## lustrec / src / dimension.ml @ 22fe1c93

History | View | Annotate | Download (9.88 KB)

1 |
(* ---------------------------------------------------------------------------- |
---|---|

2 |
* SchedMCore - A MultiCore Scheduling Framework |

3 |
* Copyright (C) 2009-2013, ONERA, Toulouse, FRANCE - LIFL, Lille, FRANCE |

4 |
* Copyright (C) 2012-2013, INPT, Toulouse, FRANCE |

5 |
* |

6 |
* This file is part of Prelude |

7 |
* |

8 |
* Prelude is free software; you can redistribute it and/or |

9 |
* modify it under the terms of the GNU Lesser General Public License |

10 |
* as published by the Free Software Foundation ; either version 2 of |

11 |
* the License, or (at your option) any later version. |

12 |
* |

13 |
* Prelude is distributed in the hope that it will be useful, but |

14 |
* WITHOUT ANY WARRANTY ; without even the implied warranty of |

15 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |

16 |
* Lesser General Public License for more details. |

17 |
* |

18 |
* You should have received a copy of the GNU Lesser General Public |

19 |
* License along with this program ; if not, write to the Free Software |

20 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 |

21 |
* USA |

22 |
*---------------------------------------------------------------------------- *) |

23 | |

24 |
(* This module is used for the lustre to C compiler *) |

25 | |

26 |
open Format |

27 | |

28 |
type dim_expr = |

29 |
{mutable dim_desc: dim_desc; |

30 |
dim_loc: Location.t; |

31 |
dim_id: int} |

32 | |

33 |
and dim_desc = |

34 |
| Dbool of bool |

35 |
| Dint of int |

36 |
| Dident of Utils.ident |

37 |
| Dappl of Utils.ident * dim_expr list |

38 |
| Dite of dim_expr * dim_expr * dim_expr |

39 |
| Dlink of dim_expr |

40 |
| Dvar |

41 |
| Dunivar |

42 | |

43 |
exception Unify of dim_expr * dim_expr |

44 |
exception InvalidDimension |

45 | |

46 |
let new_id = ref (-1) |

47 | |

48 |
let mkdim loc dim = |

49 |
incr new_id; |

50 |
{ dim_loc = loc; |

51 |
dim_id = !new_id; |

52 |
dim_desc = dim;} |

53 | |

54 |
let mkdim_var () = |

55 |
incr new_id; |

56 |
{ dim_loc = Location.dummy_loc; |

57 |
dim_id = !new_id; |

58 |
dim_desc = Dvar;} |

59 | |

60 |
let mkdim_ident loc id = |

61 |
incr new_id; |

62 |
{ dim_loc = loc; |

63 |
dim_id = !new_id; |

64 |
dim_desc = Dident id;} |

65 | |

66 |
let mkdim_bool loc b = |

67 |
incr new_id; |

68 |
{ dim_loc = loc; |

69 |
dim_id = !new_id; |

70 |
dim_desc = Dbool b;} |

71 | |

72 |
let mkdim_int loc i = |

73 |
incr new_id; |

74 |
{ dim_loc = loc; |

75 |
dim_id = !new_id; |

76 |
dim_desc = Dint i;} |

77 | |

78 |
let mkdim_appl loc f args = |

79 |
incr new_id; |

80 |
{ dim_loc = loc; |

81 |
dim_id = !new_id; |

