Project

General

Profile

Statistics
| Branch: | Tag: | Revision:

lustrec / src / typing.ml @ 22fe1c93

History | View | Annotate | Download (23.5 KB)

1
(* ----------------------------------------------------------------------------
2
 * SchedMCore - A MultiCore Scheduling Framework
3
 * Copyright (C) 2009-2011, ONERA, Toulouse, FRANCE - LIFL, Lille, FRANCE
4
 *
5
 * This file is part of Prelude
6
 *
7
 * Prelude is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public License
9
 * as published by the Free Software Foundation ; either version 2 of
10
 * the License, or (at your option) any later version.
11
 *
12
 * Prelude is distributed in the hope that it will be useful, but
13
 * WITHOUT ANY WARRANTY ; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with this program ; if not, write to the Free Software
19
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
20
 * USA
21
 *---------------------------------------------------------------------------- *)
22

    
23
(** Main typing module. Classic inference algorithm with destructive
24
    unification. *)
25

    
26
let debug fmt args = () (* Format.eprintf "%a"  *)
27
(* Though it shares similarities with the clock calculus module, no code
28
    is shared.  Simple environments, very limited identifier scoping, no
29
    identifier redefinition allowed. *)
30

    
31
open Utils
32
(* Yes, opening both modules is dirty as some type names will be
33
   overwritten, yet this makes notations far lighter.*)
34
open LustreSpec
35
open Corelang
36
open Types
37
open Format
38

    
39
let pp_typing_env fmt env =
40
  Env.pp_env print_ty fmt env
41

    
42
(** [occurs tvar ty] returns true if the type variable [tvar] occurs in
43
    type [ty]. False otherwise. *)
44
let rec occurs tvar ty =
45
  let ty = repr ty in
46
  match ty.tdesc with
47
  | Tvar -> ty=tvar
48
  | Tarrow (t1, t2) ->
49
      (occurs tvar t1) || (occurs tvar t2)
50
  | Ttuple tl ->
51
      List.exists (occurs tvar) tl
52
  | Tarray (_, t)
53
  | Tstatic (_, t)
54
  | Tclock t
55
  | Tlink t -> occurs tvar t
56
  | Tenum _ | Tconst _ | Tunivar | Tint | Treal | Tbool | Trat -> false
57

    
58
(** Promote monomorphic type variables to polymorphic type variables. *)
59
(* Generalize by side-effects *)
60
let rec generalize ty =
61
  match ty.tdesc with
62
  | Tvar ->
63
      (* No scopes, always generalize *)
64
      ty.tdesc <- Tunivar
65
  | Tarrow (t1,t2) ->
66
      generalize t1; generalize t2
67
  | Ttuple tlist ->
68
      List.iter generalize tlist
69
  | Tstatic (d, t)
70
  | Tarray (d, t) -> Dimension.generalize d; generalize t
71
  | Tclock t
72
  | Tlink t ->
73
      generalize t
74
  | Tenum _ | Tconst _ | Tunivar | Tint | Treal | Tbool | Trat -> ()
75

    
76
(** Downgrade polymorphic type variables to monomorphic type variables *)
77
let rec instantiate inst_vars inst_dim_vars ty =
78
  let ty = repr ty in
79
  match ty.tdesc with
80
  | Tenum _ | Tconst _ | Tvar | Tint | Treal | Tbool | Trat -> ty
81
  | Tarrow (t1,t2) ->
82
      {ty with tdesc =
83
       Tarrow ((instantiate inst_vars inst_dim_vars t1), (instantiate inst_vars inst_dim_vars t2))}
84
  | Ttuple tlist ->
85
      {ty with tdesc = Ttuple (List.map (instantiate inst_vars inst_dim_vars) tlist)}
86
  | Tclock t ->
87
	{ty with tdesc = Tclock (instantiate inst_vars inst_dim_vars t)}
88
  | Tstatic (d, t) ->
89
	{ty with tdesc = Tstatic (Dimension.instantiate inst_dim_vars d, instantiate inst_vars inst_dim_vars t)}
90
  | Tarray (d, t) ->
91
	{ty with tdesc = Tarray (Dimension.instantiate inst_dim_vars d, instantiate inst_vars inst_dim_vars t)}
92
  | Tlink t ->
93
	(* should not happen *)
94
	{ty with tdesc = Tlink (instantiate inst_vars inst_dim_vars t)}
95
  | Tunivar ->
96
      try
97
        List.assoc ty.tid !inst_vars
98
      with Not_found ->
99
        let var = new_var () in
100
	inst_vars := (ty.tid, var)::!inst_vars;
101
	var
102

