Project

General

Profile

Statistics
| Branch: | Tag: | Revision:

lustrec / src / corelang.ml @ 1e48ef45

History | View | Annotate | Download (32.3 KB)

1
(********************************************************************)
2
(*                                                                  *)
3
(*  The LustreC compiler toolset   /  The LustreC Development Team  *)
4
(*  Copyright 2012 -    --   ONERA - CNRS - INPT                    *)
5
(*                                                                  *)
6
(*  LustreC is free software, distributed WITHOUT ANY WARRANTY      *)
7
(*  under the terms of the GNU Lesser General Public License        *)
8
(*  version 2.1.                                                    *)
9
(*                                                                  *)
10
(********************************************************************)
11

    
12
open Format
13
open LustreSpec
14
open Dimension
15

    
16

    
17
exception Error of Location.t * error
18

    
19
module VDeclModule =
20
struct (* Node module *)
21
  type t = var_decl
22
  let compare v1 v2 = compare v1.var_id v2.var_id
23
end
24

    
25
module VMap = Map.Make(VDeclModule)
26

    
27
module VSet = Set.Make(VDeclModule)
28

    
29
let dummy_type_dec = {ty_dec_desc=Tydec_any; ty_dec_loc=Location.dummy_loc}
30

    
31
let dummy_clock_dec = {ck_dec_desc=Ckdec_any; ck_dec_loc=Location.dummy_loc}
32

    
33

    
34

    
35
(************************************************************)
36
(* *)
37

    
38
let mktyp loc d =
39
  { ty_dec_desc = d; ty_dec_loc = loc }
40

    
41
let mkclock loc d =
42
  { ck_dec_desc = d; ck_dec_loc = loc }
43

    
44
let mkvar_decl loc ?(orig=false) (id, ty_dec, ck_dec, is_const) =
45
  { var_id = id;
46
    var_orig = orig;
47
    var_dec_type = ty_dec;
48
    var_dec_clock = ck_dec;
49
    var_dec_const = is_const;
50
    var_type = Types.new_var ();
51
    var_clock = Clocks.new_var true;
52
    var_loc = loc }
53

    
54
let mkexpr loc d =
55
  { expr_tag = Utils.new_tag ();
56
    expr_desc = d;
57
    expr_type = Types.new_var ();
58
    expr_clock = Clocks.new_var true;
59
    expr_delay = Delay.new_var ();
60
    expr_annot = None;
61
    expr_loc = loc }
62

    
63
let var_decl_of_const c =
64
  { var_id = c.const_id;
65
    var_orig = true;
66
    var_dec_type = { ty_dec_loc = c.const_loc; ty_dec_desc = Tydec_any };
67
    var_dec_clock = { ck_dec_loc = c.const_loc; ck_dec_desc = Ckdec_any };
68
    var_dec_const = true;
69
    var_type = c.const_type;
70
    var_clock = Clocks.new_var false;
71
    var_loc = c.const_loc }
72

    
73
let mk_new_name used id =
74
  let rec new_name name cpt =
75
    if used name
76
    then new_name (sprintf "_%s_%i" id cpt) (cpt+1)
77
    else name
78
  in new_name id 1
79

    
80
let mkeq loc (lhs, rhs) =
81
  { eq_lhs = lhs;
82
    eq_rhs = rhs;
83
    eq_loc = loc }
84

    
85
let mkassert loc expr =
86
  { assert_loc = loc;
87
    assert_expr = expr
88
  }
89

    
90
let mktop_decl loc own itf d =
91
  { top_decl_desc = d; top_decl_loc = loc; top_decl_owner = own; top_decl_itf = itf }
92

    
93
let mkpredef_call loc funname args =
94
  mkexpr loc (Expr_appl (funname, mkexpr loc (Expr_tuple args), None))
95

    
96

    
97
let const_of_top top_decl =
98
  match top_decl.top_decl_desc with
99
  | Const c -> c
100
  | _ -> assert false
101

    
102
let node_of_top top_decl =
103
  match top_decl.top_decl_desc with
104
  | Node nd -> nd
105
  | _ -> assert false
106

    
107
let imported_node_of_top top_decl =
108
  match top_decl.top_decl_desc with
109
  | ImportedNode ind -> ind
110
  | _ -> assert false
111

    
112
let typedef_of_top top_decl =
113
  match top_decl.top_decl_desc with
114
  | TypeDef tdef -> tdef
115
  | _ -> assert false
116

    
117
let dependency_of_top top_decl =
118
  match top_decl.top_decl_desc with
119
  | Open (local, dep) -> (local, dep)
120
  | _ -> assert false
121

    
122
let consts_of_enum_type top_decl =
123
  match top_decl.top_decl_desc with
124
  | TypeDef tdef ->
125
    (match tdef.tydef_desc with
126
     | Tydec_enum tags -> List.map (fun tag -> let cdecl = { const_id = tag; const_loc = top_decl.top_decl_loc; const_value = Const_tag tag; const_type = Type_predef.type_const tdef.tydef_id } in { top_decl with top_decl_desc = Const cdecl }) tags
127
     | _               -> [])
128
  | _ -> assert false
129

    
130
(************************************************************)
131
(*   Eexpr functions *)
132
(************************************************************)
133

    
134
let merge_node_annot ann1 ann2 =
135
  { requires = ann1.requires @ ann2.requires;
136
    ensures = ann1.ensures @ ann2.ensures;
137
    behaviors = ann1.behaviors @ ann2.behaviors;
138
    spec_loc = ann1.spec_loc
139
  }
140

    
141
let mkeexpr loc expr =
142
  { eexpr_tag = Utils.new_tag ();
143
    eexpr_qfexpr = expr;
144
    eexpr_quantifiers = [];
145
    eexpr_type = Types.new_var ();
146
    eexpr_clock = Clocks.new_var true;
147
    eexpr_normalized = None;
148
    eexpr_loc = loc }
149

