Project

General

Profile

Statistics
| Branch: | Tag: | Revision:

lustrec / src / pathConditions.ml @ 3e1d20e0

History | View | Annotate | Download (10.2 KB)

1
open LustreSpec 
2
open Corelang
3
open Log
4
open Format
5

    
6
module IdSet = Set.Make (struct type t = expr * int let compare = compare end)
7

    
8
let inout_vars = ref [] 
9

    
10
(* This was used to add inout variables in the final signature. May have to be
11
   reactivated later *)
12
  
13
(* let print_tautology_var fmt v = *)
14
(*   match (Types.repr v.var_type).Types.tdesc with *)
15
(*   | Types.Tbool -> Format.fprintf fmt "(%s or not %s)" v.var_id v.var_id *)
16
(*   | Types.Tint -> Format.fprintf fmt "(%s > 0 or %s <= 0)" v.var_id v.var_id *)
17
(*   | Types.Treal -> Format.fprintf fmt "(%s > 0 or %s <= 0)" v.var_id v.var_id *)
18
(*   | _ -> Format.fprintf fmt "(true)" *)
19

    
20
(* let print_path arg = match !inout_vars with *)
21
(*   | [] -> Format.printf "%t@." arg   *)
22
(*   | l -> Format.printf "%t and %a@." arg (Utils.fprintf_list ~sep:" and " (fun fmt elem -> print_tautology_var fmt elem)) l *)
23

    
24
let rel_op = ["="; "!="; "<"; "<="; ">" ; ">=" ]
25

    
26
(* Used when we were printing the expression directly. Now we are constructing
27
   them as regular expressions.
28

    
29
   let rec print_pre fmt nb_pre = if nb_pre <= 0 then () else ( Format.fprintf
30
   fmt "pre "; print_pre fmt (nb_pre-1) )
31
*)
32
  
33
let rec mk_pre n e =
34
  if n <= 0 then
35
    e
36
  else
37
    mkexpr e.expr_loc (Expr_pre e)
38
   
39
(*
40
   let combine2 f sub1 sub2 = 
41
   let elem_e1 = List.fold_right IdSet.add (List.map fst sub1) IdSet.empty in
42
   let elem_e2 = List.fold_right IdSet.add (List.map fst sub2) IdSet.empty in
43
   let common = IdSet.inter elem_e1 elem_e2 in
44
   let sub1_filtered = List.filter (fun (v, _) -> not (IdSet.mem v common)) sub1 in
45
   let sub2_filtered = List.filter (fun (v, _) -> not (IdSet.mem v common)) sub2 in
46
   (List.map (fun (v, negv) -> (v, f negv e2)) sub1_filtered) @
47
   (List.map (fun (v, negv) -> (v, f e1 negv)) sub2_filtered) @
48
   (List.map (fun v -> (v, {expr with expr_desc = Expr_arrow(List.assoc v sub1, List.assoc v sub2)}) (IdSet.elements common))      )
49
*)
50

    
51
let rec select (v: expr * int) (active: bool list) (modified: ((expr * int) * expr) list list) (orig: expr list) =
52
match active, modified, orig with
53
| true::active_tl, e::modified_tl, _::orig_tl -> (List.assoc v e)::(select v active_tl modified_tl orig_tl)
54
| false::active_tl, _::modified_tl, e::orig_tl -> e::(select v active_tl modified_tl orig_tl)
55
| [], [], [] -> []
56
| _ -> assert false
57
  
58
let combine (f: expr list -> expr ) subs orig : ((expr * int) * expr) list  = 
59
  let elems = List.map (fun sub_i -> List.fold_right IdSet.add (List.map fst sub_i) IdSet.empty) subs in
60
  let all = List.fold_right IdSet.union elems IdSet.empty in
61
  List.map (fun v ->
62
    let active_subs = List.map (IdSet.mem v) elems in
63
    v, f (select v active_subs subs orig)
64
  ) (IdSet.elements all)
65

    
66

    
67
(* In a previous version, the printer was introducing fake description, ie
68
   tautologies, over inout variables to make sure they were not suppresed by
69
   some other algorithms *)
70

    
71
(* Takes the variable on which these coverage criteria will apply, as well as
72
   the expression and its negated version. Returns the expr and the variable
73
   expression, as well as the two new boolean expressions descibing the two
74
   associated modes. *)
75
let mcdc_var vi_as_expr expr expr_neg_vi =
76
  let loc = expr.expr_loc in
77
  let changed_expr = mkpredef_call loc "!=" [expr; expr_neg_vi] in
78
  let not_vi_as_expr = mkpredef_call loc "not" [vi_as_expr] in
79
  let expr1 = mkpredef_call loc "&&" [vi_as_expr; changed_expr] in
80
  let expr2 = mkpredef_call loc "&&" [not_vi_as_expr; changed_expr] in
81
  ((expr,vi_as_expr),[expr1;expr2])
82