    
103
(* [type_coretype cty] types the type declaration [cty] *)
104
let rec type_coretype type_dim cty =
105
  match (*get_repr_type*) cty with
106
  | Tydec_any -> new_var ()
107
  | Tydec_int -> Type_predef.type_int
108
  | Tydec_real -> Type_predef.type_real
109
  | Tydec_float -> Type_predef.type_real
110
  | Tydec_bool -> Type_predef.type_bool
111
  | Tydec_clock ty -> Type_predef.type_clock (type_coretype type_dim ty)
112
  | Tydec_const c -> Type_predef.type_const c
113
  | Tydec_enum tl -> Type_predef.type_enum tl
114
  | Tydec_array (d, ty) ->
115
    begin
116
      type_dim d;
117
      Type_predef.type_array d (type_coretype type_dim ty)
118
    end
119

    
120
(* [coretype_type is the reciprocal of [type_typecore] *)
121
let rec coretype_type ty =
122
 match (repr ty).tdesc with
123
 | Tvar           -> Tydec_any
124
 | Tint           -> Tydec_int
125
 | Treal          -> Tydec_real
126
 | Tbool          -> Tydec_bool
127
 | Tconst c       -> Tydec_const c
128
 | Tclock t       -> Tydec_clock (coretype_type t)
129
 | Tenum tl       -> Tydec_enum tl
130
 | Tarray (d, t)  -> Tydec_array (d, coretype_type t)
131
 | Tstatic (_, t) -> coretype_type t
132
 | _         -> assert false
133

    
134
let get_type_definition tname =
135
  try
136
    type_coretype (fun d -> ()) (Hashtbl.find type_table (Tydec_const tname))
137
  with Not_found -> raise (Error (Location.dummy_loc, Unbound_type tname))
138

    
139
(** [unify env t1 t2] unifies types [t1] and [t2]. Raises [Unify
140
    (t1,t2)] if the types are not unifiable.*)
141
(* Standard destructive unification *)
142
let rec unify t1 t2 =
143
  let t1 = repr t1 in
144
  let t2 = repr t2 in
145
  if t1=t2 then
146
    ()
147
  else
148
    (* No type abbreviations resolution for now *)
149
    match t1.tdesc,t2.tdesc with
150
      (* This case is not mandory but will keep "older" types *)
151
    | Tvar, Tvar ->
152
        if t1.tid < t2.tid then
153
          t2.tdesc <- Tlink t1
154
        else
155
          t1.tdesc <- Tlink t2
156
    | (Tvar, _) when (not (occurs t1 t2)) ->
157
        t1.tdesc <- Tlink t2
158
    | (_,Tvar) when (not (occurs t2 t1)) ->
159
        t2.tdesc <- Tlink t1
160
    | Tarrow (t1,t2), Tarrow (t1',t2') ->
161
      begin
162
        unify t1 t1';
163
	unify t2 t2'
164
      end
165
    | Ttuple tlist1, Ttuple tlist2 ->
166
        if (List.length tlist1) <> (List.length tlist2) then
167
	  raise (Unify (t1, t2))
168
	else
169
          List.iter2 unify tlist1 tlist2
170
    | Tclock _, Tstatic _
171
    | Tstatic _, Tclock _ -> raise (Unify (t1, t2))
172
    | Tclock t1', _ -> unify t1' t2
173
    | _, Tclock t2' -> unify t1 t2'
174
    | Tint, Tint | Tbool, Tbool | Trat, Trat
175
    | Tunivar, _ | _, Tunivar -> ()
176
    | (Tconst t, _) ->
177
      let def_t = get_type_definition t in
178
      unify def_t t2
179
    | (_, Tconst t)  ->
180
      let def_t = get_type_definition t in
181
      unify t1 def_t
182
    | Tenum tl, Tenum tl' when tl == tl' -> ()
183
    | Tstatic (e1, t1'), Tstatic (e2, t2')
184
    | Tarray (e1, t1'), Tarray (e2, t2') ->
185
      begin
186
	unify t1' t2';
187
	Dimension.eval Basic_library.eval_env (fun c -> None) e1;
188
	Dimension.eval Basic_library.eval_env (fun c -> None) e1;
189
	Dimension.unify e1 e2;
190
      end
191
    | _,_ -> raise (Unify (t1, t2))
192

