lustrec / src / normalization.ml @ 14ebde97
History  View  Annotate  Download (15 KB)
1 
(*  

2 
* SchedMCore  A MultiCore Scheduling Framework 
3 
* Copyright (C) 20092013, ONERA, Toulouse, FRANCE  LIFL, Lille, FRANCE 
4 
* Copyright (C) 20122013, INPT, Toulouse, FRANCE 
5 
* 
6 
* This file is part of Prelude 
7 
* 
8 
* Prelude is free software; you can redistribute it and/or 
9 
* modify it under the terms of the GNU Lesser General Public License 
10 
* as published by the Free Software Foundation ; either version 2 of 
11 
* the License, or (at your option) any later version. 
12 
* 
13 
* Prelude is distributed in the hope that it will be useful, but 
14 
* WITHOUT ANY WARRANTY ; without even the implied warranty of 
15 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 
16 
* Lesser General Public License for more details. 
17 
* 
18 
* You should have received a copy of the GNU Lesser General Public 
19 
* License along with this program ; if not, write to the Free Software 
20 
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 021111307 
21 
* USA 
22 
* *) 
23  
24 
(* This module is used for the lustre to C compiler *) 
25  
26  
27 
open Utils 
28 
open LustreSpec 
29 
open Corelang 
30 
(* open Clocks *) 
31 
open Format 
32  
33 
let expr_true loc ck = 
34 
{ expr_tag = Utils.new_tag (); 
35 
expr_desc = Expr_const (Const_tag tag_true); 
36 
expr_type = Type_predef.type_bool; 
37 
expr_clock = ck; 
38 
expr_delay = Delay.new_var (); 
39 
expr_annot = None; 
40 
expr_loc = loc } 
41  
42 
let expr_false loc ck = 
43 
{ expr_tag = Utils.new_tag (); 
44 
expr_desc = Expr_const (Const_tag tag_false); 
45 
expr_type = Type_predef.type_bool; 
46 
expr_clock = ck; 
47 
expr_delay = Delay.new_var (); 
48 
expr_annot = None; 
49 
expr_loc = loc } 
50  
51 
let expr_once loc ck = 
52 
{ expr_tag = Utils.new_tag (); 
53 
expr_desc = Expr_arrow (expr_true loc ck, expr_false loc ck); 
54 
expr_type = Type_predef.type_bool; 
55 
expr_clock = ck; 
56 
expr_delay = Delay.new_var (); 
57 
expr_annot = None; 
58 
expr_loc = loc } 
59  
60 
let is_expr_once = 
61 
let dummy_expr_once = expr_once Location.dummy_loc (Clocks.new_var true) in 
62 
fun expr > Corelang.is_eq_expr expr dummy_expr_once 
63  
64 
let unfold_arrow expr = 
65 
match expr.expr_desc with 
66 
 Expr_arrow (e1, e2) > 
67 
let loc = expr.expr_loc in 
68 
let ck = expr.expr_clock in 
69 
{ expr with expr_desc = Expr_ite (expr_once loc ck, e1, e2) } 
70 
 _ > assert false 
71  
72 
let cpt_fresh = ref 0 
73  
74 
(* Generate a new local [node] variable *) 
75 
let mk_fresh_var node loc ty ck = 
76 
let vars = node_vars node in 
77 
let rec aux () = 
78 
incr cpt_fresh; 
79 
let s = Printf.sprintf "__%s_%d" node.node_id !cpt_fresh in 
80 
if List.exists (fun v > v.var_id = s) vars then aux () else 
81 
{ 
82 
var_id = s; 
83 
var_dec_type = dummy_type_dec; 
84 
var_dec_clock = dummy_clock_dec; 
85 
var_dec_const = false; 
86 
var_type = ty; 
87 
var_clock = ck; 
88 
var_loc = loc 
89 
} 
90 
in aux () 
91  
92 
(* Generate a new ident expression from a declared variable *) 
93 
let mk_ident_expr v = 
94 
{ expr_tag = new_tag (); 
95 
expr_desc = Expr_ident v.var_id; 
96 
expr_type = v.var_type; 
97 
expr_clock = v.var_clock; 
98 
expr_delay = Delay.new_var (); 
99 
expr_annot = None; 
100 
expr_loc = v.var_loc } 
101  