    
150
let extend_eexpr q e = { e with eexpr_quantifiers = q@e.eexpr_quantifiers }
151

    
152
(*
153
let mkepredef_call loc funname args =
154
  mkeexpr loc (EExpr_appl (funname, mkeexpr loc (EExpr_tuple args), None))
155

    
156
let mkepredef_unary_call loc funname arg =
157
  mkeexpr loc (EExpr_appl (funname, arg, None))
158
*)
159

    
160
let merge_expr_annot ann1 ann2 =
161
  match ann1, ann2 with
162
    | None, None -> assert false
163
    | Some _, None -> ann1
164
    | None, Some _ -> ann2
165
    | Some ann1, Some ann2 -> Some {
166
      annots = ann1.annots @ ann2.annots;
167
      annot_loc = ann1.annot_loc
168
    }
169

    
170
let update_expr_annot e annot =
171
  { e with expr_annot = merge_expr_annot e.expr_annot (Some annot) }
172

    
173

    
174
(***********************************************************)
175
(* Fast access to nodes, by name *)
176
let (node_table : (ident, top_decl) Hashtbl.t) = Hashtbl.create 30
177
let consts_table = Hashtbl.create 30
178

    
179
let print_node_table fmt () =
180
  begin
181
    Format.fprintf fmt "{ /* node table */@.";
182
    Hashtbl.iter (fun id nd ->
183
      Format.fprintf fmt "%s |-> %a"
184
	id
185
	Printers.pp_short_decl nd
186
    ) node_table;
187
    Format.fprintf fmt "}@."
188
  end
189

    
190
let print_consts_table fmt () =
191
  begin
192
    Format.fprintf fmt "{ /* consts table */@.";
193
    Hashtbl.iter (fun id const ->
194
      Format.fprintf fmt "%s |-> %a"
195
	id
196
	Printers.pp_const_decl (const_of_top const)
197
    ) consts_table;
198
    Format.fprintf fmt "}@."
199
  end
200

    
201
let node_name td =
202
    match td.top_decl_desc with 
203
    | Node nd         -> nd.node_id
204
    | ImportedNode nd -> nd.nodei_id
205
    | _ -> assert false
206

    
207
let is_generic_node td =
208
  match td.top_decl_desc with 
209
  | Node nd         -> List.exists (fun v -> v.var_dec_const) nd.node_inputs
210
  | ImportedNode nd -> List.exists (fun v -> v.var_dec_const) nd.nodei_inputs
211
  | _ -> assert false
212

    
213
let node_inputs td =
214
  match td.top_decl_desc with 
215
  | Node nd         -> nd.node_inputs
216
  | ImportedNode nd -> nd.nodei_inputs
217
  | _ -> assert false
218

    
219
let node_from_name id =
220
  try
221
    Hashtbl.find node_table id
222
  with Not_found -> (Format.eprintf "Unable to find any node named %s@ @?" id;
223
		     assert false)
224

    
225
let is_imported_node td =
226
  match td.top_decl_desc with 
227
  | Node nd         -> false
228
  | ImportedNode nd -> true
229
  | _ -> assert false
230

    
231

    
232
(* alias and type definition table *)
233

    
234
let mktop = mktop_decl Location.dummy_loc Version.include_path false 
235

    
236
let top_int_type = mktop (TypeDef {tydef_id = "int"; tydef_desc = Tydec_int})
237
let top_bool_type = mktop (TypeDef {tydef_id = "bool"; tydef_desc = Tydec_bool})
238
let top_float_type = mktop (TypeDef {tydef_id = "float"; tydef_desc = Tydec_float})
239
let top_real_type = mktop (TypeDef {tydef_id = "real"; tydef_desc = Tydec_real})
240

    
241
let type_table =
242
  Utils.create_hashtable 20 [
243
    Tydec_int  , top_int_type;
244
    Tydec_bool , top_bool_type;
245
    Tydec_float, top_float_type;
246
    Tydec_real , top_real_type
247
  ]
248

    
249
let print_type_table fmt () =
250
  begin
251
    Format.fprintf fmt "{ /* type table */@.";
252
    Hashtbl.iter (fun tydec tdef ->
253
      Format.fprintf fmt "%a |-> %a"
254
	Printers.pp_var_type_dec_desc tydec
255
	Printers.pp_typedef (typedef_of_top tdef)
256
    ) type_table;
257
    Format.fprintf fmt "}@."
258
  end
259

    
260
let rec is_user_type typ =
261
  match typ with
262
  | Tydec_int | Tydec_bool | Tydec_real 
263
  | Tydec_float | Tydec_any | Tydec_const _ -> false
264
  | Tydec_clock typ' -> is_user_type typ'
265
  | _ -> true
266

    
267
let get_repr_type typ =
268
  let typ_def = (typedef_of_top (Hashtbl.find type_table typ)).tydef_desc in
269
  if is_user_type typ_def then typ else typ_def
270