    
193
let try_unify ty1 ty2 loc =
194
  try
195
    unify ty1 ty2
196
  with
197
  | Unify _ ->
198
    raise (Error (loc, Type_clash (ty1,ty2)))
199
  | Dimension.Unify _ ->
200
    raise (Error (loc, Type_clash (ty1,ty2)))
201

    
202
let rec type_const loc c = 
203
  match c with
204
  | Const_int _ -> Type_predef.type_int
205
  | Const_real _ -> Type_predef.type_real
206
  | Const_float _ -> Type_predef.type_real
207
  | Const_array ca -> let d = Dimension.mkdim_int loc (List.length ca) in
208
		      let ty = new_var () in
209
		      List.iter (fun e -> try_unify (type_const loc e) ty loc) ca;
210
		      Type_predef.type_array d ty
211
  | Const_tag t  ->
212
    if Hashtbl.mem tag_table t
213
    then type_coretype (fun d -> ()) (Hashtbl.find tag_table t)
214
    else raise (Error (loc, Unbound_value ("enum tag " ^ t)))
215

    
216
(* The following typing functions take as parameter an environment [env]
217
   and whether the element being typed is expected to be constant [const]. 
218
   [env] is a pair composed of:
219
  - a map from ident to type, associating to each ident, i.e. 
220
    variables, constants and (imported) nodes, its type including whether
221
    it is constant or not. This latter information helps in checking constant 
222
    propagation policy in Lustre.
223
  - a vdecl list, in order to modify types of declared variables that are
224
    later discovered to be clocks during the typing process.
225
*)
226
let check_constant loc const_expected const_real =
227
  if const_expected && not const_real
228
  then raise (Error (loc, Not_a_constant))
229

    
230
let rec type_standard_args env in_main const expr_list =
231
  let ty_list = List.map (fun e -> dynamic_type (type_expr env in_main const e)) expr_list in
232
  let ty_res = new_var () in
233
  List.iter2 (fun e ty -> try_unify ty_res ty e.expr_loc) expr_list ty_list;
234
  ty_res
235

