Project

General

Profile

Statistics
| Branch: | Tag: | Revision:

lustrec / src / machine_code.ml @ 22fe1c93

History | View | Annotate | Download (16 KB)

1

    
2
(* ----------------------------------------------------------------------------
3
 * SchedMCore - A MultiCore Scheduling Framework
4
 * Copyright (C) 2009-2013, ONERA, Toulouse, FRANCE - LIFL, Lille, FRANCE
5
 * Copyright (C) 2012-2013, INPT, Toulouse, FRANCE
6
 *
7
 * This file is part of Prelude
8
 *
9
 * Prelude is free software; you can redistribute it and/or
10
 * modify it under the terms of the GNU Lesser General Public License
11
 * as published by the Free Software Foundation ; either version 2 of
12
 * the License, or (at your option) any later version.
13
 *
14
 * Prelude is distributed in the hope that it will be useful, but
15
 * WITHOUT ANY WARRANTY ; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17
 * Lesser General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with this program ; if not, write to the Free Software
21
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
22
 * USA
23
 *---------------------------------------------------------------------------- *)
24

    
25
(* This module is used for the lustre to C compiler *)
26

    
27
open LustreSpec
28
open Corelang
29
open Clocks
30
open Causality
31

    
32
exception NormalizationError
33

    
34
module OrdVarDecl:Map.OrderedType with type t=var_decl =
35
  struct type t = var_decl;; let compare = compare end
36

    
37
module ISet = Set.Make(OrdVarDecl)
38

    
39
type value_t = 
40
  | Cst of constant
41
  | LocalVar of var_decl
42
  | StateVar of var_decl
43
  | Fun of ident * value_t list 
44
  | Array of value_t list
45
  | Access of value_t * value_t
46
  | Power of value_t * value_t
47

    
48
type instr_t =
49
  | MLocalAssign of var_decl * value_t
50
  | MStateAssign of var_decl * value_t
51
  | MReset of ident
52
  | MStep of var_decl list * ident * value_t list
53
  | MBranch of value_t * (label * instr_t list) list
54
 
55
let rec pp_val fmt v =
56
  match v with
57
    | Cst c         -> Printers.pp_const fmt c 
58
    | LocalVar v    -> Format.pp_print_string fmt v.var_id
59
    | StateVar v    -> Format.pp_print_string fmt v.var_id
60
    | Array vl      -> Format.fprintf fmt "[%a]" (Utils.fprintf_list ~sep:", " pp_val)  vl
61
    | Access (t, i) -> Format.fprintf fmt "%a[%a]" pp_val t pp_val i
62
    | Power (v, n)  -> Format.fprintf fmt "(%a^%a)" pp_val v pp_val n
63
    | Fun (n, vl)   -> Format.fprintf fmt "%s (%a)" n (Utils.fprintf_list ~sep:", " pp_val)  vl
64

    
65
let rec pp_instr fmt i =
66
  match i with 
67
    | MLocalAssign (i,v) -> Format.fprintf fmt "%s<-l- %a" i.var_id pp_val v
68
    | MStateAssign (i,v) -> Format.fprintf fmt "%s<-s- %a" i.var_id pp_val v
69
    | MReset i           -> Format.fprintf fmt "reset %s" i
70
    | MStep (il, i, vl)  ->
71
      Format.fprintf fmt "%a = %s (%a)"
72
	(Utils.fprintf_list ~sep:", " (fun fmt v -> Format.pp_print_string fmt v.var_id)) il
73
	i      
74
	(Utils.fprintf_list ~sep:", " pp_val) vl
75
    | MBranch (g,hl)     ->
76
      Format.fprintf fmt "@[<v 2>case(%a) {@,%a@,}@]"
77
	pp_val g
78
	(Utils.fprintf_list ~sep:"@," pp_branch) hl
79

    
80
and pp_branch fmt (t, h) =
81
  Format.fprintf fmt "@[<v 2>%s:@,%a@]" t (Utils.fprintf_list ~sep:"@," pp_instr) h
82

    
83
type step_t = {
84
  step_checks: (Location.t * value_t) list;
85
  step_inputs: var_decl list;
86
  step_outputs: var_decl list;
87
  step_locals: var_decl list;
88
  step_instrs: instr_t list;
89
}
90