82 |
dim_desc = Dappl (f, args);} |

83 | |

84 |
let mkdim_ite loc i t e = |

85 |
incr new_id; |

86 |
{ dim_loc = loc; |

87 |
dim_id = !new_id; |

88 |
dim_desc = Dite (i, t, e);} |

89 | |

90 |
let rec pp_dimension fmt dim = |

91 |
(*fprintf fmt "<%d>" (Obj.magic dim: int);*) |

92 |
match dim.dim_desc with |

93 |
| Dident id -> |

94 |
fprintf fmt "%s" id |

95 |
| Dint i -> |

96 |
fprintf fmt "%d" i |

97 |
| Dbool b -> |

98 |
fprintf fmt "%B" b |

99 |
| Dite (i, t, e) -> |

100 |
fprintf fmt "if %a then %a else %a" |

101 |
pp_dimension i pp_dimension t pp_dimension e |

102 |
| Dappl (f, [arg]) -> |

103 |
fprintf fmt "(%s%a)" f pp_dimension arg |

104 |
| Dappl (f, [arg1; arg2]) -> |

105 |
fprintf fmt "(%a%s%a)" pp_dimension arg1 f pp_dimension arg2 |

106 |
| Dappl (_, _) -> assert false |

107 |
| Dlink dim' -> fprintf fmt "%a" pp_dimension dim' |

108 |
| Dvar -> fprintf fmt "_%s" (Utils.name_of_dimension dim.dim_id) |

109 |
| Dunivar -> fprintf fmt "'%s" (Utils.name_of_dimension dim.dim_id) |

110 | |

111 |
let rec multi_dimension_product loc dim_list = |

112 |
match dim_list with |

113 |
| [] -> mkdim_int loc 1 |

114 |
| [d] -> d |

115 |
| d::q -> mkdim_appl loc "*" [d; multi_dimension_product loc q] |

116 | |

117 |
(* Builds a dimension expr representing 0<=d *) |

118 |
let check_bound loc d = |

119 |
mkdim_appl loc "<=" [mkdim_int loc 0; d] |

120 | |

121 |
(* Builds a dimension expr representing 0<=i<d *) |

122 |
let check_access loc d i = |

123 |
mkdim_appl loc "&&" |

124 |
[mkdim_appl loc "<=" [mkdim_int loc 0; i]; |

125 |
mkdim_appl loc "<" [i; d]] |

126 | |

127 |
let rec repr dim = |

128 |
match dim.dim_desc with |

129 |
| Dlink dim' -> repr dim' |

130 |
| _ -> dim |

131 | |

132 |
let rec is_eq_dimension d1 d2 = |

133 |
let d1 = repr d1 in |

134 |
let d2 = repr d2 in |

135 |
d1.dim_id = d2.dim_id || |

136 |
match d1.dim_desc, d2.dim_desc with |

137 |
| Dappl (f1, args1), Dappl (f2, args2) -> |

138 |
f1 = f2 && List.length args1 = List.length args2 && List.for_all2 is_eq_dimension args1 args2 |

139 |
| Dite (c1, t1, e1), Dite (c2, t2, e2) -> |

140 |
is_eq_dimension c1 c2 && is_eq_dimension t1 t2 && is_eq_dimension e1 e2 |

141 |
| Dvar, _ |

142 |
| _, Dvar |

143 |
| Dunivar, _ |

144 |
| _, Dunivar -> false |

145 |
| _ -> d1 = d2 |

146 | |

147 |
let is_dimension_const dim = |

148 |
match (repr dim).dim_desc with |

149 |
| Dint _ |

150 |
| Dbool _ -> true |

151 |
| _ -> false |

152 | |

153 |
let size_const_dimension dim = |

154 |
match (repr dim).dim_desc with |

155 |
| Dint i -> i |

156 |
| Dbool b -> if b then 1 else 0 |

157 |
| _ -> (Format.eprintf "internal error: size_const_dimension %a@." pp_dimension dim; assert false) |