    
236
(* emulates a subtyping relation between types t and (d : t),
237
   used during node application only *)
238
and type_subtyping_arg env in_main ?(sub=true) const real_arg formal_type =
239
  let loc = real_arg.expr_loc in
240
  let const = const || (Types.get_static_value formal_type <> None) in
241
  let real_type = type_expr env in_main const real_arg in
242
  let real_type =
243
    if const
244
    then let d =
245
	   if is_dimension_type real_type
246
	   then dimension_of_expr real_arg
247
	   else Dimension.mkdim_var () in
248
	 let eval_const id = Types.get_static_value (Env.lookup_value (fst env) id) in
249
	 Dimension.eval Basic_library.eval_env eval_const d;
250
	 let real_static_type = Type_predef.type_static d (Types.dynamic_type real_type) in
251
	 (match Types.get_static_value real_type with
252
	 | None    -> ()
253
	 | Some d' -> try_unify real_type real_static_type loc);
254
	 real_static_type
255
    else real_type in
256
(*Format.eprintf "subtyping const %B real %a:%a vs formal %a@." const Printers.pp_expr real_arg Types.print_ty real_type Types.print_ty formal_type;*)
257
  match (repr real_type).tdesc, (repr formal_type).tdesc with
258
  | Tstatic _          , Tstatic _ when sub -> try_unify formal_type real_type loc
259
  | Tstatic (r_d, r_ty), _         when sub -> try_unify formal_type r_ty loc
260
  | _                                       -> try_unify formal_type real_type loc
261

    
262
and type_ident env in_main loc const id =
263
  type_expr env in_main const (expr_of_ident id loc)
264

    
265
(* typing an application implies:
266
   - checking that const formal parameters match real const (maybe symbolic) arguments
267
   - checking type adequation between formal and real arguments
268
*)
269
and type_appl env in_main loc const f args =
270
  let tfun = type_ident env in_main loc const f in
271
  let tins, touts = split_arrow tfun in
272
  let tins = type_list_of_type tins in
273
  let args = expr_list_of_expr args in
274
  List.iter2 (type_subtyping_arg env in_main const) args tins;
275
  touts
276

