lustrec / src / normalization.ml @ 3ca6d126
History  View  Annotate  Download (16.8 KB)
1 
(********************************************************************) 

2 
(* *) 
3 
(* The LustreC compiler toolset / The LustreC Development Team *) 
4 
(* Copyright 2012   ONERA  CNRS  INPT *) 
5 
(* *) 
6 
(* LustreC is free software, distributed WITHOUT ANY WARRANTY *) 
7 
(* under the terms of the GNU Lesser General Public License *) 
8 
(* version 2.1. *) 
9 
(* *) 
10 
(********************************************************************) 
11  
12 
open Utils 
13 
open LustreSpec 
14 
open Corelang 
15 
open Format 
16  
17 
let expr_true loc ck = 
18 
{ expr_tag = Utils.new_tag (); 
19 
expr_desc = Expr_const (Const_tag tag_true); 
20 
expr_type = Type_predef.type_bool; 
21 
expr_clock = ck; 
22 
expr_delay = Delay.new_var (); 
23 
expr_annot = None; 
24 
expr_loc = loc } 
25  
26 
let expr_false loc ck = 
27 
{ expr_tag = Utils.new_tag (); 
28 
expr_desc = Expr_const (Const_tag tag_false); 
29 
expr_type = Type_predef.type_bool; 
30 
expr_clock = ck; 
31 
expr_delay = Delay.new_var (); 
32 
expr_annot = None; 
33 
expr_loc = loc } 
34  
35 
let expr_once loc ck = 
36 
{ expr_tag = Utils.new_tag (); 
37 
expr_desc = Expr_arrow (expr_true loc ck, expr_false loc ck); 
38 
expr_type = Type_predef.type_bool; 
39 
expr_clock = ck; 
40 
expr_delay = Delay.new_var (); 
41 
expr_annot = None; 
42 
expr_loc = loc } 
43  
44 
let is_expr_once = 
45 
let dummy_expr_once = expr_once Location.dummy_loc (Clocks.new_var true) in 
46 
fun expr > Corelang.is_eq_expr expr dummy_expr_once 
47  
48 
let unfold_arrow expr = 
49 
match expr.expr_desc with 
50 
 Expr_arrow (e1, e2) > 
51 
let loc = expr.expr_loc in 
52 
let ck = List.hd (Clocks.clock_list_of_clock expr.expr_clock) in 
53 
{ expr with expr_desc = Expr_ite (expr_once loc ck, e1, e2) } 
54 
 _ > assert false 
55  
56 
let unfold_arrow_active = ref true 
57 
let cpt_fresh = ref 0 
58  
59 
(* Generate a new local [node] variable *) 
60 
let mk_fresh_var node loc ty ck = 
61 
let vars = get_node_vars node in 
62 
let rec aux () = 
63 
incr cpt_fresh; 
64 
let s = Printf.sprintf "__%s_%d" node.node_id !cpt_fresh in 
65 
if List.exists (fun v > v.var_id = s) vars then aux () else 
66 
{ 
67 
var_id = s; 
68 
var_orig = false; 
69 
var_dec_type = dummy_type_dec; 
70 
var_dec_clock = dummy_clock_dec; 
71 
var_dec_const = false; 
72 
var_type = ty; 
73 
var_clock = ck; 
74 
var_loc = loc 
75 
} 
76 
in aux () 
77  
78 
(* Generate a new ident expression from a declared variable *) 
79 
let mk_ident_expr v = 
80 
{ expr_tag = new_tag (); 
81 
expr_desc = Expr_ident v.var_id; 
82 
expr_type = v.var_type; 
83 
expr_clock = v.var_clock; 
84 
expr_delay = Delay.new_var (); 
85 
expr_annot = None; 
86 
expr_loc = v.var_loc } 
87  
88 
(* Get the equation in [defs] with [expr] as rhs, if any *) 
89 
let get_expr_alias defs expr = 
90 
try Some (List.find (fun eq > is_eq_expr eq.eq_rhs expr) defs) 
91 
with 
92 
Not_found > None 
93  
94 
(* Replace [expr] with (tuple of) [locals] *) 
95 