158 | |

159 |
let rec is_polymorphic dim = |

160 |
match dim.dim_desc with |

161 |
| Dident _ |

162 |
| Dint _ |

163 |
| Dbool _ |

164 |
| Dvar -> false |

165 |
| Dite (i, t, e) -> |

166 |
is_polymorphic i || is_polymorphic t || is_polymorphic e |

167 |
| Dappl (_, args) -> List.exists is_polymorphic args |

168 |
| Dlink dim' -> is_polymorphic dim' |

169 |
| Dunivar -> true |

170 | |

171 |
(* Normalizes a dimension expression, i.e. canonicalize all polynomial |

172 |
sub-expressions, where unsupported operations (eg. '/') are treated |

173 |
as variables. |

174 |
*) |

175 | |

176 |
let rec factors dim = |

177 |
match dim.dim_desc with |

178 |
| Dappl (f, args) when f = "*" -> List.flatten (List.map factors args) |

179 |
| _ -> [dim] |

180 | |

181 |
let rec factors_constant fs = |

182 |
match fs with |

183 |
| [] -> 1 |

184 |
| f::q -> |

185 |
match f.dim_desc with |

186 |
| Dint i -> i * (factors_constant q) |

187 |
| _ -> factors_constant q |

188 | |

189 |
let norm_factors fs = |

190 |
let k = factors_constant fs in |

191 |
let nk = List.filter (fun d -> not (is_dimension_const d)) fs in |

192 |
(k, List.sort Pervasives.compare nk) |

193 | |

194 |
let rec terms dim = |

195 |
match dim.dim_desc with |

196 |
| Dappl (f, args) when f = "+" -> List.flatten (List.map terms args) |

197 |
| _ -> [dim] |

198 | |

199 |
let rec normalize dim = |

200 |
dim |

201 | |

202 |
let copy copy_dim_vars dim = |

203 |
let rec cp dim = |

204 |
match dim.dim_desc with |

205 |
| Dbool _ |

206 |
| Dint _ -> dim |

207 |
| Dident id -> mkdim_ident dim.dim_loc id |

208 |
| Dite (c, t, e) -> mkdim_ite dim.dim_loc (cp c) (cp t) (cp e) |

209 |
| Dappl (id, args) -> mkdim_appl dim.dim_loc id (List.map cp args) |

210 |
| Dlink dim' -> cp dim' |

211 |
| Dunivar -> assert false |

212 |
| Dvar -> |

213 |
try |

214 |
List.assoc dim.dim_id !copy_dim_vars |

215 |
with Not_found -> |

216 |
let var = mkdim dim.dim_loc Dvar in |

217 |
copy_dim_vars := (dim.dim_id, var)::!copy_dim_vars; |

218 |
var |

219 |
in cp dim |

220 | |

221 |
(* Partially evaluates a 'simple' dimension expr [dim], i.e. an expr containing only int and bool |

222 |
constructs, with conditionals. [eval_const] is a typing environment for static values. [eval_op] is an evaluation env for basic operators. The argument [dim] is modified in-place. |

223 |
*) |

224 |
let rec eval eval_op eval_const dim = |

225 |
match dim.dim_desc with |

226 |
| Dbool _ |

227 |
| Dint _ -> () |

228 |
| Dident id -> |

229 |
(match eval_const id with |

230 |
| Some val_dim -> dim.dim_desc <- Dlink val_dim |

231 |
| None -> raise InvalidDimension) |

232 |
| Dite (c, t, e) -> |

233 |
begin |

234 |
eval eval_op eval_const c; |

235 |
eval eval_op eval_const t; |

236 |
eval eval_op eval_const e; |

237 |
match (repr c).dim_desc with |

238 |
| Dbool b -> dim.dim_desc <- Dlink (if b then t else e) |

239 |
| _ -> () |

240 |
end |

241 |
| Dappl (id, args) -> |

242 |
begin |

243 |
List.iter (eval eval_op eval_const) args; |

244 |
if List.for_all is_dimension_const args |

245 |
then dim.dim_desc <- Env.lookup_value eval_op id (List.map (fun d -> (repr d).dim_desc) args) |

246 |
end |

247 |
| Dlink dim' -> |

248 |
begin |

249 |
eval eval_op eval_const dim'; |

250 |
dim.dim_desc <- Dlink (repr dim') |

251 |
end |

252 |
| Dvar -> () |

253 |
| Dunivar -> assert false |

254 | |

255 |
let rec uneval const univar = |

256 |
let univar = repr univar in |

257 |
match univar.dim_desc with |

258 |
| Dunivar -> univar.dim_desc <- Dident const |

259 |
| _ -> assert false |

260 | |

261 |
(** [occurs dvar dim] returns true if the dimension variable [dvar] occurs in |