    
277
(** [type_expr env in_main expr] types expression [expr] in environment
278
    [env], expecting it to be [const] or not. *)
279
and type_expr env in_main const expr =
280
  let res = 
281
  match expr.expr_desc with
282
  | Expr_const c ->
283
    let ty = type_const expr.expr_loc c in
284
    let ty = Type_predef.type_static (Dimension.mkdim_var ()) ty in
285
    expr.expr_type <- ty;
286
    ty
287
  | Expr_ident v ->
288
    let tyv =
289
      try
290
        Env.lookup_value (fst env) v
291
      with Not_found ->
292
	Format.eprintf "Failure in typing expr %a@." Printers.pp_expr expr;
293
        raise (Error (expr.expr_loc, Unbound_value ("identifier " ^ v)))
294
    in
295
    let ty = instantiate (ref []) (ref []) tyv in
296
    let ty' =
297
      if const
298
      then Type_predef.type_static (Dimension.mkdim_var ()) (new_var ())
299
      else new_var () in
300
    try_unify ty ty' expr.expr_loc;
301
    expr.expr_type <- ty;
302
    ty 
303
  | Expr_array elist ->
304
    let ty_elt = type_standard_args env in_main const elist in
305
    let d = Dimension.mkdim_int expr.expr_loc (List.length elist) in
306
    let ty = Type_predef.type_array d ty_elt in
307
    expr.expr_type <- ty;
308
    ty
309
  | Expr_access (e1, d) ->
310
    type_subtyping_arg env in_main true (expr_of_dimension d) Type_predef.type_int;
311
    let ty_elt = new_var () in
312
    let d = Dimension.mkdim_var () in
313
    type_subtyping_arg env in_main const e1 (Type_predef.type_array d ty_elt);
314
    expr.expr_type <- ty_elt;
315
    ty_elt
316
  | Expr_power (e1, d) ->
317
    let eval_const id = Types.get_static_value (Env.lookup_value (fst env) id) in
318
    type_subtyping_arg env in_main true (expr_of_dimension d) Type_predef.type_int;
319
    Dimension.eval Basic_library.eval_env eval_const d;
320
    let ty_elt = type_standard_args env in_main const [e1] in
321
    let ty = Type_predef.type_array d ty_elt in
322
    expr.expr_type <- ty;
323
    ty
324
  | Expr_tuple elist ->
325
    let ty = new_ty (Ttuple (List.map (type_expr env in_main const) elist)) in
326
    expr.expr_type <- ty;
327
    ty
328
  | Expr_ite (c, t, e) ->
329
    type_subtyping_arg env in_main const c Type_predef.type_bool;
330
    let ty = type_standard_args env in_main const [t; e] in
331
    expr.expr_type <- ty;
332
    ty
333
  | Expr_appl (id, args, r) ->
334
    (* application of non internal function is not legal in a constant expression *)
335
    (match r with
336
    | None        -> ()
337
    | Some (x, l) -> check_constant expr.expr_loc const false;
338
                     let expr_x = expr_of_ident x expr.expr_loc in	
339
		     let typ_l = Type_predef.type_clock (type_const expr.expr_loc (Const_tag l)) in
340
		     type_subtyping_arg env in_main ~sub:false const expr_x typ_l);
341
    let touts = type_appl env in_main expr.expr_loc const id args in
342
    expr.expr_type <- touts;
343
    touts
344
  | Expr_fby (e1,e2)
345
  | Expr_arrow (e1,e2) ->
346
    (* fby/arrow is not legal in a constant expression *)
347
    check_constant expr.expr_loc const false;
348
    let ty = type_standard_args env in_main const [e1; e2] in
349
    expr.expr_type <- ty;
350
    ty
351
  | Expr_pre e ->
352
    (* pre is not legal in a constant expression *)
353
    check_constant expr.expr_loc const false;
354
    let ty = type_standard_args env in_main const [e] in
355
    expr.expr_type <- ty;
356
    ty
357
  | Expr_when (e1,c,l) ->
358
    (* when is not legal in a constant expression *)
359
    check_constant expr.expr_loc const false;
360
    let typ_l = Type_predef.type_clock (type_const expr.expr_loc (Const_tag l)) in
361
    let expr_c = expr_of_ident c expr.expr_loc in
362
    type_subtyping_arg env in_main ~sub:false const expr_c typ_l;
363
    update_clock env in_main c expr.expr_loc typ_l;
364
    let ty = type_standard_args env in_main const [e1] in
365
    expr.expr_type <- ty;
366
    ty
367
  | Expr_merge (c,hl) ->
368
    (* merge is not legal in a constant expression *)
369
    check_constant expr.expr_loc const false;
370
    let typ_in, typ_out = type_branches env in_main expr.expr_loc const hl in
371
    let expr_c = expr_of_ident c expr.expr_loc in
372
    let typ_l = Type_predef.type_clock typ_in in
373
    type_subtyping_arg env in_main ~sub:false const expr_c typ_l;
374
    update_clock env in_main c expr.expr_loc typ_l;
375
    expr.expr_type <- typ_out;
376
    typ_out
377
  | Expr_uclock (e,k) | Expr_dclock (e,k) ->
378
      let ty = type_expr env in_main const e in
379
      expr.expr_type <- ty;
380
      ty
381
  | Expr_phclock (e,q) ->
382
      let ty = type_expr env in_main const e in
383
      expr.expr_type <- ty;
384
      ty
385
  in (*Format.eprintf "typing %B %a at %a = %a@." const Printers.pp_expr expr Location.pp_loc expr.expr_loc Types.print_ty res;*) res
386

    
387
and type_branches env in_main loc const hl =
388
  let typ_in = new_var () in
389
  let typ_out = new_var () in
390
  try
391
    let used_labels =
392
      List.fold_left (fun accu (t, h) ->
393
	unify typ_in (type_const loc (Const_tag t));
394
	type_subtyping_arg env in_main const h typ_out;
395
	if List.mem t accu
396
	then raise (Error (loc, Already_bound t))
397
	else t :: accu) [] hl in
398
    let type_labels = get_enum_type_tags (coretype_type typ_in) in
399
    if List.sort compare used_labels <> List.sort compare type_labels
400
    then let unbound_tag = List.find (fun t -> not (List.mem t used_labels)) type_labels in
401
	 raise (Error (loc, Unbound_value ("branching tag " ^ unbound_tag)))
402
    else (typ_in, typ_out)
403
  with Unify (t1, t2) ->
404
    raise (Error (loc, Type_clash (t1,t2)))
405