let replace_expr locals expr = 
96 
match locals with 
97 
 [] > assert false 
98 
 [v] > { expr with 
99 
expr_tag = Utils.new_tag (); 
100 
expr_desc = Expr_ident v.var_id } 
101 
 _ > { expr with 
102 
expr_tag = Utils.new_tag (); 
103 
expr_desc = Expr_tuple (List.map mk_ident_expr locals) } 
104  
105 
let unfold_offsets e offsets = 
106 
let add_offset e d = 
107 
(*Format.eprintf "add_offset %a %a@." Dimension.pp_dimension (Types.array_type_dimension e.expr_type) Dimension.pp_dimension d;*) 
108 
{ e with 
109 
expr_tag = Utils.new_tag (); 
110 
expr_loc = d.Dimension.dim_loc; 
111 
expr_type = Types.array_element_type e.expr_type; 
112 
expr_desc = Expr_access (e, d) } in 
113 
List.fold_left add_offset e offsets 
114  
115 
(* Create an alias for [expr], if none exists yet *) 
116 
let mk_expr_alias node (defs, vars) expr = 
117 
(*Format.eprintf "mk_expr_alias %a %a %a@." Printers.pp_expr expr Types.print_ty expr.expr_type Clocks.print_ck expr.expr_clock;*) 
118 
match get_expr_alias defs expr with 
119 
 Some eq > 
120 
let aliases = List.map (fun id > List.find (fun v > v.var_id = id) vars) eq.eq_lhs in 
121 
(defs, vars), replace_expr aliases expr 
122 
 None > 
123 
let new_aliases = 
124 
List.map2 
125 
(mk_fresh_var node expr.expr_loc) 
126 
(Types.type_list_of_type expr.expr_type) 
127 
(Clocks.clock_list_of_clock expr.expr_clock) in 
128 
let new_def = 
129 
mkeq expr.expr_loc (List.map (fun v > v.var_id) new_aliases, expr) 
130 
in 
131 
(* Format.eprintf "Checkign def of alias: %a > %a@." (fprintf_list ~sep:", " (fun fmt v > Format.pp_print_string fmt v.var_id)) new_aliases Printers.pp_expr expr; *) 
132 
(new_def::defs, new_aliases@vars), replace_expr new_aliases expr 
133  
134 
(* Create an alias for [expr], if [expr] is not already an alias (i.e. an ident) 
135 
and [opt] is true *) 
136 
let mk_expr_alias_opt opt node defvars expr = 
137 
match expr.expr_desc with 
138 
 Expr_ident alias > 
139 
defvars, expr 
140 
 _ > 
141 
if opt 
142 
then 
143 
mk_expr_alias node defvars expr 
144 
else 
145 
defvars, expr 
146  
147 
(* Create a (normalized) expression from [ref_e], 
148 
replacing description with [norm_d], 
149 
taking propagated [offsets] into account 
150 
in order to change expression type *) 
151 
let mk_norm_expr offsets ref_e norm_d = 
152 
let drop_array_type ty = 
153 
Types.map_tuple_type Types.array_element_type ty in 
154 
{ ref_e with 
155 
expr_desc = norm_d; 
156 
expr_type = Utils.repeat (List.length offsets) drop_array_type ref_e.expr_type } 
157  
158 
(* normalize_<foo> : defs * used vars > <foo> > (updated defs * updated vars) * normalized <foo> *) 
159 
let rec normalize_list alias node offsets norm_element defvars elist = 
160 
List.fold_right 
161 
(fun t (defvars, qlist) > 
162 
let defvars, norm_t = norm_element alias node offsets defvars t in 
163 
(defvars, norm_t :: qlist) 
164 
) elist (defvars, []) 
165  
166 
let rec normalize_expr ?(alias=true) node offsets defvars expr = 
167 
(* Format.eprintf "normalize %B %a [%a]@." alias Printers.pp_expr expr (Utils.fprintf_list ~sep:"," Dimension.pp_dimension) offsets;*) 