    
91
type static_call = top_decl * (Dimension.dim_expr list)
92

    
93
type machine_t = {
94
  mname: node_desc;
95
  mmemory: var_decl list;
96
  mcalls: (ident * static_call) list; (* map from stateful/stateless instance to node, no internals *)
97
  minstances: (ident * static_call) list; (* sub-map of mcalls, from stateful instance to node *)
98
  minit: instr_t list;
99
  mstatic: var_decl list; (* static inputs only *)
100
  mstep: step_t;
101
  mspec: node_annot option;
102
  mannot: expr_annot option;
103
}
104

    
105
let pp_step fmt s =
106
  Format.fprintf fmt "@[<v>inputs : %a@ outputs: %a@ locals : %a@ checks : %a@ instrs : @[%a@]@]@ "
107
    (Utils.fprintf_list ~sep:", " Printers.pp_var) s.step_inputs
108
    (Utils.fprintf_list ~sep:", " Printers.pp_var) s.step_outputs
109
    (Utils.fprintf_list ~sep:", " Printers.pp_var) s.step_locals
110
    (Utils.fprintf_list ~sep:", " (fun fmt (_, c) -> pp_val fmt c)) s.step_checks
111
    (Utils.fprintf_list ~sep:"@ " pp_instr) s.step_instrs
112

    
113
let pp_static_call fmt (node, args) =
114
 Format.fprintf fmt "%s<%a>"
115
   (node_name node)
116
   (Utils.fprintf_list ~sep:", " Dimension.pp_dimension) args
117

    
118
let pp_machine fmt m =
119
  Format.fprintf fmt 
120
    "@[<v 2>machine %s@ mem      : %a@ instances: %a@ init     : %a@ step     :@   @[<v 2>%a@]@ @]@ "
121
    m.mname.node_id
122
    (Utils.fprintf_list ~sep:", " Printers.pp_var) m.mmemory
123
    (Utils.fprintf_list ~sep:", " (fun fmt (o1, o2) -> Format.fprintf fmt "(%s, %a)" o1 pp_static_call o2)) m.minstances
124
    (Utils.fprintf_list ~sep:"@ " pp_instr) m.minit
125
    pp_step m.mstep
126

    
127
let is_output m id =
128
  List.exists (fun o -> o.var_id = id.var_id) m.mstep.step_outputs
129

    
130
let conditional c t e =
131
  MBranch(c, [ (tag_true, t); (tag_false, e) ])
132

    
133
let dummy_var_decl name typ =
134
  {
135
    var_id = name;
136
    var_dec_type = dummy_type_dec;
137
    var_dec_clock = dummy_clock_dec;
138
    var_dec_const = false;
139
    var_type =  typ;
140
    var_clock = Clocks.new_ck (Clocks.Cvar Clocks.CSet_all) true;
141
    var_loc = Location.dummy_loc
142
  }
143

    
144
let arrow_id = "_arrow"
145

    
146
let arrow_typ = Types.new_ty Types.Tunivar
147

    
148
let arrow_desc =
149
  {
150
    node_id = arrow_id;
151
    node_type = Type_predef.type_bin_poly_op;
152
    node_clock = Clock_predef.ck_bin_univ;
153
    node_inputs= [dummy_var_decl "_in1" arrow_typ; dummy_var_decl "_in2" arrow_typ];
154
    node_outputs= [dummy_var_decl "_out" arrow_typ];
155
    node_locals= [];
156
    node_gencalls = [];
157
    node_checks = [];
158
    node_asserts = [];
159
    node_eqs= [];
160
    node_spec = None;
161
    node_annot = None;  }
162

    
163
let arrow_top_decl =
164
  {
165
    top_decl_desc = Node arrow_desc;
166
    top_decl_loc = Location.dummy_loc
167
  }
168