    
406
and update_clock env in_main id loc typ =
407
 (*Log.report ~level:1 (fun fmt -> Format.fprintf fmt "update_clock %s with %a@ " id print_ty typ);*)
408
 try
409
   let vdecl = List.find (fun v -> v.var_id = id) (snd env)
410
   in vdecl.var_type <- typ
411
 with
412
   Not_found ->
413
   raise (Error (loc, Unbound_value ("clock " ^ id)))
414

    
415
(** [type_eq env eq] types equation [eq] in environment [env] *)
416
let type_eq env in_main undefined_vars eq =
417
  (* Check undefined variables, type lhs *)
418
  let expr_lhs = expr_of_expr_list eq.eq_loc (List.map (fun v -> expr_of_ident v eq.eq_loc) eq.eq_lhs) in
419
  let ty_lhs = type_expr env in_main false expr_lhs in
420
  (* Check multiple variable definitions *)
421
  let define_var id uvars =
422
    try
423
      ignore(IMap.find id uvars);
424
      IMap.remove id uvars
425
    with Not_found ->
426
      raise (Error (eq.eq_loc, Already_defined id))
427
  in
428
  let undefined_vars =
429
    List.fold_left (fun uvars v -> define_var v uvars) undefined_vars eq.eq_lhs in
430
  (* Type rhs wrt to lhs type with subtyping, i.e. a constant rhs value may be assigned
431
     to a (always non-constant) lhs variable *)
432
  type_subtyping_arg env in_main false eq.eq_rhs ty_lhs;
433
  undefined_vars
434

    
435

    
436
(* [type_coreclock env ck id loc] types the type clock declaration [ck]
437
   in environment [env] *)
438
let type_coreclock env ck id loc =
439
  match ck.ck_dec_desc with
440
  | Ckdec_any | Ckdec_pclock (_,_) -> ()
441
  | Ckdec_bool cl ->
442
      let dummy_id_expr = expr_of_ident id loc in
443
      let when_expr =
444
        List.fold_left
445
          (fun expr (x, l) ->
446
                {expr_tag = new_tag ();
447
                 expr_desc= Expr_when (expr,x,l);
448
                 expr_type = new_var ();
449
                 expr_clock = Clocks.new_var true;
450
                 expr_delay = Delay.new_var ();
451
                 expr_loc=loc;
452
		 expr_annot = None})
453
          dummy_id_expr cl
454
      in
455
Format.eprintf "yiihii@.";
456
      ignore (type_expr env false false when_expr)
457

    
458
let rec check_type_declaration loc cty =
459
 match cty with
460
 | Tydec_clock ty
461
 | Tydec_array (_, ty) -> check_type_declaration loc ty
462
 | Tydec_const tname   ->
463
   if not (Hashtbl.mem type_table cty)
464
   then raise (Error (loc, Unbound_type tname));
465
 | _                   -> ()
466

    
467
let type_var_decl vd_env env vdecl =
468
  check_type_declaration vdecl.var_loc vdecl.var_dec_type.ty_dec_desc;
469
  let eval_const id = Types.get_static_value (Env.lookup_value env id) in
470
  let type_dim d =
471
    begin
472
      type_subtyping_arg (env, vd_env) false true (expr_of_dimension d) Type_predef.type_int;
473
      Dimension.eval Basic_library.eval_env eval_const d;
474
    end in
475
  let ty = type_coretype type_dim vdecl.var_dec_type.ty_dec_desc in
476
  let ty_status =
477
    if vdecl.var_dec_const
478
    then Type_predef.type_static (Dimension.mkdim_var ()) ty
479
    else ty in
480
  let new_env = Env.add_value env vdecl.var_id ty_status in
481
  type_coreclock (new_env,vd_env) vdecl.var_dec_clock vdecl.var_id vdecl.var_loc;
482
  vdecl.var_type <- ty_status;
483
  new_env
484