102 
(* Get the equation in [defs] with [expr] as rhs, if any *) 
103 
let get_expr_alias defs expr = 
104 
try Some (List.find (fun eq > is_eq_expr eq.eq_rhs expr) defs) 
105 
with 
106 
Not_found > None 
107  
108 
(* Replace [expr] with (tuple of) [locals] *) 
109 
let replace_expr locals expr = 
110 
match locals with 
111 
 [] > assert false 
112 
 [v] > { expr with 
113 
expr_tag = Utils.new_tag (); 
114 
expr_desc = Expr_ident v.var_id } 
115 
 _ > { expr with 
116 
expr_tag = Utils.new_tag (); 
117 
expr_desc = Expr_tuple (List.map mk_ident_expr locals) } 
118  
119 
let unfold_offsets e offsets = 
120 
let add_offset e d = 
121 
(*Format.eprintf "add_offset %a %a@." Dimension.pp_dimension (Types.array_type_dimension e.expr_type) Dimension.pp_dimension d;*) 
122 
{ e with 
123 
expr_tag = Utils.new_tag (); 
124 
expr_loc = d.Dimension.dim_loc; 
125 
expr_type = Types.array_element_type e.expr_type; 
126 
expr_desc = Expr_access (e, d) } in 
127 
List.fold_left add_offset e offsets 
128  
129 
(* Create an alias for [expr], if none exists yet *) 
130 
let mk_expr_alias node (defs, vars) expr = 
131 
match get_expr_alias defs expr with 
132 
 Some eq > 
133 
let aliases = List.map (fun id > List.find (fun v > v.var_id = id) vars) eq.eq_lhs in 
134 
(defs, vars), replace_expr aliases expr 
135 
 None > 
136 
let new_aliases = 
137 
List.map2 
138 
(mk_fresh_var node expr.expr_loc) 
139 
(Types.type_list_of_type expr.expr_type) 
140 
(Clocks.clock_list_of_clock expr.expr_clock) in 
141 
let new_def = 
142 
mkeq expr.expr_loc (List.map (fun v > v.var_id) new_aliases, expr) 
143 
in (new_def::defs, new_aliases@vars), replace_expr new_aliases expr 
144  
145 
(* Create an alias for [expr], if [opt] *) 
146 
let mk_expr_alias_opt opt node defvars expr = 
147 
if opt 
148 
then 
149 
mk_expr_alias node defvars expr 
150 
else 
151 
defvars, expr 
152  
153 
(* Create a (normalized) expression from [ref_e], 
154 
replacing description with [norm_d], 
155 
taking propagated [offsets] into account 
156 
in order to change expression type *) 
157 
let mk_norm_expr offsets ref_e norm_d = 
158 
let drop_array_type ty = 
159 
Types.map_tuple_type Types.array_element_type ty in 
160 
{ ref_e with 
161 
expr_desc = norm_d; 
162 
expr_type = Utils.repeat (List.length offsets) drop_array_type ref_e.expr_type } 
163  
164 
(* normalize_<foo> : defs * used vars > <foo> > (updated defs * updated vars) * normalized <foo> *) 
165 
let rec normalize_list alias node offsets norm_element defvars elist = 
166 
List.fold_right 
167 
(fun t (defvars, qlist) > 
168 
let defvars, norm_t = norm_element alias node offsets defvars t in 
169 
(defvars, norm_t :: qlist) 
170 
) elist (defvars, []) 
171  
172 
let rec normalize_expr ?(alias=true) node offsets defvars expr = 
173 
(* Format.eprintf "normalize %B %a [%a]@." alias Printers.pp_expr expr (Utils.fprintf_list ~sep:"," Dimension.pp_dimension) offsets;*) 
174 
match expr.expr_desc with 
175 
 Expr_const _ 
176 
 Expr_ident _ > defvars, unfold_offsets expr offsets 
177 
 Expr_array elist > 
178 
let defvars, norm_elist = normalize_list alias node offsets (fun _ > normalize_array_expr ~alias:true) defvars elist in 
179 
let norm_expr = mk_norm_expr offsets expr (Expr_array norm_elist) in 
180 
mk_expr_alias_opt alias node defvars norm_expr 
181 