    
169
let arrow_machine =
170
  let state = "_first" in
171
  let var_state = dummy_var_decl state (Types.new_ty Types.Tbool) in
172
  let var_input1 = List.nth arrow_desc.node_inputs 0 in
173
  let var_input2 = List.nth arrow_desc.node_inputs 1 in
174
  let var_output = List.nth arrow_desc.node_outputs 0 in
175
  {
176
    mname = arrow_desc;
177
    mmemory = [var_state];
178
    mcalls = [];
179
    minstances = [];
180
    minit = [MStateAssign(var_state, Cst (const_of_bool true))];
181
    mstatic = [];
182
    mstep = {
183
      step_inputs = arrow_desc.node_inputs;
184
      step_outputs = arrow_desc.node_outputs;
185
      step_locals = [];
186
      step_checks = [];
187
      step_instrs = [conditional (StateVar var_state)
188
			         [MStateAssign(var_state, Cst (const_of_bool false));
189
                                  MLocalAssign(var_output, LocalVar var_input1)]
190
                                 [MLocalAssign(var_output, LocalVar var_input2)] ]
191
    };
192
    mspec = None;
193
    mannot = None;
194
  }
195

    
196
let is_stateless_node node =
197
  (node_name node <> arrow_id) &&
198
    match node.top_decl_desc with
199
    | Node id -> false (* TODO: add a check after the machines are produced. Start from the main node and do a DFS to compute the stateless/statefull property of nodes. Stateless nodes should not be reset *)
200
    | ImportedNode id -> id.nodei_stateless
201
    | ImportedFun _ -> true
202
    | _       -> assert false
203

    
204
let new_instance =
205
  let cpt = ref (-1) in
206
  fun caller callee tag ->
207
    begin
208
      let o =
209
	if is_stateless_node callee then
210
	  node_name callee
211
	else
212
	  Printf.sprintf "ni_%d" (incr cpt; !cpt) in
213
      let o =
214
	if !Options.ansi && is_generic_node callee
215
	then Printf.sprintf "%s_inst_%d" o (Utils.position (fun e -> e.expr_tag = tag) caller.node_gencalls)
216
	else o in
217
      o
218
    end
219

    
220
let const_of_carrier cr =
221
 match (carrier_repr cr).carrier_desc with
222
 | Carry_const id -> id
223
 | Carry_name -> assert false
224
 | Carry_var -> assert false
225
 | Carry_link _ -> assert false (* TODO check this Xavier *)
226

    
227
(* translate_<foo> : node -> context -> <foo> -> machine code/expression *)
228
(* the context contains  m : state aka memory variables  *)
229
(*                      si : initialization instructions *)
230
(*                       j : node aka machine instances  *)
231
(*                       d : local variables             *)
232
(*                       s : step instructions           *)
233
let translate_ident node (m, si, j, d, s) id =
234
  try (* id is a node var *)
235
    let var_id = node_var id node in
236
    if ISet.exists (fun v -> v.var_id = id) m
237
    then StateVar var_id
238
    else LocalVar var_id
239
  with Not_found -> (* id is a constant *)
240
    LocalVar (Corelang.var_decl_of_const (Hashtbl.find Corelang.consts_table id))
241

    
242
let rec control_on_clock node ((m, si, j, d, s) as args) ck inst =
243
 match ck.cdesc with
244
 | Con    (ck1, cr, l) ->
245
   let id  = const_of_carrier cr in
246
   control_on_clock node args ck1 (MBranch (translate_ident node args id,
247
					    [l, [inst]] ))
248
 | _                   -> inst
249

    
250
let rec join_branches hl1 hl2 =
251
 match hl1, hl2 with
252
 | []          , _            -> hl2
253
 | _           , []           -> hl1
254
 | (t1, h1)::q1, (t2, h2)::q2 ->
255
   if t1 < t2 then (t1, h1) :: join_branches q1 hl2 else
256
   if t1 > t2 then (t2, h2) :: join_branches hl1 q2
257
   else (t1, List.fold_right join_guards h1 h2) :: join_branches q1 q2
258

    
259
and join_guards inst1 insts2 =
260
 match inst1, insts2 with
261
 | _                   , []                               ->
262
   [inst1]
263
 | MBranch (x1, hl1), MBranch (x2, hl2) :: q when x1 = x2 ->
264
   MBranch (x1, join_branches (sort_handlers hl1) (sort_handlers hl2))
265
   :: q
266
 | _ -> inst1 :: insts2
267

    
268
let join_guards_list insts =
269
 List.fold_right join_guards insts []
270

    
271
let find_eq x eqs =
272
  let rec aux accu eqs =
273
      match eqs with
274
	| [] ->
275
	  begin
276
	    Format.eprintf "Looking for variable %a in the following equations@.%a@."
277
	      Format.pp_print_string x
278
	      Printers.pp_node_eqs eqs;
279
	    assert false
280
	  end
281
	| hd::tl -> 
282
	  if List.mem x hd.eq_lhs then hd, accu@tl else aux (hd::accu) tl
283
    in
284
    aux [] eqs
285