168 
match expr.expr_desc with 
169 
 Expr_const _ 
170 
 Expr_ident _ > defvars, unfold_offsets expr offsets 
171 
 Expr_array elist > 
172 
let defvars, norm_elist = normalize_list alias node offsets (fun _ > normalize_array_expr ~alias:true) defvars elist in 
173 
let norm_expr = mk_norm_expr offsets expr (Expr_array norm_elist) in 
174 
mk_expr_alias_opt alias node defvars norm_expr 
175 
 Expr_power (e1, d) when offsets = [] > 
176 
let defvars, norm_e1 = normalize_expr node offsets defvars e1 in 
177 
let norm_expr = mk_norm_expr offsets expr (Expr_power (norm_e1, d)) in 
178 
mk_expr_alias_opt alias node defvars norm_expr 
179 
 Expr_power (e1, d) > 
180 
normalize_expr ~alias:alias node (List.tl offsets) defvars e1 
181 
 Expr_access (e1, d) > 
182 
normalize_expr ~alias:alias node (d::offsets) defvars e1 
183 
 Expr_tuple elist > 
184 
let defvars, norm_elist = 
185 
normalize_list alias node offsets (fun alias > normalize_expr ~alias:alias) defvars elist in 
186 
defvars, mk_norm_expr offsets expr (Expr_tuple norm_elist) 
187 
 Expr_appl (id, args, None) 
188 
when Basic_library.is_internal_fun id 
189 
&& Types.is_array_type expr.expr_type > 
190 
let defvars, norm_args = 
191 
normalize_list 
192 
alias 
193 
node 
194 
offsets 
195 
(fun _ > normalize_array_expr ~alias:true) 
196 
defvars 
197 
(expr_list_of_expr args) 
198 
in 
199 
defvars, mk_norm_expr offsets expr (Expr_appl (id, expr_of_expr_list args.expr_loc norm_args, None)) 
200 
 Expr_appl (id, args, None) when Basic_library.is_internal_fun id > 
201 
let defvars, norm_args = normalize_expr ~alias:true node offsets defvars args in 
202 
defvars, mk_norm_expr offsets expr (Expr_appl (id, norm_args, None)) 
203 
 Expr_appl (id, args, r) > 
204 
let defvars, norm_args = normalize_expr node [] defvars args in 
205 
let norm_expr = mk_norm_expr [] expr (Expr_appl (id, norm_args, r)) in 
206 
if offsets <> [] 
207 
then 
208 
let defvars, norm_expr = normalize_expr node [] defvars norm_expr in 
209 
normalize_expr ~alias:alias node offsets defvars norm_expr 
210 
else 
211 
mk_expr_alias_opt (alias && not (Basic_library.is_internal_fun id)) node defvars norm_expr 
212 
 Expr_arrow (e1,e2) when !unfold_arrow_active && not (is_expr_once expr) > (* Here we differ from Colaco paper: arrows are pushed to the top *) 
213 
normalize_expr ~alias:alias node offsets defvars (unfold_arrow expr) 
214 
 Expr_arrow (e1,e2) > 
215 
let defvars, norm_e1 = normalize_expr node offsets defvars e1 in 
216 
let defvars, norm_e2 = normalize_expr node offsets defvars e2 in 
217 
let norm_expr = mk_norm_expr offsets expr (Expr_arrow (norm_e1, norm_e2)) in 
218 
mk_expr_alias_opt alias node defvars norm_expr 
219 
 Expr_pre e > 
220 
let defvars, norm_e = normalize_expr node offsets defvars e in 
221 
let norm_expr = mk_norm_expr offsets expr (Expr_pre norm_e) in 
222 
mk_expr_alias_opt alias node defvars norm_expr 
223 
 Expr_fby (e1, e2) > 
224 
let defvars, norm_e1 = normalize_expr node offsets defvars e1 in 