    
83
  (* Format.printf "%a@." Printers.pp_expr expr1;  *)
84
  (* print_path (fun fmt -> Format.fprintf fmt "%a and (%a != %a)" *)
85
  (*   Printers.pp_expr vi_as_expr *)
86
  (*   Printers.pp_expr expr (\*v*\) *)
87
  (*   Printers.pp_expr expr_neg_vi); *)
88
  (* Format.printf "%a@." Printers.pp_expr expr2;  *)
89
  (* print_path (fun fmt -> Format.fprintf fmt "(not %a) and (%a != %a)" *)
90
  (*   Printers.pp_expr vi_as_expr *)
91
  (*   Printers.pp_expr expr (\*v*\) *)
92
  (*   Printers.pp_expr expr_neg_vi) *)
93
    
94
let rec compute_neg_expr cpt_pre (expr: LustreSpec.expr) =
95
  let neg_list l = 
96
    List.fold_right (fun e (vl,el) -> let vl', e' = compute_neg_expr cpt_pre e in (vl'@vl), e'::el) l ([], [])
97
  in
98
  match expr.expr_desc with
99
  | Expr_tuple l -> 
100
     let vl, neg = neg_list l in
101
     vl, combine (fun l' -> {expr with expr_desc = Expr_tuple l'}) neg l
102
       
103
  | Expr_ite (i,t,e) when (Types.repr t.expr_type).Types.tdesc = Types.Tbool -> (
104
    let list = [i; t; e] in
105
    let vl, neg = neg_list list in
106
    vl, combine (fun l ->
107
      match l with
108
      | [i'; t'; e'] -> {expr with expr_desc = Expr_ite(i', t', e')}
109
      | _ -> assert false
110
    ) neg list
111
  )
112
  | Expr_ite (i,t,e) -> ( (* We return the guard as a new guard *)
113
    let vl = gen_mcdc_cond_guard i in
114
    let list = [i; t; e] in
115
    let vl', neg = neg_list list in
116
    vl@vl', combine (fun l ->
117
      match l with
118
      | [i'; t'; e'] -> {expr with expr_desc = Expr_ite(i', t', e')}
119
      | _ -> assert false
120
    ) neg list
121
  )
122
  | Expr_arrow (e1, e2) -> 
123
     let vl1, e1' = compute_neg_expr cpt_pre e1 in
124
     let vl2, e2' = compute_neg_expr cpt_pre e2 in
125
     vl1@vl2, combine (fun l -> match l with
126
     | [x;y] -> { expr with expr_desc = Expr_arrow (x, y) }
127
     | _ -> assert false
128
     ) [e1'; e2'] [e1; e2]
129

    
130
  | Expr_pre e ->
131
     let vl, e' = compute_neg_expr (cpt_pre+1) e in
132
     vl, List.map
133
       (fun (v, negv) -> (v, { expr with expr_desc = Expr_pre negv } )) e'
134

    
135
  | Expr_appl (op_name, args, r) when List.mem op_name rel_op -> 
136
     [], [(expr, cpt_pre), mkpredef_call expr.expr_loc "not" [expr]]
137

    
138
  | Expr_appl (op_name, args, r) ->
139
     let vl, args' = compute_neg_expr cpt_pre args in
140
     vl, List.map 
141
       (fun (v, negv) -> (v, { expr with expr_desc = Expr_appl (op_name, negv, r) } ))
142
       args'
143

    
144
  | Expr_ident _ when (Types.repr expr.expr_type).Types.tdesc = Types.Tbool ->
145
     [], [(expr, cpt_pre), mkpredef_call expr.expr_loc "not" [expr]]
146
  | _ -> [] (* empty vars *) , [] 
147
and gen_mcdc_cond_var v expr =
148
  report ~level:1 (fun fmt ->
149
    Format.fprintf fmt ".. Generating MC/DC cond for boolean flow %s and expression %a@."
150
      v
151
      Printers.pp_expr expr);
152
  let vl, leafs_n_neg_expr = compute_neg_expr 0 expr in
153
  if List.length leafs_n_neg_expr > 1 then (
154
    List.fold_left (fun accu ((vi, nb_pre), expr_neg_vi) ->
155
      (mcdc_var  (mk_pre nb_pre vi) expr expr_neg_vi)::accu
156
    ) vl leafs_n_neg_expr
157
  )
158
  else vl
159

    
160
and gen_mcdc_cond_guard expr =
161
  report ~level:1 (fun fmt ->
162
    Format.fprintf fmt".. Generating MC/DC cond for guard %a@."
163
      Printers.pp_expr expr);
164
  let vl, leafs_n_neg_expr = compute_neg_expr 0 expr in
165
  if List.length leafs_n_neg_expr > 1 then (
166
    List.fold_left (fun accu ((vi, nb_pre), expr_neg_vi) ->
167
      (mcdc_var  (mk_pre nb_pre vi) expr expr_neg_vi)::accu
168
    ) vl leafs_n_neg_expr)
169
  else
170
    vl
171
  