    
286
let rec translate_expr node ((m, si, j, d, s) as args) expr =
287
 match expr.expr_desc with
288
 | Expr_const v                     -> Cst v
289
 | Expr_ident x                     -> translate_ident node args x
290
 | Expr_array el                    -> Array (List.map (translate_expr node args) el)
291
 | Expr_access (t, i)               -> Access (translate_expr node args t, translate_expr node args (expr_of_dimension i))
292
 | Expr_power  (e, n)               -> Power  (translate_expr node args e, translate_expr node args (expr_of_dimension n))
293
 | Expr_tuple _
294
 | Expr_ite _
295
 | Expr_arrow _ 
296
 | Expr_fby _
297
 | Expr_pre _                       -> (Printers.pp_expr Format.err_formatter expr; Format.pp_print_flush Format.err_formatter (); raise NormalizationError)
298
 | Expr_when    (e1, _, _)          -> translate_expr node args e1
299
 | Expr_merge   (x, _)              -> raise NormalizationError
300
 | Expr_appl (id, e, _) when Basic_library.is_internal_fun id ->
301
   let nd = node_from_name id in
302
   (match e.expr_desc with
303
   | Expr_tuple el -> Fun (node_name nd, List.map (translate_expr node args) el)
304
   | _             -> Fun (node_name nd, [translate_expr node args e]))
305
 | _                   -> raise NormalizationError
306

    
307
let translate_guard node args expr =
308
 match expr.expr_desc with
309
 | Expr_ident x  -> translate_ident node args x
310
 | _ -> assert false
311

    
312
let rec translate_act node ((m, si, j, d, s) as args) (y, expr) =
313
 match expr.expr_desc with
314
 | Expr_ite   (c, t, e) -> let g = translate_guard node args c in
315
			   conditional g [translate_act node args (y, t)]
316
                                         [translate_act node args (y, e)]
317
 | Expr_merge (x, hl)   -> MBranch (translate_ident node args x, List.map (fun (t,  h) -> t, [translate_act node args (y, h)]) hl)
318
 | _                    -> MLocalAssign (y, translate_expr node args expr)
319

    
320
let reset_instance node args i r c =
321
 match r with
322
 | None        -> []
323
 | Some (x, l) -> [control_on_clock node args c (MBranch (translate_ident node args x, [l, [MReset i]]))]
324

    
325
let translate_eq node ((m, si, j, d, s) as args) eq =
326
 (*Format.eprintf "translate_eq %a@." Printers.pp_node_eq eq;*)
327
  match eq.eq_lhs, eq.eq_rhs.expr_desc with
328
  | [x], Expr_arrow (e1, e2)                     ->
329
    let var_x = node_var x node in
330
    let o = new_instance node arrow_top_decl eq.eq_rhs.expr_tag in
331
    let c1 = translate_expr node args e1 in
332
    let c2 = translate_expr node args e2 in
333
    (m,
334
     MReset o :: si,
335
     Utils.IMap.add o (arrow_top_decl, []) j,
336
     d,
337
     (control_on_clock node args eq.eq_rhs.expr_clock (MStep ([var_x], o, [c1;c2]))) :: s)
338
  | [x], Expr_pre e1 when ISet.mem (node_var x node) d     ->
339
    let var_x = node_var x node in
340
    (ISet.add var_x m,
341
     si,
342
     j,
343
     d,
344
     control_on_clock node args eq.eq_rhs.expr_clock (MStateAssign (var_x, translate_expr node args e1)) :: s)
345
  | [x], Expr_fby (e1, e2) when ISet.mem (node_var x node) d ->
346
    let var_x = node_var x node in
347
    (ISet.add var_x m,
348
     MStateAssign (var_x, translate_expr node args e1) :: si,
349
     j,
350
     d,
351
     control_on_clock node args eq.eq_rhs.expr_clock (MStateAssign (var_x, translate_expr node args e2)) :: s)
352
  | p  , Expr_appl (f, arg, r)                  ->
353
    let var_p = List.map (fun v -> node_var v node) p in
354
    let el =
355
      match arg.expr_desc with
356
      | Expr_tuple el -> el
357
      | _             -> [arg] in
358
    let vl = List.map (translate_expr node args) el in
359
    let node_f = node_from_name f in
360
    let call_f =
361
      node_f,
362
      NodeDep.filter_static_inputs (node_inputs node_f) el in 
363
    let o = new_instance node node_f eq.eq_rhs.expr_tag in
364
    (m,
365
     (if is_stateless_node node_f then si else MReset o :: si),
366
     (if Basic_library.is_internal_fun f then j else Utils.IMap.add o call_f j),
367
     d,
368
     reset_instance node args o r eq.eq_rhs.expr_clock @
369
       (control_on_clock node args eq.eq_rhs.expr_clock (MStep (var_p, o, vl))) :: s)
370
  | [x], _                                       ->
371
    let var_x = node_var x node in
372
    (m, si, j, d, 
373
     control_on_clock node args eq.eq_rhs.expr_clock (translate_act node args (var_x, eq.eq_rhs)) :: s)
374
  | _                                            ->
375
    begin
376
      Format.eprintf "unsupported equation: %a@?" Printers.pp_node_eq eq;
377
      assert false
378
    end
379