225 
let defvars, norm_e2 = normalize_expr node offsets defvars e2 in 
226 
let norm_expr = mk_norm_expr offsets expr (Expr_fby (norm_e1, norm_e2)) in 
227 
mk_expr_alias_opt alias node defvars norm_expr 
228 
 Expr_when (e, c, l) > 
229 
let defvars, norm_e = normalize_expr node offsets defvars e in 
230 
defvars, mk_norm_expr offsets expr (Expr_when (norm_e, c, l)) 
231 
 Expr_ite (c, t, e) > 
232 
let defvars, norm_c = normalize_guard node defvars c in 
233 
let defvars, norm_t = normalize_cond_expr node offsets defvars t in 
234 
let defvars, norm_e = normalize_cond_expr node offsets defvars e in 
235 
let norm_expr = mk_norm_expr offsets expr (Expr_ite (norm_c, norm_t, norm_e)) in 
236 
mk_expr_alias_opt alias node defvars norm_expr 
237 
 Expr_merge (c, hl) > 
238 
let defvars, norm_hl = normalize_branches node offsets defvars hl in 
239 
let norm_expr = mk_norm_expr offsets expr (Expr_merge (c, norm_hl)) in 
240 
mk_expr_alias_opt alias node defvars norm_expr 
241 

242 
(* Creates a conditional with a merge construct, which is more lazy *) 
243 
(* 
244 
let norm_conditional_as_merge alias node norm_expr offsets defvars expr = 
245 
match expr.expr_desc with 
246 
 Expr_ite (c, t, e) > 
247 
let defvars, norm_t = norm_expr (alias node offsets defvars t in 
248 
 _ > assert false 
249 
*) 
250 
and normalize_branches node offsets defvars hl = 
251 
List.fold_right 
252 
(fun (t, h) (defvars, norm_q) > 
253 
let (defvars, norm_h) = normalize_cond_expr node offsets defvars h in 
254 
defvars, (t, norm_h) :: norm_q 
255 
) 
256 
hl (defvars, []) 
257  
258 
and normalize_array_expr ?(alias=true) node offsets defvars expr = 
259 
(* Format.eprintf "normalize_array %B %a [%a]@." alias Printers.pp_expr expr (Utils.fprintf_list ~sep:"," Dimension.pp_dimension) offsets;*) 
260 
match expr.expr_desc with 
261 
 Expr_power (e1, d) when offsets = [] > 
262 
let defvars, norm_e1 = normalize_expr node offsets defvars e1 in 
263 
defvars, mk_norm_expr offsets expr (Expr_power (norm_e1, d)) 
264 
 Expr_power (e1, d) > 
265 
normalize_array_expr ~alias:alias node (List.tl offsets) defvars e1 
266 
 Expr_access (e1, d) > normalize_array_expr ~alias:alias node (d::offsets) defvars e1 
267 
 Expr_array elist when offsets = [] > 
268 
let defvars, norm_elist = normalize_list alias node offsets (fun _ > normalize_array_expr ~alias:true) defvars elist in 
269 
defvars, mk_norm_expr offsets expr (Expr_array norm_elist) 
270 
 Expr_appl (id, args, None) when Basic_library.is_internal_fun id > 
271 
let defvars, norm_args = normalize_list alias node offsets (fun _ > normalize_array_expr ~alias:true) defvars (expr_list_of_expr args) in 
272 
defvars, mk_norm_expr offsets expr (Expr_appl (id, expr_of_expr_list args.expr_loc norm_args, None)) 
273 
 _ > normalize_expr ~alias:alias node offsets defvars expr 
274  
275 
and normalize_cond_expr ?(alias=true) node offsets defvars expr = 
276 
(*Format.eprintf "normalize_cond %B %a [%a]@." alias Printers.pp_expr expr (Utils.fprintf_list ~sep:"," Dimension.pp_dimension) offsets;*) 
277 