    
271
let rec coretype_equal ty1 ty2 =
272
  let res =
273
  match ty1, ty2 with
274
  | Tydec_any           , _
275
  | _                   , Tydec_any             -> assert false
276
  | Tydec_const _       , Tydec_const _         -> get_repr_type ty1 = get_repr_type ty2
277
  | Tydec_const _       , _                     -> let ty1' = (typedef_of_top (Hashtbl.find type_table ty1)).tydef_desc
278
	       					   in (not (is_user_type ty1')) && coretype_equal ty1' ty2
279
  | _                   , Tydec_const _         -> coretype_equal ty2 ty1
280
  | Tydec_int           , Tydec_int
281
  | Tydec_real          , Tydec_real
282
  | Tydec_float         , Tydec_float
283
  | Tydec_bool          , Tydec_bool            -> true
284
  | Tydec_clock ty1     , Tydec_clock ty2       -> coretype_equal ty1 ty2
285
  | Tydec_array (d1,ty1), Tydec_array (d2, ty2) -> Dimension.is_eq_dimension d1 d2 && coretype_equal ty1 ty2
286
  | Tydec_enum tl1      , Tydec_enum tl2        -> List.sort compare tl1 = List.sort compare tl2
287
  | Tydec_struct fl1    , Tydec_struct fl2      ->
288
       List.length fl1 = List.length fl2
289
    && List.for_all2 (fun (f1, t1) (f2, t2) -> f1 = f2 && coretype_equal t1 t2)
290
      (List.sort (fun (f1,_) (f2,_) -> compare f1 f2) fl1)
291
      (List.sort (fun (f1,_) (f2,_) -> compare f1 f2) fl2)
292
  | _                                  -> false
293
  in ((*Format.eprintf "coretype_equal %a %a = %B@." Printers.pp_var_type_dec_desc ty1 Printers.pp_var_type_dec_desc ty2 res;*) res)
294

    
295
let tag_true = "true"
296
let tag_false = "false"
297

    
298
let const_is_bool c =
299
 match c with
300
 | Const_tag t -> t = tag_true || t = tag_false
301
 | _           -> false
302

    
303
(* Computes the negation of a boolean constant *)
304
let const_negation c =
305
  assert (const_is_bool c);
306
  match c with
307
  | Const_tag t when t = tag_true  -> Const_tag tag_false
308
  | _                              -> Const_tag tag_true
309

    
310
let const_or c1 c2 =
311
  assert (const_is_bool c1 && const_is_bool c2);
312
  match c1, c2 with
313
  | Const_tag t1, _            when t1 = tag_true -> c1
314
  | _           , Const_tag t2 when t2 = tag_true -> c2
315
  | _                                             -> Const_tag tag_false
316

    
317
let const_and c1 c2 =
318
  assert (const_is_bool c1 && const_is_bool c2);
319
  match c1, c2 with
320
  | Const_tag t1, _            when t1 = tag_false -> c1
321
  | _           , Const_tag t2 when t2 = tag_false -> c2
322
  | _                                              -> Const_tag tag_true
323

    
324
let const_xor c1 c2 =
325
  assert (const_is_bool c1 && const_is_bool c2);
326
   match c1, c2 with
327
  | Const_tag t1, Const_tag t2 when t1 <> t2  -> Const_tag tag_true
328
  | _                                         -> Const_tag tag_false
329

    
330
let const_impl c1 c2 =
331
  assert (const_is_bool c1 && const_is_bool c2);
332
  match c1, c2 with
333
  | Const_tag t1, _ when t1 = tag_false           -> Const_tag tag_true
334
  | _           , Const_tag t2 when t2 = tag_true -> Const_tag tag_true
335
  | _                                             -> Const_tag tag_false
336

    
337
(* To guarantee uniqueness of tags in enum types *)
338
let tag_table =
339
  Utils.create_hashtable 20 [
340
   tag_true, top_bool_type;
341
   tag_false, top_bool_type
342
  ]
343

    
344
(* To guarantee uniqueness of fields in struct types *)
345
let field_table =
346
  Utils.create_hashtable 20 [
347
  ]
348

    
349
let get_enum_type_tags cty =
350
(*Format.eprintf "get_enum_type_tags %a@." Printers.pp_var_type_dec_desc cty;*)
351
 match cty with
352
 | Tydec_bool    -> [tag_true; tag_false]
353
 | Tydec_const _ -> (match (typedef_of_top (Hashtbl.find type_table cty)).tydef_desc with
354
                     | Tydec_enum tl -> tl
355
                     | _             -> assert false)
356
 | _            -> assert false
357

    
358
let get_struct_type_fields cty =
359
 match cty with
360
 | Tydec_const _ -> (match (typedef_of_top (Hashtbl.find type_table cty)).tydef_desc with
361
                     | Tydec_struct fl -> fl
362
                     | _               -> assert false)
363
 | _            -> assert false
364

    
365
let const_of_bool b =
366
 Const_tag (if b then tag_true else tag_false)
367

    
368
(* let get_const c = snd (Hashtbl.find consts_table c) *)
369

    
370
let ident_of_expr expr =
371
 match expr.expr_desc with
372
 | Expr_ident id -> id
373
 | _             -> assert false
374

    
375
(* Caution, returns an untyped and unclocked expression *)
376
let expr_of_ident id loc =
377
  {expr_tag = Utils.new_tag ();
378
   expr_desc = Expr_ident id;
379
   expr_type = Types.new_var ();
380
   expr_clock = Clocks.new_var true;
381
   expr_delay = Delay.new_var ();
382
   expr_loc = loc;
383
   expr_annot = None}
384

    
385
let is_tuple_expr expr =
386
 match expr.expr_desc with
387
  | Expr_tuple _ -> true
388
  | _            -> false
389

    
390
let expr_list_of_expr expr =
391
  match expr.expr_desc with
392
  | Expr_tuple elist -> elist
393
  | _                -> [expr]
394

    
395
let expr_of_expr_list loc elist =
396
 match elist with
397
 | [t]  -> { t with expr_loc = loc }
398
 | t::_ ->
399
    let tlist = List.map (fun e -> e.expr_type) elist in
400
    let clist = List.map (fun e -> e.expr_clock) elist in
401
    { t with expr_desc = Expr_tuple elist;
402
	     expr_type = Type_predef.type_tuple tlist;
403
	     expr_clock = Clock_predef.ck_tuple clist;
404
	     expr_tag = Utils.new_tag ();
405
	     expr_loc = loc }
406
 | _    -> assert false
407

