## lustrec / src / typing.ml @ 0cbf0839

History | View | Annotate | Download (23.5 KB)

1 |
(* ---------------------------------------------------------------------------- |
---|---|

2 |
* SchedMCore - A MultiCore Scheduling Framework |

3 |
* Copyright (C) 2009-2011, ONERA, Toulouse, FRANCE - LIFL, Lille, FRANCE |

4 |
* |

5 |
* This file is part of Prelude |

6 |
* |

7 |
* Prelude is free software; you can redistribute it and/or |

8 |
* modify it under the terms of the GNU Lesser General Public License |

9 |
* as published by the Free Software Foundation ; either version 2 of |

10 |
* the License, or (at your option) any later version. |

11 |
* |

12 |
* Prelude is distributed in the hope that it will be useful, but |

13 |
* WITHOUT ANY WARRANTY ; without even the implied warranty of |

14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |

15 |
* Lesser General Public License for more details. |

16 |
* |

17 |
* You should have received a copy of the GNU Lesser General Public |

18 |
* License along with this program ; if not, write to the Free Software |

19 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 |

20 |
* USA |

21 |
*---------------------------------------------------------------------------- *) |

22 | |

23 |
(** Main typing module. Classic inference algorithm with destructive |

24 |
unification. *) |

25 | |

26 |
let debug fmt args = () (* Format.eprintf "%a" *) |

27 |
(* Though it shares similarities with the clock calculus module, no code |

28 |
is shared. Simple environments, very limited identifier scoping, no |

29 |
identifier redefinition allowed. *) |

30 | |

31 |
open Utils |

32 |
(* Yes, opening both modules is dirty as some type names will be |

33 |
overwritten, yet this makes notations far lighter.*) |

34 |
open LustreSpec |

35 |
open Corelang |

36 |
open Types |

37 |
open Format |

38 | |

39 |
let pp_typing_env fmt env = |

40 |
Env.pp_env print_ty fmt env |

41 | |

42 |
(** [occurs tvar ty] returns true if the type variable [tvar] occurs in |

43 |
type [ty]. False otherwise. *) |

44 |
let rec occurs tvar ty = |

45 |
let ty = repr ty in |

46 |
match ty.tdesc with |

47 |
| Tvar -> ty=tvar |

48 |
| Tarrow (t1, t2) -> |

49 |
(occurs tvar t1) || (occurs tvar t2) |

50 |
| Ttuple tl -> |

51 |
List.exists (occurs tvar) tl |

52 |
| Tarray (_, t) |

53 |
| Tstatic (_, t) |

54 |
| Tclock t |

55 |
| Tlink t -> occurs tvar t |

56 |
| Tenum _ | Tconst _ | Tunivar | Tint | Treal | Tbool | Trat -> false |

57 | |

58 |
(** Promote monomorphic type variables to polymorphic type variables. *) |

59 |
(* Generalize by side-effects *) |

60 |
let rec generalize ty = |

61 |
match ty.tdesc with |

62 |
| Tvar -> |

63 |
(* No scopes, always generalize *) |

64 |
ty.tdesc <- Tunivar |

65 |
| Tarrow (t1,t2) -> |

66 |
generalize t1; generalize t2 |

67 |
| Ttuple tlist -> |

68 |
List.iter generalize tlist |

69 |
| Tstatic (d, t) |

70 |
| Tarray (d, t) -> Dimension.generalize d; generalize t |

71 |
| Tclock t |

72 |
| Tlink t -> |

73 |
generalize t |

74 |
| Tenum _ | Tconst _ | Tunivar | Tint | Treal | Tbool | Trat -> () |

75 | |

76 |
(** Downgrade polymorphic type variables to monomorphic type variables *) |

77 |
let rec instantiate inst_vars inst_dim_vars ty = |

78 |
let ty = repr ty in |

79 |
match ty.tdesc with |

80 |
| Tenum _ | Tconst _ | Tvar | Tint | Treal | Tbool | Trat -> ty |

81 |
| Tarrow (t1,t2) -> |

82 |
{ty with tdesc = |

83 |
Tarrow ((instantiate inst_vars inst_dim_vars t1), (instantiate inst_vars inst_dim_vars t2))} |

84 |
| Ttuple tlist -> |

85 |
{ty with tdesc = Ttuple (List.map (instantiate inst_vars inst_dim_vars) tlist)} |

86 |
| Tclock t -> |

87 |
{ty with tdesc = Tclock (instantiate inst_vars inst_dim_vars t)} |

88 |
| Tstatic (d, t) -> |

89 |
{ty with tdesc = Tstatic (Dimension.instantiate inst_dim_vars d, instantiate inst_vars inst_dim_vars t)} |