match expr.expr_desc with 
278 
 Expr_access (e1, d) > 
279 
normalize_cond_expr ~alias:alias node (d::offsets) defvars e1 
280 
 Expr_ite (c, t, e) > 
281 
let defvars, norm_c = normalize_guard node defvars c in 
282 
let defvars, norm_t = normalize_cond_expr node offsets defvars t in 
283 
let defvars, norm_e = normalize_cond_expr node offsets defvars e in 
284 
defvars, mk_norm_expr offsets expr (Expr_ite (norm_c, norm_t, norm_e)) 
285 
 Expr_merge (c, hl) > 
286 
let defvars, norm_hl = normalize_branches node offsets defvars hl in 
287 
defvars, mk_norm_expr offsets expr (Expr_merge (c, norm_hl)) 
288 
 _ > normalize_expr ~alias:alias node offsets defvars expr 
289  
290 
and normalize_guard node defvars expr = 
291 
let defvars, norm_expr = normalize_expr node [] defvars expr in 
292 
mk_expr_alias_opt true node defvars norm_expr 
293  
294 
(* outputs cannot be memories as well. If so, introduce new local variable. 
295 
*) 
296 
let decouple_outputs node defvars eq = 
297 
let rec fold_lhs defvars lhs tys cks = 
298 
match lhs, tys, cks with 
299 
 [], [], [] > defvars, [] 
300 
 v::qv, t::qt, c::qc > let (defs_q, vars_q), lhs_q = fold_lhs defvars qv qt qc in 
301 
if List.exists (fun o > o.var_id = v) node.node_outputs 
302 
then 
303 
let newvar = mk_fresh_var node eq.eq_loc t c in 
304 
let neweq = mkeq eq.eq_loc ([v], mk_ident_expr newvar) in 
305 
(neweq :: defs_q, newvar :: vars_q), newvar.var_id :: lhs_q 
306 
else 
307 
(defs_q, vars_q), v::lhs_q 
308 
 _ > assert false in 
309 
let defvars', lhs' = 
310 
fold_lhs 
311 
defvars 
312 
eq.eq_lhs 
313 
(Types.type_list_of_type eq.eq_rhs.expr_type) 
314 
(Clocks.clock_list_of_clock eq.eq_rhs.expr_clock) in 
315 
defvars', {eq with eq_lhs = lhs' } 
316  
317 
let rec normalize_eq node defvars eq = 
318 
match eq.eq_rhs.expr_desc with 
319 
 Expr_pre _ 
320 
 Expr_fby _ > 
321 
let (defvars', eq') = decouple_outputs node defvars eq in 
322 
let (defs', vars'), norm_rhs = normalize_expr ~alias:false node [] defvars' eq'.eq_rhs in 
323 
let norm_eq = { eq' with eq_rhs = norm_rhs } in 
324 
(norm_eq::defs', vars') 
325 
 Expr_array _ > 
326 
let (defs', vars'), norm_rhs = normalize_array_expr ~alias:false node [] defvars eq.eq_rhs in 
327 
let norm_eq = { eq with eq_rhs = norm_rhs } in 
328 
(norm_eq::defs', vars') 
329 
 Expr_appl (id, _, None) when Basic_library.is_internal_fun id && Types.is_array_type eq.eq_rhs.expr_type > 
330 
let (defs', vars'), norm_rhs = normalize_array_expr ~alias:false node [] defvars eq.eq_rhs in 
331 
let norm_eq = { eq with eq_rhs = norm_rhs } in 
332 
(norm_eq::defs', vars') 
333 
 Expr_appl _ > 
334 
let (defs', vars'), norm_rhs = normalize_expr ~alias:false node [] defvars eq.eq_rhs in 
335 
let norm_eq = { eq with eq_rhs = norm_rhs } in 
336 
(norm_eq::defs', vars') 
337 
 _ > 
338 
let (defs', vars'), norm_rhs = normalize_cond_expr ~alias:false node [] defvars eq.eq_rhs in 
339 
let norm_eq = { eq with eq_rhs = norm_rhs } in 
340 
norm_eq::defs', vars' 
341  
342 
(** normalize_node node returns a normalized node, 
343 
ie. 