    
408
let call_of_expr expr =
409
 match expr.expr_desc with
410
 | Expr_appl (f, args, r) -> (f, expr_list_of_expr args, r)
411
 | _                      -> assert false
412

    
413
(* Conversion from dimension expr to standard expr, for the purpose of printing, typing, etc... *)
414
let rec expr_of_dimension dim =
415
 match dim.dim_desc with
416
 | Dbool b        ->
417
     mkexpr dim.dim_loc (Expr_const (const_of_bool b))
418
 | Dint i         ->
419
     mkexpr dim.dim_loc (Expr_const (Const_int i))
420
 | Dident id      ->
421
     mkexpr dim.dim_loc (Expr_ident id)
422
 | Dite (c, t, e) ->
423
     mkexpr dim.dim_loc (Expr_ite (expr_of_dimension c, expr_of_dimension t, expr_of_dimension e))
424
 | Dappl (id, args) ->
425
     mkexpr dim.dim_loc (Expr_appl (id, expr_of_expr_list dim.dim_loc (List.map expr_of_dimension args), None))
426
 | Dlink dim'       -> expr_of_dimension dim'
427
 | Dvar
428
 | Dunivar          -> (Format.eprintf "internal error: expr_of_dimension %a@." Dimension.pp_dimension dim;
429
			assert false)
430

    
431
let dimension_of_const loc const =
432
 match const with
433
 | Const_int i                                    -> mkdim_int loc i
434
 | Const_tag t when t = tag_true || t = tag_false -> mkdim_bool loc (t = tag_true)
435
 | _                                              -> raise InvalidDimension
436

    
437
(* Conversion from standard expr to dimension expr, for the purpose of injecting static call arguments 
438
   into dimension expressions *)
439
let rec dimension_of_expr expr =
440
  match expr.expr_desc with
441
  | Expr_const c  -> dimension_of_const expr.expr_loc c
442
  | Expr_ident id -> mkdim_ident expr.expr_loc id
443
  | Expr_appl (f, args, None) when Basic_library.is_internal_fun f ->
444
      let k = Types.get_static_value (Env.lookup_value Basic_library.type_env f) in
445
      if k = None then raise InvalidDimension;
446
      mkdim_appl expr.expr_loc f (List.map dimension_of_expr (expr_list_of_expr args))
447
  | Expr_ite (i, t, e)        ->
448
      mkdim_ite expr.expr_loc (dimension_of_expr i) (dimension_of_expr t) (dimension_of_expr e)
449
  | _ -> raise InvalidDimension (* not a simple dimension expression *)
450

    
451

    
452
let sort_handlers hl =
453
 List.sort (fun (t, _) (t', _) -> compare t t') hl
454

    
455
let rec is_eq_expr e1 e2 = match e1.expr_desc, e2.expr_desc with
456
  | Expr_const c1, Expr_const c2 -> c1 = c2
457
  | Expr_ident i1, Expr_ident i2 -> i1 = i2
458
  | Expr_array el1, Expr_array el2 
459
  | Expr_tuple el1, Expr_tuple el2 -> 
460
    List.length el1 = List.length el2 && List.for_all2 is_eq_expr el1 el2 
461
  | Expr_arrow (e1, e2), Expr_arrow (e1', e2') -> is_eq_expr e1 e1' && is_eq_expr e2 e2'
462
  | Expr_fby (e1,e2), Expr_fby (e1',e2') -> is_eq_expr e1 e1' && is_eq_expr e2 e2'
463
  | Expr_ite (i1, t1, e1), Expr_ite (i2, t2, e2) -> is_eq_expr i1 i2 && is_eq_expr t1 t2 && is_eq_expr e1 e2
464
  (* | Expr_concat (e1,e2), Expr_concat (e1',e2') -> is_eq_expr e1 e1' && is_eq_expr e2 e2' *)
465
  (* | Expr_tail e, Expr_tail e' -> is_eq_expr e e' *)
466
  | Expr_pre e, Expr_pre e' -> is_eq_expr e e'
467
  | Expr_when (e, i, l), Expr_when (e', i', l') -> l=l' && i=i' && is_eq_expr e e'
468
  | Expr_merge(i, hl), Expr_merge(i', hl') -> i=i' && List.for_all2 (fun (t, h) (t', h') -> t=t' && is_eq_expr h h') (sort_handlers hl) (sort_handlers hl')
469
  | Expr_appl (i, e, r), Expr_appl (i', e', r') -> i=i' && r=r' && is_eq_expr e e'
470
  | Expr_power (e1, i1), Expr_power (e2, i2)
471
  | Expr_access (e1, i1), Expr_access (e2, i2) -> is_eq_expr e1 e2 && is_eq_expr (expr_of_dimension i1) (expr_of_dimension i2)
472
  | _ -> false
473

    
474
let get_node_vars nd =
475
  nd.node_inputs @ nd.node_locals @ nd.node_outputs
476

    
477
let get_var id var_list =
478
 List.find (fun v -> v.var_id = id) var_list
479

    
480
let get_node_var id node =
481
  get_var id (get_node_vars node)
482

    
483
let get_node_eqs =
484
  let get_eqs stmts =
485
    List.fold_right
486
      (fun stmt res ->
487
	match stmt with
488
	| Eq eq -> eq :: res
489
	| Aut _ -> assert false)
490
      stmts
491
      [] in
492
  let table_eqs = Hashtbl.create 23 in
493
  (fun nd ->
494
    try
495
      let (old, res) = Hashtbl.find table_eqs nd.node_id
496
      in if old == nd.node_stmts then res else raise Not_found
497
    with Not_found -> 
498
      let res = get_eqs nd.node_stmts in
499
      begin
500
	Hashtbl.replace table_eqs nd.node_id (nd.node_stmts, res);
501
	res
502
      end)
503