 Expr_power (e1, d) when offsets = [] > 
182 
let defvars, norm_e1 = normalize_expr node offsets defvars e1 in 
183 
let norm_expr = mk_norm_expr offsets expr (Expr_power (norm_e1, d)) in 
184 
mk_expr_alias_opt alias node defvars norm_expr 
185 
 Expr_power (e1, d) > 
186 
normalize_expr ~alias:alias node (List.tl offsets) defvars e1 
187 
 Expr_access (e1, d) > 
188 
normalize_expr ~alias:alias node (d::offsets) defvars e1 
189 
 Expr_tuple elist > 
190 
let defvars, norm_elist = 
191 
normalize_list alias node offsets (fun alias > normalize_expr ~alias:alias) defvars elist in 
192 
defvars, mk_norm_expr offsets expr (Expr_tuple norm_elist) 
193 
 Expr_appl (id, args, None) when Basic_library.is_internal_fun id && Types.is_array_type expr.expr_type > 
194 
let defvars, norm_args = normalize_list alias node offsets (fun _ > normalize_array_expr ~alias:true) defvars (expr_list_of_expr args) in 
195 
defvars, mk_norm_expr offsets expr (Expr_appl (id, expr_of_expr_list args.expr_loc norm_args, None)) 
196 
 Expr_appl (id, args, None) when Basic_library.is_internal_fun id > 
197 
let defvars, norm_args = normalize_expr ~alias:true node offsets defvars args in 
198 
defvars, mk_norm_expr offsets expr (Expr_appl (id, norm_args, None)) 
199 
 Expr_appl (id, args, r) > 
200 
let defvars, norm_args = normalize_expr node [] defvars args in 
201 
let norm_expr = mk_norm_expr [] expr (Expr_appl (id, norm_args, r)) in 
202 
if offsets <> [] 
203 
then 
204 
let defvars, norm_expr = normalize_expr node [] defvars norm_expr in 
205 
normalize_expr ~alias:alias node offsets defvars norm_expr 
206 
else 
207 
mk_expr_alias_opt (alias && not (Basic_library.is_internal_fun id)) node defvars norm_expr 
208 
 Expr_arrow (e1,e2) when not (is_expr_once expr) > (* Here we differ from Colaco paper: arrows are pushed to the top *) 
209 
normalize_expr ~alias:alias node offsets defvars (unfold_arrow expr) 
210 
 Expr_arrow (e1,e2) > 
211 
let defvars, norm_e1 = normalize_expr node offsets defvars e1 in 
212 
let defvars, norm_e2 = normalize_expr node offsets defvars e2 in 
213 
let norm_expr = mk_norm_expr offsets expr (Expr_arrow (norm_e1, norm_e2)) in 
214 
mk_expr_alias_opt alias node defvars norm_expr 
215 
 Expr_pre e > 
216 
let defvars, norm_e = normalize_expr node offsets defvars e in 
217 
let norm_expr = mk_norm_expr offsets expr (Expr_pre norm_e) in 
218 
mk_expr_alias_opt alias node defvars norm_expr 
219 
 Expr_fby (e1, e2) > 
220 
let defvars, norm_e1 = normalize_expr node offsets defvars e1 in 
221 
let defvars, norm_e2 = normalize_expr node offsets defvars e2 in 
222 
let norm_expr = mk_norm_expr offsets expr (Expr_fby (norm_e1, norm_e2)) in 
223 
mk_expr_alias_opt alias node defvars norm_expr 
224 
 Expr_when (e, c, l) > 
225 
let defvars, norm_e = normalize_expr node offsets defvars e in 
226 
defvars, mk_norm_expr offsets expr (Expr_when (norm_e, c, l)) 
227 
 Expr_ite (c, t, e) > 
228 
let defvars, norm_c = normalize_guard node defvars c in 
229 
let defvars, norm_t = normalize_cond_expr node offsets defvars t in 
230 
let defvars, norm_e = normalize_cond_expr node offsets defvars e in 
231 
let norm_expr = mk_norm_expr offsets expr (Expr_ite (norm_c, norm_t, norm_e)) in 
232 
mk_expr_alias_opt alias node defvars norm_expr 
233 
 Expr_merge (c, hl) > 
234 
let defvars, norm_hl = normalize_branches node offsets defvars hl in 