    
380
let translate_eqs node args eqs =
381
  List.fold_right (fun eq args -> translate_eq node args eq) eqs args;;
382

    
383
let translate_decl nd =
384
  (*Log.report ~level:1 (fun fmt -> Printers.pp_node fmt nd);*)
385
  let nd, sch = Scheduling.schedule_node nd in
386
  let split_eqs = Splitting.tuple_split_eq_list nd.node_eqs in
387
  let eqs_rev, remainder = 
388
    List.fold_left 
389
      (fun (accu, node_eqs_remainder) v -> 
390
	  if List.exists (fun eq -> List.mem v eq.eq_lhs) accu
391
	  then
392
	    (accu, node_eqs_remainder)
393
	  else
394
	    if   List.exists (fun vdecl -> vdecl.var_id = v) nd.node_locals
395
	      || List.exists (fun vdecl -> vdecl.var_id = v) nd.node_outputs
396
	    then
397
	      let eq_v, remainder = find_eq v node_eqs_remainder in
398
	      eq_v::accu, remainder
399
	    (* else it is a constant value, checked during typing phase *)
400
	    else	 
401
	      accu, node_eqs_remainder
402
      ) 
403
      ([], split_eqs) 
404
      sch 
405
  in
406
  if List.length remainder > 0 then (
407
    Format.eprintf "Equations not used are@.%a@.Full equation set is:@.%a@.@?"
408
	    Printers.pp_node_eqs remainder
409
      	    Printers.pp_node_eqs nd.node_eqs;
410
    assert false )
411
  ;
412

    
413
  let init_args = ISet.empty, [], Utils.IMap.empty, List.fold_right (fun l -> ISet.add l) nd.node_locals ISet.empty, [] in
414
  let m, init, j, locals, s = translate_eqs nd init_args (List.rev eqs_rev) in
415
  let mmap = Utils.IMap.fold (fun i n res -> (i, n)::res) j [] in
416
  {
417
    mname = nd;
418
    mmemory = ISet.elements m;
419
    mcalls = mmap;
420
    minstances = List.filter (fun (_, (n,_)) -> not (is_stateless_node n)) mmap;
421
    minit = init;
422
    mstatic = List.filter (fun v -> v.var_dec_const) nd.node_inputs;
423
    mstep = {
424
      step_inputs = nd.node_inputs;
425
      step_outputs = nd.node_outputs;
426
      step_locals = ISet.elements (ISet.diff locals m);
427
      step_checks = List.map (fun d -> d.Dimension.dim_loc, translate_expr nd init_args (expr_of_dimension d)) nd.node_checks;
428
      step_instrs = join_guards_list s;
429
    };
430
    mspec = nd.node_spec;
431
    mannot = nd.node_annot;
432
  }
433

    
434

    
435
let translate_prog decls = 
436
  let nodes = get_nodes decls in 
437
   (* What to do with Imported/Sensor/Actuators ? *)
438
   arrow_machine ::  List.map translate_decl nodes
439
 
440

    
441
(* Local Variables: *)
442
(* compile-command:"make -C .." *)
443
(* End: *)