    
504
let get_node_eq id node =
505
 List.find (fun eq -> List.mem id eq.eq_lhs) (get_node_eqs node)
506

    
507
let get_nodes prog = 
508
  List.fold_left (
509
    fun nodes decl ->
510
      match decl.top_decl_desc with
511
	| Node _ -> decl::nodes
512
	| Const _ | ImportedNode _ | Open _ | TypeDef _ -> nodes  
513
  ) [] prog
514

    
515
let get_imported_nodes prog = 
516
  List.fold_left (
517
    fun nodes decl ->
518
      match decl.top_decl_desc with
519
	| ImportedNode _ -> decl::nodes
520
	| Const _ | Node _ | Open _ | TypeDef _-> nodes  
521
  ) [] prog
522

    
523
let get_consts prog = 
524
  List.fold_right (
525
    fun decl consts ->
526
      match decl.top_decl_desc with
527
	| Const _ -> decl::consts
528
	| Node _ | ImportedNode _ | Open _ | TypeDef _ -> consts  
529
  ) prog []
530

    
531
let get_typedefs prog = 
532
  List.fold_right (
533
    fun decl types ->
534
      match decl.top_decl_desc with
535
	| TypeDef _ -> decl::types
536
	| Node _ | ImportedNode _ | Open _ | Const _ -> types  
537
  ) prog []
538

    
539
let get_dependencies prog =
540
  List.fold_right (
541
    fun decl deps ->
542
      match decl.top_decl_desc with
543
	| Open _ -> decl::deps
544
	| Node _ | ImportedNode _ | TypeDef _ | Const _ -> deps  
545
  ) prog []
546

    
547
let get_node_interface nd =
548
 {nodei_id = nd.node_id;
549
  nodei_type = nd.node_type;
550
  nodei_clock = nd.node_clock;
551
  nodei_inputs = nd.node_inputs;
552
  nodei_outputs = nd.node_outputs;
553
  nodei_stateless = nd.node_dec_stateless;
554
  nodei_spec = nd.node_spec;
555
  nodei_prototype = None;
556
  nodei_in_lib = None;
557
 }
558

    
559
(************************************************************************)
560
(*        Renaming                                                      *)
561

    
562
(* applies the renaming function [fvar] to all variables of expression [expr] *)
563
 let rec expr_replace_var fvar expr =
564
  { expr with expr_desc = expr_desc_replace_var fvar expr.expr_desc }
565

    
566
 and expr_desc_replace_var fvar expr_desc =
567
   match expr_desc with
568
   | Expr_const _ -> expr_desc
569
   | Expr_ident i -> Expr_ident (fvar i)
570
   | Expr_array el -> Expr_array (List.map (expr_replace_var fvar) el)
571
   | Expr_access (e1, d) -> Expr_access (expr_replace_var fvar e1, d)
572
   | Expr_power (e1, d) -> Expr_power (expr_replace_var fvar e1, d)
573
   | Expr_tuple el -> Expr_tuple (List.map (expr_replace_var fvar) el)
574
   | Expr_ite (c, t, e) -> Expr_ite (expr_replace_var fvar c, expr_replace_var fvar t, expr_replace_var fvar e)
575
   | Expr_arrow (e1, e2)-> Expr_arrow (expr_replace_var fvar e1, expr_replace_var fvar e2) 
576
   | Expr_fby (e1, e2) -> Expr_fby (expr_replace_var fvar e1, expr_replace_var fvar e2)
577
   | Expr_pre e' -> Expr_pre (expr_replace_var fvar e')
578
   | Expr_when (e', i, l)-> Expr_when (expr_replace_var fvar e', fvar i, l)
579
   | Expr_merge (i, hl) -> Expr_merge (fvar i, List.map (fun (t, h) -> (t, expr_replace_var fvar h)) hl)
580
   | Expr_appl (i, e', i') -> Expr_appl (i, expr_replace_var fvar e', Utils.option_map (expr_replace_var fvar) i')
581

    
582
(* Applies the renaming function [fvar] to every rhs
583
   only when the corresponding lhs satisfies predicate [pvar] *)
584
 let eq_replace_rhs_var pvar fvar eq =
585
   let pvar l = List.exists pvar l in
586
   let rec replace lhs rhs =
587
     { rhs with expr_desc = replace_desc lhs rhs.expr_desc }
588
   and replace_desc lhs rhs_desc =
589
     match lhs with
590
     | []  -> assert false
591
     | [_] -> if pvar lhs then expr_desc_replace_var fvar rhs_desc else rhs_desc
592
     | _   ->
593
       (match rhs_desc with
594
       | Expr_tuple tl ->
595
	 Expr_tuple (List.map2 (fun v e -> replace [v] e) lhs tl)
596
       | Expr_appl (f, arg, None) when Basic_library.is_internal_fun f ->
597
	 let args = expr_list_of_expr arg in
598
	 Expr_appl (f, expr_of_expr_list arg.expr_loc (List.map (replace lhs) args), None)
599
       | Expr_array _
600
       | Expr_access _
601
       | Expr_power _
602
       | Expr_const _
603
       | Expr_ident _
604
       | Expr_appl _   ->
605
	 if pvar lhs
606
	 then expr_desc_replace_var fvar rhs_desc
607
	 else rhs_desc
608
       | Expr_ite (c, t, e)   -> Expr_ite (replace lhs c, replace lhs t, replace lhs e)
609
       | Expr_arrow (e1, e2)  -> Expr_arrow (replace lhs e1, replace lhs e2) 
610
       | Expr_fby (e1, e2)    -> Expr_fby (replace lhs e1, replace lhs e2)
611
       | Expr_pre e'          -> Expr_pre (replace lhs e')
612
       | Expr_when (e', i, l) -> let i' = if pvar lhs then fvar i else i
613
				 in Expr_when (replace lhs e', i', l)
614
       | Expr_merge (i, hl)   -> let i' = if pvar lhs then fvar i else i
615
				 in Expr_merge (i', List.map (fun (t, h) -> (t, replace lhs h)) hl)
616
       )
617
   in { eq with eq_rhs = replace eq.eq_lhs eq.eq_rhs }
618