262 |
dimension expression [dim]. False otherwise. *) |

263 |
let rec occurs dvar dim = |

264 |
let dim = repr dim in |

265 |
match dim.dim_desc with |

266 |
| Dvar -> dim.dim_id = dvar.dim_id |

267 |
| Dident _ |

268 |
| Dint _ |

269 |
| Dbool _ |

270 |
| Dunivar -> false |

271 |
| Dite (i, t, e) -> |

272 |
occurs dvar i || occurs dvar t || occurs dvar e |

273 |
| Dappl (_, args) -> List.exists (occurs dvar) args |

274 |
| Dlink _ -> assert false |

275 | |

276 |
(* Promote monomorphic dimension variables to polymorphic variables. |

277 |
Generalize by side-effects *) |

278 |
let rec generalize dim = |

279 |
match dim.dim_desc with |

280 |
| Dvar -> dim.dim_desc <- Dunivar |

281 |
| Dident _ |

282 |
| Dint _ |

283 |
| Dbool _ |

284 |
| Dunivar -> () |

285 |
| Dite (i, t, e) -> |

286 |
generalize i; generalize t; generalize e |

287 |
| Dappl (_, args) -> List.iter generalize args |

288 |
| Dlink dim' -> generalize dim' |

289 | |

290 |
(* Instantiate polymorphic dimension variables to monomorphic variables. |

291 |
Also duplicates the whole term structure (but the constant sub-terms). |

292 |
*) |

293 |
let rec instantiate inst_dim_vars dim = |

294 |
let dim = repr dim in |

295 |
match dim.dim_desc with |

296 |
| Dvar _ |

297 |
| Dident _ |

298 |
| Dint _ |

299 |
| Dbool _ -> dim |

300 |
| Dite (i, t, e) -> |

301 |
mkdim_ite dim.dim_loc |

302 |
(instantiate inst_dim_vars i) |

303 |
(instantiate inst_dim_vars t) |

304 |
(instantiate inst_dim_vars e) |

305 |
| Dappl (f, args) -> mkdim_appl dim.dim_loc f (List.map (instantiate inst_dim_vars) args) |

306 |
| Dlink dim' -> assert false (*mkdim dim.dim_loc (Dlink (instantiate inst_dim_vars dim'))*) |

307 |
| Dunivar -> |

308 |
try |

309 |
List.assoc dim.dim_id !inst_dim_vars |

310 |
with Not_found -> |

311 |
let var = mkdim dim.dim_loc Dvar in |

312 |
inst_dim_vars := (dim.dim_id, var)::!inst_dim_vars; |

313 |
var |

314 | |

315 |
let rec unify dim1 dim2 = |

316 |
let dim1 = repr dim1 in |

317 |
let dim2 = repr dim2 in |

318 |
if dim1.dim_id = dim2.dim_id then () else |

319 |
match dim1.dim_desc, dim2.dim_desc with |

320 |
| Dunivar, _ |

321 |
| _ , Dunivar -> assert false |

322 |
| Dvar , Dvar -> |

323 |
if dim1.dim_id < dim2.dim_id |

324 |
then dim2.dim_desc <- Dlink dim1 |

325 |
else dim1.dim_desc <- Dlink dim2 |

326 |
| Dvar , _ when not (occurs dim1 dim2) -> |

327 |
dim1.dim_desc <- Dlink dim2 |

328 |
| _ , Dvar when not (occurs dim2 dim1) -> |

329 |
dim2.dim_desc <- Dlink dim1 |

330 |
| Dite(i1, t1, e1), Dite(i2, t2, e2) -> |

331 |
begin |

332 |
unify i1 i2; |

333 |
unify t1 t2; |

334 |
unify e1 e2 |

335 |
end |

336 |
| Dappl(f1, args1), Dappl(f2, args2) when f1 = f2 && List.length args1 = List.length args2 -> |

337 |
List.iter2 unify args1 args2 |

338 |
| Dbool b1, Dbool b2 when b1 = b2 -> () |

339 |
| Dint i1 , Dint i2 when i1 = i2 -> () |

340 |
| Dident id1, Dident id2 when id1 = id2 -> () |

341 |
| _ -> raise (Unify (dim1, dim2)) |

342 | |

343 | |

344 |