90 |
| Tarray (d, t) -> |

91 |
{ty with tdesc = Tarray (Dimension.instantiate inst_dim_vars d, instantiate inst_vars inst_dim_vars t)} |

92 |
| Tlink t -> |

93 |
(* should not happen *) |

94 |
{ty with tdesc = Tlink (instantiate inst_vars inst_dim_vars t)} |

95 |
| Tunivar -> |

96 |
try |

97 |
List.assoc ty.tid !inst_vars |

98 |
with Not_found -> |

99 |
let var = new_var () in |

100 |
inst_vars := (ty.tid, var)::!inst_vars; |

101 |
var |

102 | |

103 |
(* [type_coretype cty] types the type declaration [cty] *) |

104 |
let rec type_coretype type_dim cty = |

105 |
match (*get_repr_type*) cty with |

106 |
| Tydec_any -> new_var () |

107 |
| Tydec_int -> Type_predef.type_int |

108 |
| Tydec_real -> Type_predef.type_real |

109 |
| Tydec_float -> Type_predef.type_real |

110 |
| Tydec_bool -> Type_predef.type_bool |

111 |
| Tydec_clock ty -> Type_predef.type_clock (type_coretype type_dim ty) |

112 |
| Tydec_const c -> Type_predef.type_const c |

113 |
| Tydec_enum tl -> Type_predef.type_enum tl |

114 |
| Tydec_array (d, ty) -> |

115 |
begin |

116 |
type_dim d; |

117 |
Type_predef.type_array d (type_coretype type_dim ty) |

118 |
end |

119 | |

120 |
(* [coretype_type is the reciprocal of [type_typecore] *) |

121 |
let rec coretype_type ty = |

122 |
match (repr ty).tdesc with |

123 |
| Tvar -> Tydec_any |

124 |
| Tint -> Tydec_int |

125 |
| Treal -> Tydec_real |

126 |
| Tbool -> Tydec_bool |

127 |
| Tconst c -> Tydec_const c |

128 |
| Tclock t -> Tydec_clock (coretype_type t) |

129 |
| Tenum tl -> Tydec_enum tl |

130 |
| Tarray (d, t) -> Tydec_array (d, coretype_type t) |

131 |
| Tstatic (_, t) -> coretype_type t |

132 |
| _ -> assert false |

133 | |

134 |
let get_type_definition tname = |

135 |
try |

136 |
type_coretype (fun d -> ()) (Hashtbl.find type_table (Tydec_const tname)) |

