some cr -> Clocks.uneval vdecl.var_id cr |
890 |
|
891 |
let uneval_node_generics vdecls = |
892 |
List.iter uneval_vdecl_generics vdecls |
893 |
|
894 |
let uneval_top_generics decl = |
895 |
match decl.top_decl_desc with |
896 |
| Node nd -> |
897 |
(* A node could contain first-order carrier variable in local vars. This is not the case for types. *) |
898 |
uneval_node_generics (nd.node_inputs @ nd.node_locals @ nd.node_outputs) |
899 |
| ImportedNode nd -> |
900 |
uneval_node_generics (nd.nodei_inputs @ nd.nodei_outputs) |
901 |
| Consts clist -> () |
902 |
| Open _ -> () |
903 |
|
904 |
let uneval_prog_generics prog = |
905 |
List.iter uneval_top_generics prog |
906 |
|
907 |
let check_env_compat header declared computed = |
908 |
uneval_prog_generics header; |
909 |
Env.iter declared (fun k decl_clock_k -> |
910 |
let computed_c = instantiate (ref []) (ref []) (Env.lookup_value computed k) in |
911 |
try_semi_unify decl_clock_k computed_c Location.dummy_loc |
912 |
) |
913 |
(* Local Variables: *) |
914 |
(* compile-command:"make -C .." *) |
915 |
(* End: *) |