235 
let norm_expr = mk_norm_expr offsets expr (Expr_merge (c, norm_hl)) in 
236 
mk_expr_alias_opt alias node defvars norm_expr 
237 
 Expr_uclock _ 
238 
 Expr_dclock _ 
239 
 Expr_phclock _ > assert false (* Not handled yet *) 
240 
(* Creates a conditional with a merge construct, which is more lazy *) 
241 
(* 
242 
let norm_conditional_as_merge alias node norm_expr offsets defvars expr = 
243 
match expr.expr_desc with 
244 
 Expr_ite (c, t, e) > 
245 
let defvars, norm_t = norm_expr (alias node offsets defvars t in 
246 
 _ > assert false 
247 
*) 
248 
and normalize_branches node offsets defvars hl = 
249 
List.fold_right 
250 
(fun (t, h) (defvars, norm_q) > 
251 
let (defvars, norm_h) = normalize_cond_expr node offsets defvars h in 
252 
defvars, (t, norm_h) :: norm_q 
253 
) 
254 
hl (defvars, []) 
255  
256 
and normalize_array_expr ?(alias=true) node offsets defvars expr = 
257 
(* Format.eprintf "normalize_array %B %a [%a]@." alias Printers.pp_expr expr (Utils.fprintf_list ~sep:"," Dimension.pp_dimension) offsets;*) 
258 
match expr.expr_desc with 
259 
 Expr_power (e1, d) when offsets = [] > 
260 
let defvars, norm_e1 = normalize_expr node offsets defvars e1 in 
261 
defvars, mk_norm_expr offsets expr (Expr_power (norm_e1, d)) 
262 
 Expr_power (e1, d) > 
263 
normalize_array_expr ~alias:alias node (List.tl offsets) defvars e1 
264 
 Expr_access (e1, d) > normalize_array_expr ~alias:alias node (d::offsets) defvars e1 
265 
 Expr_array elist when offsets = [] > 
266 
let defvars, norm_elist = normalize_list alias node offsets (fun _ > normalize_array_expr ~alias:true) defvars elist in 
267 
defvars, mk_norm_expr offsets expr (Expr_array norm_elist) 
268 
 Expr_appl (id, args, None) when Basic_library.is_internal_fun id > 
269 
let defvars, norm_args = normalize_list alias node offsets (fun _ > normalize_array_expr ~alias:true) defvars (expr_list_of_expr args) in 
270 
defvars, mk_norm_expr offsets expr (Expr_appl (id, expr_of_expr_list args.expr_loc norm_args, None)) 
271 
 _ > normalize_expr ~alias:alias node offsets defvars expr 
272  
273 
and normalize_cond_expr ?(alias=true) node offsets defvars expr = 
274 
(*Format.eprintf "normalize_cond %B %a [%a]@." alias Printers.pp_expr expr (Utils.fprintf_list ~sep:"," Dimension.pp_dimension) offsets;*) 
275 
match expr.expr_desc with 
276 
 Expr_access (e1, d) > 
277 
normalize_cond_expr ~alias:alias node (d::offsets) defvars e1 
278 
 Expr_ite (c, t, e) > 
279 
let defvars, norm_c = normalize_guard node defvars c in 
280 
let defvars, norm_t = normalize_cond_expr node offsets defvars t in 
281 
let defvars, norm_e = normalize_cond_expr node offsets defvars e in 
282 
defvars, mk_norm_expr offsets expr (Expr_ite (norm_c, norm_t, norm_e)) 
283 
 Expr_merge (c, hl) > 
284 
let defvars, norm_hl = normalize_branches node offsets defvars hl in 
285 
defvars, mk_norm_expr offsets expr (Expr_merge (c, norm_hl)) 
286 
 _ > normalize_expr ~alias:alias node offsets defvars expr 
287  
288 
and normalize_guard node defvars expr = 
289 
match expr.expr_desc with 
290 
 Expr_ident _ > defvars, expr 
291 
 _ > 
292 
let defvars, norm_expr = normalize_expr node [] defvars expr in 
293 
mk_expr_alias_opt true node defvars norm_expr 
294  
295 
(* outputs cannot be memories as well. If so, introduce new local variable. 