    
485
let type_var_decl_list vd_env env l =
486
  List.fold_left (type_var_decl vd_env) env l
487

    
488
let type_of_vlist vars =
489
  let tyl = List.map (fun v -> v.var_type) vars in
490
  type_of_type_list tyl
491

    
492
let add_vdecl vd_env vdecl =
493
 if List.exists (fun v -> v.var_id = vdecl.var_id) vd_env
494
 then raise (Error (vdecl.var_loc, Already_bound vdecl.var_id))
495
 else vdecl::vd_env
496

    
497
let check_vd_env vd_env =
498
  ignore (List.fold_left add_vdecl [] vd_env)
499

    
500
(** [type_node env nd loc] types node [nd] in environment env. The
501
    location is used for error reports. *)
502
let type_node env nd loc =
503
  let is_main = nd.node_id = !Options.main_node in
504
  let vd_env_ol = nd.node_outputs@nd.node_locals in
505
  let vd_env =  nd.node_inputs@vd_env_ol in
506
  check_vd_env vd_env;
507
  let init_env = env in
508
  let delta_env = type_var_decl_list vd_env init_env nd.node_inputs in
509
  let delta_env = type_var_decl_list vd_env delta_env nd.node_outputs in
510
  let delta_env = type_var_decl_list vd_env delta_env nd.node_locals in
511
  let new_env = Env.overwrite env delta_env in
512
  let undefined_vars_init =
513
    List.fold_left
514
      (fun uvs v -> IMap.add v.var_id () uvs)
515
      IMap.empty vd_env_ol in
516
  let undefined_vars =
517
    List.fold_left (type_eq (new_env, vd_env) is_main) undefined_vars_init nd.node_eqs
518
  in
519
  (* check that table is empty *)
520
  if (not (IMap.is_empty undefined_vars)) then
521
    raise (Error (loc, Undefined_var undefined_vars));
522
  let ty_ins = type_of_vlist nd.node_inputs in
523
  let ty_outs = type_of_vlist nd.node_outputs in
524
  let ty_node = new_ty (Tarrow (ty_ins,ty_outs)) in
525
  generalize ty_node;
526
  (* TODO ? Check that no node in the hierarchy remains polymorphic ? *)
527
  nd.node_type <- ty_node;
528
  Env.add_value env nd.node_id ty_node
529

    
530
let type_imported_node env nd loc =
531
  let new_env = type_var_decl_list nd.nodei_inputs env nd.nodei_inputs in
532
  let vd_env = nd.nodei_inputs@nd.nodei_outputs in
533
  check_vd_env vd_env;
534
  ignore(type_var_decl_list vd_env new_env nd.nodei_outputs);
535
  let ty_ins = type_of_vlist nd.nodei_inputs in
536
  let ty_outs = type_of_vlist nd.nodei_outputs in
537
  let ty_node = new_ty (Tarrow (ty_ins,ty_outs)) in
538
  generalize ty_node;
539
(*
540
  if (is_polymorphic ty_node) then
541
    raise (Error (loc, Poly_imported_node nd.nodei_id));
542
*)
543
  let new_env = Env.add_value env nd.nodei_id ty_node in
544
  nd.nodei_type <- ty_node;
545
  new_env
546

    
547
let type_imported_fun env nd loc =
548
  let new_env = type_var_decl_list nd.fun_inputs env nd.fun_inputs in
549
  let vd_env =  nd.fun_inputs@nd.fun_outputs in
550
  check_vd_env vd_env;
551
  ignore(type_var_decl_list vd_env new_env nd.fun_outputs);
552
  let ty_ins = type_of_vlist nd.fun_inputs in
553
  let ty_outs = type_of_vlist nd.fun_outputs in
554
  let ty_node = new_ty (Tarrow (ty_ins,ty_outs)) in
555
  generalize ty_node;
556
(*
557
  if (is_polymorphic ty_node) then
558
    raise (Error (loc, Poly_imported_node nd.fun_id));
559
*)
560
  let new_env = Env.add_value env nd.fun_id ty_node in
561
  nd.fun_type <- ty_node;
562
  new_env
563