    
619

    
620
 let rec rename_expr  f_node f_var f_const expr =
621
   { expr with expr_desc = rename_expr_desc f_node f_var f_const expr.expr_desc }
622
 and rename_expr_desc f_node f_var f_const expr_desc =
623
   let re = rename_expr  f_node f_var f_const in
624
   match expr_desc with
625
   | Expr_const _ -> expr_desc
626
   | Expr_ident i -> Expr_ident (f_var i)
627
   | Expr_array el -> Expr_array (List.map re el)
628
   | Expr_access (e1, d) -> Expr_access (re e1, d)
629
   | Expr_power (e1, d) -> Expr_power (re e1, d)
630
   | Expr_tuple el -> Expr_tuple (List.map re el)
631
   | Expr_ite (c, t, e) -> Expr_ite (re c, re t, re e)
632
   | Expr_arrow (e1, e2)-> Expr_arrow (re e1, re e2) 
633
   | Expr_fby (e1, e2) -> Expr_fby (re e1, re e2)
634
   | Expr_pre e' -> Expr_pre (re e')
635
   | Expr_when (e', i, l)-> Expr_when (re e', f_var i, l)
636
   | Expr_merge (i, hl) -> 
637
     Expr_merge (f_var i, List.map (fun (t, h) -> (t, re h)) hl)
638
   | Expr_appl (i, e', i') -> 
639
     Expr_appl (f_node i, re e', Utils.option_map re i')
640
  
641
 let rename_node_annot f_node f_var f_const expr  =
642
   expr
643
 (* TODO assert false *)
644

    
645
 let rename_expr_annot f_node f_var f_const annot =
646
   annot
647
 (* TODO assert false *)
648

    
649
let rename_node f_node f_var f_const nd =
650
  let rename_var v = { v with var_id = f_var v.var_id } in
651
  let rename_eq eq = { eq with
652
      eq_lhs = List.map f_var eq.eq_lhs; 
653
      eq_rhs = rename_expr f_node f_var f_const eq.eq_rhs
654
    } 
655
  in
656
  let inputs = List.map rename_var nd.node_inputs in
657
  let outputs = List.map rename_var nd.node_outputs in
658
  let locals = List.map rename_var nd.node_locals in
659
  let gen_calls = List.map (rename_expr f_node f_var f_const) nd.node_gencalls in
660
  let node_checks = List.map (Dimension.expr_replace_var f_var)  nd.node_checks in
661
  let node_asserts = List.map 
662
    (fun a -> 
663
      {a with assert_expr = 
664
	  let expr = a.assert_expr in
665
	  rename_expr f_node f_var f_const expr})
666
    nd.node_asserts
667
  in
668
  let node_stmts = List.map (fun eq -> Eq (rename_eq eq)) (get_node_eqs nd) in
669
  let spec = 
670
    Utils.option_map 
671
      (fun s -> rename_node_annot f_node f_var f_const s) 
672
      nd.node_spec 
673
  in
674
  let annot =
675
    List.map 
676
      (fun s -> rename_expr_annot f_node f_var f_const s) 
677
      nd.node_annot
678
  in
679
  {
680
    node_id = f_node nd.node_id;
681
    node_type = nd.node_type;
682
    node_clock = nd.node_clock;
683
    node_inputs = inputs;
684
    node_outputs = outputs;
685
    node_locals = locals;
686
    node_gencalls = gen_calls;
687
    node_checks = node_checks;
688
    node_asserts = node_asserts;
689
    node_stmts = node_stmts;
690
    node_dec_stateless = nd.node_dec_stateless;
691
    node_stateless = nd.node_stateless;
692
    node_spec = spec;
693
    node_annot = annot;
694
  }
695

    
696

    
697
let rename_const f_const c =
698
  { c with const_id = f_const c.const_id }
699

    
700
let rename_typedef f_var t =
701
  match t.tydef_desc with
702
  | Tydec_enum tags -> { t with tydef_desc = Tydec_enum (List.map f_var tags) }
703
  | _               -> t
704

    
705
let rename_prog f_node f_var f_const prog =
706
  List.rev (
707
    List.fold_left (fun accu top ->
708
      (match top.top_decl_desc with
709
      | Node nd -> 
710
	 { top with top_decl_desc = Node (rename_node f_node f_var f_const nd) }
711
      | Const c -> 
712
	 { top with top_decl_desc = Const (rename_const f_const c) }
713
      | TypeDef tdef ->
714
	 { top with top_decl_desc = TypeDef (rename_typedef f_var tdef) }
715
      | ImportedNode _
716
      | Open _       -> top)
717
      ::accu
718
) [] prog
719
		   )
720

    
721
(**********************************************************************)
722
(* Pretty printers *)
723

    
724
let pp_decl_type fmt tdecl =
725
  match tdecl.top_decl_desc with
726
  | Node nd ->
727
    fprintf fmt "%s: " nd.node_id;
728
    Utils.reset_names ();
729
    fprintf fmt "%a@ " Types.print_ty nd.node_type
730
  | ImportedNode ind ->
731
    fprintf fmt "%s: " ind.nodei_id;
732
    Utils.reset_names ();
733
    fprintf fmt "%a@ " Types.print_ty ind.nodei_type
734
  | Const _ | Open _ | TypeDef _ -> ()
735