344 
 updated locals 
345 
 new equations 
346 
 
347 
*) 
348 
let normalize_node node = 
349 
cpt_fresh := 0; 
350 
let inputs_outputs = node.node_inputs@node.node_outputs in 
351 
let is_local v = 
352 
List.for_all ((!=) v) inputs_outputs in 
353 
let orig_vars = inputs_outputs@node.node_locals in 
354 
let defs, vars = 
355 
List.fold_left (normalize_eq node) ([], orig_vars) (get_node_eqs node) in 
356 
(* Normalize the asserts *) 
357 
let vars, assert_defs, asserts = 
358 
List.fold_left ( 
359 
fun (vars, def_accu, assert_accu) assert_ > 
360 
let assert_expr = assert_.assert_expr in 
361 
let (defs, vars'), expr = 
362 
normalize_expr 
363 
~alias:true 
364 
node 
365 
[] (* empty offset for arrays *) 
366 
([], vars) (* defvar only contains vars *) 
367 
assert_expr 
368 
in 
369 
(* Format.eprintf "New assert vars: %a@.@?" (fprintf_list ~sep:", " Printers.pp_var) vars'; *) 
370 
vars', defs@def_accu, {assert_ with assert_expr = expr}::assert_accu 
371 
) (vars, [], []) node.node_asserts in 
372 
let new_locals = List.filter is_local vars in 
373 
(* Format.eprintf "New locals: %a@.@?" (fprintf_list ~sep:", " Printers.pp_var) new_locals; *) 
374  
375 
(* Compute traceability info: 
376 
 gather newly bound variables 
377 
 compute the associated expression without aliases 
378 
*) 
379 
let diff_vars = List.filter (fun v > not (List.mem v node.node_locals) ) new_locals in 
380 
let norm_traceability = { 
381 
annots = List.map (fun v > 
382 
let eq = 
383 
try 
384 
List.find (fun eq > eq.eq_lhs = [v.var_id]) defs 
385 
with Not_found > (Format.eprintf "var not found %s@." v.var_id; assert false) in 
386 
let expr = substitute_expr diff_vars defs eq.eq_rhs in 
387 
let pair = mkeexpr expr.expr_loc (mkexpr expr.expr_loc (Expr_tuple [expr_of_ident v.var_id expr.expr_loc; expr])) in 
388 
(["traceability"], pair) 
389 
) diff_vars; 
390 
annot_loc = Location.dummy_loc 
391 
} 
392  
393 
in 
394 
let node = 
395 
{ node with 
396 
node_locals = new_locals; 
397 
node_stmts = List.map (fun eq > Eq eq) (defs @ assert_defs); 
398 
node_asserts = asserts; 
399 
node_annot = norm_traceability::node.node_annot; 
400 
} 
401 
in ((*Printers.pp_node Format.err_formatter node;*) 
402 
node 
403 
) 
404  
405  
406 
let normalize_decl decl = 
407 
match decl.top_decl_desc with 
408 
 Node nd > 
409 
let decl' = {decl with top_decl_desc = Node (normalize_node nd)} in 
410 
Hashtbl.replace Corelang.node_table nd.node_id decl'; 
411 
decl' 
412 
 Open _  ImportedNode _  Const _  TypeDef _ > decl 
413 

414 
let normalize_prog decls = 
415 
List.map normalize_decl decls 
416  
417 
(* Local Variables: *) 
418 
(* compilecommand:"make C .." *) 
419 
(* End: *) 