296 
*) 
297 
let decouple_outputs node defvars eq = 
298 
let rec fold_lhs defvars lhs tys cks = 
299 
match lhs, tys, cks with 
300 
 [], [], [] > defvars, [] 
301 
 v::qv, t::qt, c::qc > let (defs_q, vars_q), lhs_q = fold_lhs defvars qv qt qc in 
302 
if List.exists (fun o > o.var_id = v) node.node_outputs 
303 
then 
304 
let newvar = mk_fresh_var node eq.eq_loc t c in 
305 
let neweq = mkeq eq.eq_loc ([v], mk_ident_expr newvar) in 
306 
(neweq :: defs_q, newvar :: vars_q), newvar.var_id :: lhs_q 
307 
else 
308 
(defs_q, vars_q), v::lhs_q 
309 
 _ > assert false in 
310 
let defvars', lhs' = 
311 
fold_lhs 
312 
defvars 
313 
eq.eq_lhs 
314 
(Types.type_list_of_type eq.eq_rhs.expr_type) 
315 
(Clocks.clock_list_of_clock eq.eq_rhs.expr_clock) in 
316 
defvars', {eq with eq_lhs = lhs' } 
317  
318 
let rec normalize_eq node defvars eq = 
319 
match eq.eq_rhs.expr_desc with 
320 
 Expr_pre _ 
321 
 Expr_fby _ > 
322 
let (defvars', eq') = decouple_outputs node defvars eq in 
323 
let (defs', vars'), norm_rhs = normalize_expr ~alias:false node [] defvars' eq'.eq_rhs in 
324 
let norm_eq = { eq' with eq_rhs = norm_rhs } in 
325 
(norm_eq::defs', vars') 
326 
 Expr_array _ > 
327 
let (defs', vars'), norm_rhs = normalize_array_expr ~alias:false node [] defvars eq.eq_rhs in 
328 
let norm_eq = { eq with eq_rhs = norm_rhs } in 
329 
(norm_eq::defs', vars') 
330 
 Expr_appl (id, _, None) when Basic_library.is_internal_fun id && Types.is_array_type eq.eq_rhs.expr_type > 
331 
let (defs', vars'), norm_rhs = normalize_array_expr ~alias:false node [] defvars eq.eq_rhs in 
332 
let norm_eq = { eq with eq_rhs = norm_rhs } in 
333 
(norm_eq::defs', vars') 
334 
 Expr_appl _ > 
335 
let (defs', vars'), norm_rhs = normalize_expr ~alias:false node [] defvars eq.eq_rhs in 
336 
let norm_eq = { eq with eq_rhs = norm_rhs } in 
337 
(norm_eq::defs', vars') 
338 
 _ > 
339 
let (defs', vars'), norm_rhs = normalize_cond_expr ~alias:false node [] defvars eq.eq_rhs in 
340 
let norm_eq = { eq with eq_rhs = norm_rhs } in 
341 
norm_eq::defs', vars' 
342  
343 
let normalize_node node = 
344 
cpt_fresh := 0; 
345 
let inputs_outputs = node.node_inputs@node.node_outputs in 
346 
let is_local v = 
347 
List.for_all ((!=) v) inputs_outputs in 
348 
let defs, vars = 
349 
List.fold_left (normalize_eq node) ([], inputs_outputs@node.node_locals) node.node_eqs in 
350 
let new_locals = List.filter is_local vars in 
351 
let node = 
352 
{ node with node_locals = new_locals; node_eqs = defs } 
353 
in ((*Printers.pp_node Format.err_formatter node;*) node) 
354  
355 
let normalize_decl decl = 
356 
match decl.top_decl_desc with 
357 
 Node nd > 
358 
{decl with top_decl_desc = Node (normalize_node nd)} 
359 
 Open _  ImportedNode _  Consts _ > decl 
360 

361 
let normalize_prog decls = 
362 
List.map normalize_decl decls 
363  
364 
(* Local Variables: *) 
365 
(* compilecommand:"make C .." *) 
366 
(* End: *) 