    
736
let pp_prog_type fmt tdecl_list =
737
  Utils.fprintf_list ~sep:"" pp_decl_type fmt tdecl_list
738

    
739
let pp_decl_clock fmt cdecl =
740
  match cdecl.top_decl_desc with
741
  | Node nd ->
742
    fprintf fmt "%s: " nd.node_id;
743
    Utils.reset_names ();
744
    fprintf fmt "%a@ " Clocks.print_ck nd.node_clock
745
  | ImportedNode ind ->
746
    fprintf fmt "%s: " ind.nodei_id;
747
    Utils.reset_names ();
748
    fprintf fmt "%a@ " Clocks.print_ck ind.nodei_clock
749
  | Const _ | Open _ | TypeDef _ -> ()
750

    
751
let pp_prog_clock fmt prog =
752
  Utils.fprintf_list ~sep:"" pp_decl_clock fmt prog
753

    
754
let pp_error fmt = function
755
    Main_not_found ->
756
      fprintf fmt "Cannot compile node %s: could not find the node definition.@."
757
	!Options.main_node
758
  | Main_wrong_kind ->
759
    fprintf fmt
760
      "Name %s does not correspond to a (non-imported) node definition.@." 
761
      !Options.main_node
762
  | No_main_specified ->
763
    fprintf fmt "No main node specified@."
764
  | Unbound_symbol sym ->
765
    fprintf fmt
766
      "%s is undefined.@."
767
      sym
768
  | Already_bound_symbol sym -> 
769
    fprintf fmt
770
      "%s is already defined.@."
771
      sym
772
  | Unknown_library sym ->
773
    fprintf fmt
774
      "impossible to load library %s.lusic@.Please compile the corresponding interface or source file.@."
775
      sym
776

    
777
(* filling node table with internal functions *)
778
let vdecls_of_typ_ck cpt ty =
779
  let loc = Location.dummy_loc in
780
  List.map
781
    (fun _ -> incr cpt;
782
              let name = sprintf "_var_%d" !cpt in
783
              mkvar_decl loc (name, mktyp loc Tydec_any, mkclock loc Ckdec_any, false))
784
    (Types.type_list_of_type ty)
785

    
786
let mk_internal_node id =
787
  let spec = None in
788
  let ty = Env.lookup_value Basic_library.type_env id in
789
  let ck = Env.lookup_value Basic_library.clock_env id in
790
  let (tin, tout) = Types.split_arrow ty in
791
  (*eprintf "internal fun %s: %d -> %d@." id (List.length (Types.type_list_of_type tin)) (List.length (Types.type_list_of_type tout));*)
792
  let cpt = ref (-1) in
793
  mktop
794
    (ImportedNode
795
       {nodei_id = id;
796
	nodei_type = ty;
797
	nodei_clock = ck;
798
	nodei_inputs = vdecls_of_typ_ck cpt tin;
799
	nodei_outputs = vdecls_of_typ_ck cpt tout;
800
	nodei_stateless = Types.get_static_value ty <> None;
801
	nodei_spec = spec;
802
	nodei_prototype = None;
803
       	nodei_in_lib = None;
804
       })
805

    
806
let add_internal_funs () =
807
  List.iter
808
    (fun id -> let nd = mk_internal_node id in Hashtbl.add node_table id nd)
809
    Basic_library.internal_funs
810

    
811

    
812

    
813
(* Replace any occurence of a var in vars_to_replace by its associated
814
   expression in defs until e does not contain any such variables *)
815
let rec substitute_expr vars_to_replace defs e =
816
  let se = substitute_expr vars_to_replace defs in
817
  { e with expr_desc = 
818
      let ed = e.expr_desc in
819
      match ed with
820
      | Expr_const _ -> ed
821
      | Expr_array el -> Expr_array (List.map se el)
822
      | Expr_access (e1, d) -> Expr_access (se e1, d)
823
      | Expr_power (e1, d) -> Expr_power (se e1, d)
824
      | Expr_tuple el -> Expr_tuple (List.map se el)
825
      | Expr_ite (c, t, e) -> Expr_ite (se c, se t, se e)
826
      | Expr_arrow (e1, e2)-> Expr_arrow (se e1, se e2) 
827
      | Expr_fby (e1, e2) -> Expr_fby (se e1, se e2)
828
      | Expr_pre e' -> Expr_pre (se e')
829
      | Expr_when (e', i, l)-> Expr_when (se e', i, l)
830
      | Expr_merge (i, hl) -> Expr_merge (i, List.map (fun (t, h) -> (t, se h)) hl)
831
      | Expr_appl (i, e', i') -> Expr_appl (i, se e', i')
832
      | Expr_ident i -> 
833
	if List.exists (fun v -> v.var_id = i) vars_to_replace then (
834
	  let eq_i eq = eq.eq_lhs = [i] in
835
	  if List.exists eq_i defs then
836
	    let sub = List.find eq_i defs in
837
	    let sub' = se sub.eq_rhs in
838
	    sub'.expr_desc
839
	  else 
840
	    assert false
841
	)
842
	else
843
	  ed
844

    
845
  }
846
(* FAUT IL RETIRER ?
847
  
848
 let rec expr_to_eexpr  expr =
849
   { eexpr_tag = expr.expr_tag;
850
     eexpr_desc = expr_desc_to_eexpr_desc expr.expr_desc;
851
     eexpr_type = expr.expr_type;
852
     eexpr_clock = expr.expr_clock;
853
     eexpr_loc = expr.expr_loc
854
   }
855
 and expr_desc_to_eexpr_desc expr_desc =
856
   let conv = expr_to_eexpr in
857
   match expr_desc with
858
   | Expr_const c -> EExpr_const (match c with
859
     | Const_int x -> EConst_int x 
860
     | Const_real x -> EConst_real x 
861
     | Const_float x -> EConst_float x 
862
     | Const_tag x -> EConst_tag x 
863
     | _ -> assert false
864