172

    
173
let rec mcdc_expr cpt_pre expr = 
174
  match expr.expr_desc with
175
  | Expr_tuple l ->
176
     let vl =
177
       List.fold_right (fun e accu_v ->
178
	 let vl = mcdc_expr cpt_pre e in
179
	 (vl@accu_v))
180
	 l
181
	 []
182
     in
183
     vl
184
  | Expr_ite (i,t,e) ->
185
     let vl_i = gen_mcdc_cond_guard i in
186
     let vl_t = mcdc_expr cpt_pre t in
187
     let vl_e = mcdc_expr cpt_pre e in
188
     vl_i@vl_t@vl_e
189
  | Expr_arrow (e1, e2) ->
190
     let vl1 = mcdc_expr cpt_pre e1 in
191
     let vl2 = mcdc_expr cpt_pre e2 in
192
     vl1@vl2
193
  | Expr_pre e ->
194
     let vl = mcdc_expr (cpt_pre+1) e in
195
     vl
196
  | Expr_appl (f, args, r) ->
197
     let vl = mcdc_expr cpt_pre args in
198
     vl
199
  | _ -> []
200

    
201
let mcdc_var_def v expr = 
202
  match (Types.repr expr.expr_type).Types.tdesc with
203
  | Types.Tbool ->
204
     let vl = gen_mcdc_cond_var v expr in
205
     vl
206
  | _ -> let vl = mcdc_expr 0 expr in
207
	 vl
208

    
209
let mcdc_node_eq eq =
210
  let vl =
211
    match eq.eq_lhs, (Types.repr eq.eq_rhs.expr_type).Types.tdesc, eq.eq_rhs.expr_desc with
212
    | [lhs], Types.Tbool, _ ->  gen_mcdc_cond_var lhs eq.eq_rhs 
213
    | _::_, Types.Ttuple tl, Expr_tuple rhs ->
214
       (* We iterate trough pairs, but accumulate variables aside. The resulting
215
	  expression shall remain a tuple defintion *)
216
       let vl = List.fold_right2 (fun lhs rhs accu ->
217
	 let v = mcdc_var_def lhs rhs in
218
	 (* we don't care about the expression it. We focus on the coverage
219
	    expressions in v *)
220
	 v@accu
221
       ) eq.eq_lhs rhs []
222
       in
223
       vl
224
    | _ -> mcdc_expr 0 eq.eq_rhs 
225
  in
226
  vl
227

    
228
let mcdc_node_stmt stmt =
229
  match stmt with
230
  | Eq eq -> let vl = mcdc_node_eq eq in vl
231
  | Aut aut -> assert false
232

    
233
let mcdc_top_decl td = 
234
  match td.top_decl_desc with
235
  | Node nd ->
236
     let new_coverage_exprs =
237
       List.fold_right (
238
	 fun s accu_v ->
239
	   let vl' = mcdc_node_stmt s in
240
	   vl'@accu_v
241
       ) nd.node_stmts []
242
     in
243
     (* We add coverage vars as boolean internal flows. TODO *)
244
     let fresh_cov_defs = List.flatten (List.map snd new_coverage_exprs) in
245
     let nb_total = List.length fresh_cov_defs in
246
     let fresh_cov_vars = List.mapi (fun i cov_expr ->
247
       let loc = cov_expr.expr_loc in
248
       Format.fprintf Format.str_formatter "__cov_%i_%i" i nb_total;
249
       let cov_id = Format.flush_str_formatter () in
250
       let cov_var = mkvar_decl loc
251
	 (cov_id, mktyp loc Tydec_bool, mkclock loc Ckdec_any, false, None) in
252
       let cov_def = Eq (mkeq loc ([cov_id], cov_expr)) in
253
       cov_var, cov_def
254
     ) fresh_cov_defs
255
     in
256
     let fresh_vars, fresh_eqs = List.split fresh_cov_vars in
257
     let fresh_annots =
258
       List.map
259
	 (fun v -> {annots =  [["PROPERTY"], expr_to_eexpr (expr_of_vdecl v)]; annot_loc = td.top_decl_loc})
260
	 fresh_vars in
261
     Format.printf "We have %i coverage criteria for node %s@." nb_total nd.node_id;
262
     (* And add them as annotations --%PROPERTY: var TODO *)
263
     {td with top_decl_desc = Node {nd with
264
       node_locals = nd.node_locals@fresh_vars;
265
       node_stmts = nd.node_stmts@fresh_eqs;
266
       node_annot = nd.node_annot@fresh_annots
267
     }}
268
  | _ -> td
269

    
270

    
271
let mcdc prog =
272
  (* If main node is provided add silly constraints to show in/out variables in the path condition *)
273
  if !Options.main_node <> "" then (
274
    inout_vars := 
275
      let top = List.find 
276
	(fun td -> 
277
	  match td.top_decl_desc with 
278
	  | Node nd when nd.node_id = !Options.main_node -> true
279
	  | _ -> false) 
280
	prog 
281
      in
282
      match top.top_decl_desc with
283
      | Node nd -> nd.node_inputs @ nd.node_outputs
284
      | _ -> assert false);
285
  List.map mcdc_top_decl prog
286

    
287
(* Local Variables: *)
288
(* compile-command:"make -C .." *)
289
(* End: *)
290

    
291