    
564
let type_top_consts env clist =
565
  List.fold_left (fun env cdecl ->
566
    let ty = type_const cdecl.const_loc cdecl.const_value in
567
    let d =
568
      if is_dimension_type ty
569
      then dimension_of_const cdecl.const_loc cdecl.const_value
570
      else Dimension.mkdim_var () in
571
    let ty = Type_predef.type_static d ty in
572
    let new_env = Env.add_value env cdecl.const_id ty in
573
    cdecl.const_type <- ty;
574
    new_env) env clist
575

    
576
let type_top_decl env decl =
577
  match decl.top_decl_desc with
578
  | Node nd ->
579
      type_node env nd decl.top_decl_loc
580
  | ImportedNode nd ->
581
      type_imported_node env nd decl.top_decl_loc
582
  | ImportedFun nd ->
583
      type_imported_fun env nd decl.top_decl_loc
584
  | Consts clist ->
585
      type_top_consts env clist
586
  | Include _  -> env
587

    
588
let type_prog env decls =
589
try
590
  ignore(List.fold_left type_top_decl env decls)
591
with Failure _ as exc -> raise exc
592

    
593
(* Once the Lustre program is fully typed,
594
   we must get back to the original description of dimensions,
595
   with constant parameters, instead of unifiable internal variables. *)
596

    
597
(* The following functions aims at 'unevaluating' dimension expressions occuring in array types,
598
   i.e. replacing unifiable second_order variables with the original static parameters.
599
   Once restored in this formulation, dimensions may be meaningfully printed.
600
*)
601
(*
602
let uneval_vdecl_generics vdecl ty =
603
 if vdecl.var_dec_const
604
 then
605
   match get_static_value ty with
606
   | None   -> (Format.eprintf "internal error: %a@." Types.print_ty vdecl.var_type; assert false)
607
   | Some d -> Dimension.unify d (Dimension.mkdim_ident vdecl.var_loc vdecl.var_id)
608

    
609
let uneval_node_generics vdecls =
610
  let inst_typ_vars = ref [] in
611
  let inst_dim_vars = ref [] in
612
  let inst_ty_list = List.map (fun v -> instantiate inst_typ_vars inst_dim_vars v.var_type) vdecls in
613
  List.iter2 (fun v ty -> uneval_vdecl_generics v ty) vdecls inst_ty_list;
614
  List.iter2 (fun v ty -> generalize ty; v.var_type <- ty) vdecls inst_ty_list
615
*)
616
let uneval_vdecl_generics vdecl =
617
 if vdecl.var_dec_const
618
 then
619
   match get_static_value vdecl.var_type with
620
   | None   -> (Format.eprintf "internal error: %a@." Types.print_ty vdecl.var_type; assert false)
621
   | Some d -> Dimension.uneval vdecl.var_id d
622

    
623
let uneval_node_generics vdecls =
624
  List.iter uneval_vdecl_generics vdecls
625

    
626
let uneval_top_generics decl =
627
  match decl.top_decl_desc with
628
  | Node nd ->
629
      uneval_node_generics (nd.node_inputs @ nd.node_outputs)
630
  | ImportedNode nd ->
631
      uneval_node_generics (nd.nodei_inputs @ nd.nodei_outputs)
632
  | ImportedFun nd ->
633
      ()
634
  | Consts clist -> ()
635
  | Include _  -> ()
636

    
637
let uneval_prog_generics prog =
638
 List.iter uneval_top_generics prog
639
(* Local Variables: *)
640
(* compile-command:"make -C .." *)
641
(* End: *)