    
865
   )
866
   | Expr_ident i -> EExpr_ident i
867
   | Expr_tuple el -> EExpr_tuple (List.map conv el)
868

    
869
   | Expr_arrow (e1, e2)-> EExpr_arrow (conv e1, conv e2) 
870
   | Expr_fby (e1, e2) -> EExpr_fby (conv e1, conv e2)
871
   | Expr_pre e' -> EExpr_pre (conv e')
872
   | Expr_appl (i, e', i') -> 
873
     EExpr_appl 
874
       (i, conv e', match i' with None -> None | Some(id, _) -> Some id)
875

    
876
   | Expr_when _
877
   | Expr_merge _ -> assert false
878
   | Expr_array _ 
879
   | Expr_access _ 
880
   | Expr_power _  -> assert false
881
   | Expr_ite (c, t, e) -> assert false 
882
   | _ -> assert false
883

    
884
     *)
885
let rec get_expr_calls nodes e =
886
  get_calls_expr_desc nodes e.expr_desc
887
and get_calls_expr_desc nodes expr_desc =
888
  let get_calls = get_expr_calls nodes in
889
  match expr_desc with
890
  | Expr_const _ 
891
   | Expr_ident _ -> Utils.ISet.empty
892
   | Expr_tuple el
893
   | Expr_array el -> List.fold_left (fun accu e -> Utils.ISet.union accu (get_calls e)) Utils.ISet.empty el
894
   | Expr_pre e1 
895
   | Expr_when (e1, _, _) 
896
   | Expr_access (e1, _) 
897
   | Expr_power (e1, _) -> get_calls e1
898
   | Expr_ite (c, t, e) -> Utils.ISet.union (Utils.ISet.union (get_calls c) (get_calls t)) (get_calls e) 
899
   | Expr_arrow (e1, e2) 
900
   | Expr_fby (e1, e2) -> Utils.ISet.union (get_calls e1) (get_calls e2)
901
   | Expr_merge (_, hl) -> List.fold_left (fun accu (_, h) -> Utils.ISet.union accu (get_calls h)) Utils.ISet.empty  hl
902
   | Expr_appl (i, e', i') -> 
903
     if Basic_library.is_internal_fun i then 
904
       (get_calls e') 
905
     else
906
       let calls =  Utils.ISet.add i (get_calls e') in
907
       let test = (fun n -> match n.top_decl_desc with Node nd -> nd.node_id = i | _ -> false) in
908
       if List.exists test nodes then
909
	 match (List.find test nodes).top_decl_desc with
910
	 | Node nd -> Utils.ISet.union (get_node_calls nodes nd) calls
911
	 | _ -> assert false
912
       else 
913
	 calls
914

    
915
and get_eq_calls nodes eq =
916
  get_expr_calls nodes eq.eq_rhs
917
and get_node_calls nodes node =
918
  List.fold_left (fun accu eq -> Utils.ISet.union (get_eq_calls nodes eq) accu) Utils.ISet.empty (get_node_eqs node)
919

    
920
let rec get_expr_vars vars e =
921
  get_expr_desc_vars vars e.expr_desc
922
and get_expr_desc_vars vars expr_desc =
923
  match expr_desc with
924
  | Expr_const _ -> vars
925
  | Expr_ident x -> Utils.ISet.add x vars
926
  | Expr_tuple el
927
  | Expr_array el -> List.fold_left get_expr_vars vars el
928
  | Expr_pre e1 -> get_expr_vars vars e1
929
  | Expr_when (e1, c, _) -> get_expr_vars (Utils.ISet.add c vars) e1 
930
  | Expr_access (e1, d) 
931
  | Expr_power (e1, d)   -> List.fold_left get_expr_vars vars [e1; expr_of_dimension d]
932
  | Expr_ite (c, t, e) -> List.fold_left get_expr_vars vars [c; t; e]
933
  | Expr_arrow (e1, e2) 
934
  | Expr_fby (e1, e2) -> List.fold_left get_expr_vars vars [e1; e2]
935
  | Expr_merge (c, hl) -> List.fold_left (fun vars (_, h) -> get_expr_vars vars h) (Utils.ISet.add c vars) hl
936
  | Expr_appl (_, arg, None)   -> get_expr_vars vars arg
937
  | Expr_appl (_, arg, Some r) -> List.fold_left get_expr_vars vars [arg; r]
938

    
939

    
940
let rec expr_has_arrows e =
941
  expr_desc_has_arrows e.expr_desc
942
and expr_desc_has_arrows expr_desc =
943
  match expr_desc with
944
  | Expr_const _ 
945
  | Expr_ident _ -> false
946
  | Expr_tuple el
947
  | Expr_array el -> List.exists expr_has_arrows el
948
  | Expr_pre e1 
949
  | Expr_when (e1, _, _) 
950
  | Expr_access (e1, _) 
951
  | Expr_power (e1, _) -> expr_has_arrows e1
952
  | Expr_ite (c, t, e) -> List.exists expr_has_arrows [c; t; e]
953
  | Expr_arrow (e1, e2) 
954
  | Expr_fby (e1, e2) -> true
955
  | Expr_merge (_, hl) -> List.exists (fun (_, h) -> expr_has_arrows h) hl
956
  | Expr_appl (i, e', i') -> expr_has_arrows e'
957

    
958
and eq_has_arrows eq =
959
  expr_has_arrows eq.eq_rhs
960
and node_has_arrows node =
961
  List.exists (fun eq -> eq_has_arrows eq) (get_node_eqs node)
962

    
963
(* Local Variables: *)
964
(* compile-command:"make -C .." *)
965
(* End: *)