137 |
with Not_found -> raise (Error (Location.dummy_loc, Unbound_type tname)) |

138 | |

139 |
(** [unify env t1 t2] unifies types [t1] and [t2]. Raises [Unify |

140 |
(t1,t2)] if the types are not unifiable.*) |

141 |
(* Standard destructive unification *) |

142 |
let rec unify t1 t2 = |

143 |
let t1 = repr t1 in |

144 |
let t2 = repr t2 in |

145 |
if t1=t2 then |

146 |
() |

147 |
else |

148 |
(* No type abbreviations resolution for now *) |

149 |
match t1.tdesc,t2.tdesc with |

150 |
(* This case is not mandory but will keep "older" types *) |

151 |
| Tvar, Tvar -> |

152 |
if t1.tid < t2.tid then |

153 |
t2.tdesc <- Tlink t1 |

154 |
else |

155 |
t1.tdesc <- Tlink t2 |

156 |
| (Tvar, _) when (not (occurs t1 t2)) -> |

157 |
t1.tdesc <- Tlink t2 |

158 |
| (_,Tvar) when (not (occurs t2 t1)) -> |

159 |
t2.tdesc <- Tlink t1 |

160 |
| Tarrow (t1,t2), Tarrow (t1',t2') -> |

161 |
begin |

162 |
unify t1 t1'; |

163 |
unify t2 t2' |

164 |
end |

165 |
| Ttuple tlist1, Ttuple tlist2 -> |

166 |
if (List.length tlist1) <> (List.length tlist2) then |

167 |
raise (Unify (t1, t2)) |

168 |
else |

169 |
List.iter2 unify tlist1 tlist2 |

170 |
| Tclock _, Tstatic _ |

171 |
| Tstatic _, Tclock _ -> raise (Unify (t1, t2)) |

172 |
| Tclock t1', _ -> unify t1' t2 |

173 |
| _, Tclock t2' -> unify t1 t2' |

174 |
| Tint, Tint | Tbool, Tbool | Trat, Trat |

175 |
| Tunivar, _ | _, Tunivar -> () |

176 |
| (Tconst t, _) -> |

177 |
let def_t = get_type_definition t in |

178 |
unify def_t t2 |

179 |
| (_, Tconst t) -> |

180 |
let def_t = get_type_definition t in |

181 |
unify t1 def_t |

182 |
| Tenum tl, Tenum tl' when tl == tl' -> () |

183 |
| Tstatic (e1, t1'), Tstatic (e2, t2') |

184 |
| Tarray (e1, t1'), Tarray (e2, t2') -> |

185 |
begin |

186 |
unify t1' t2'; |

187 |
Dimension.eval Basic_library.eval_env (fun c -> None) e1; |

188 |
Dimension.eval Basic_library.eval_env (fun c -> None) e1; |

189 |
Dimension.unify e1 e2; |

190 |
end |

191 |
| _,_ -> raise (Unify (t1, t2)) |

192 | |

193 |
let try_unify ty1 ty2 loc = |

194 |
try |

195 |
unify ty1 ty2 |

196 |
with |

197 |
| Unify _ -> |

198 |
raise (Error (loc, Type_clash (ty1,ty2))) |

199 |
| Dimension.Unify _ -> |

200 |
raise (Error (loc, Type_clash (ty1,ty2))) |

201 | |

202 |
let rec type_const loc c = |

203 |
match c with |

204 |
| Const_int _ -> Type_predef.type_int |

205 |
| Const_real _ -> Type_predef.type_real |

206 |
| Const_float _ -> Type_predef.type_real |

207 |
| Const_array ca -> let d = Dimension.mkdim_int loc (List.length ca) in |

208 |
let ty = new_var () in |

209 |
List.iter (fun e -> try_unify (type_const loc e) ty loc) ca; |

210 |
Type_predef.type_array d ty |

211 |
| Const_tag t -> |

212 |
if Hashtbl.mem tag_table t |

213 |
then type_coretype (fun d -> ()) (Hashtbl.find tag_table t) |

214 |
else raise (Error (loc, Unbound_value ("enum tag " ^ t))) |

215 | |

216 |
(* The following typing functions take as parameter an environment [env] |

217 |
and whether the element being typed is expected to be constant [const]. |

218 |
[env] is a pair composed of: |

219 |
- a map from ident to type, associating to each ident, i.e. |

220 |
variables, constants and (imported) nodes, its type including whether |

221 |
it is constant or not. This latter information helps in checking constant |

222 |
propagation policy in Lustre. |

223 |
- a vdecl list, in order to modify types of declared variables that are |

224 |
later discovered to be clocks during the typing process. |

225 |
*) |

226 |
let check_constant loc const_expected const_real = |

227 |
if const_expected && not const_real |

228 |
then raise (Error (loc, Not_a_constant)) |

229 | |

230 |
let rec type_standard_args env in_main const expr_list = |

231 |
let ty_list = List.map (fun e -> dynamic_type (type_expr env in_main const e)) expr_list in |

232 |
let ty_res = new_var () in |

233 |
List.iter2 (fun e ty -> try_unify ty_res ty e.expr_loc) expr_list ty_list; |

234 |
ty_res |

235 | |

236 |
(* emulates a subtyping relation between types t and (d : t), |

237 |
used during node application only *) |

238 |
and type_subtyping_arg env in_main ?(sub=true) const real_arg formal_type = |

239 |
let loc = real_arg.expr_loc in |

240 |
let const = const || (Types.get_static_value formal_type <> None) in |

241 |
let real_type = type_expr env in_main const real_arg in |

242 |
let real_type = |

243 |
if const |

244 |
then let d = |

245 |
if is_dimension_type real_type |

246 |
then dimension_of_expr real_arg |

247 |
else Dimension.mkdim_var () in |

248 |
let eval_const id = Types.get_static_value (Env.lookup_value (fst env) id) in |

249 |
Dimension.eval Basic_library.eval_env eval_const d; |

250 |
let real_static_type = Type_predef.type_static d (Types.dynamic_type real_type) in |

251 |
(match Types.get_static_value real_type with |

252 |
| None -> () |

253 |
| Some d' -> try_unify real_type real_static_type loc); |

254 |
real_static_type |

255 |
else real_type in |

256 |
(*Format.eprintf "subtyping const %B real %a:%a vs formal %a@." const Printers.pp_expr real_arg Types.print_ty real_type Types.print_ty formal_type;*) |

257 |
match (repr real_type).tdesc, (repr formal_type).tdesc with |

258 |
| Tstatic _ , Tstatic _ when sub -> try_unify formal_type real_type loc |

259 |
| Tstatic (r_d, r_ty), _ when sub -> try_unify formal_type r_ty loc |

260 |
| _ -> try_unify formal_type real_type loc |

261 | |

262 |
and type_ident env in_main loc const id = |

263 |
type_expr env in_main const (expr_of_ident id loc) |

264 | |

265 |
(* typing an application implies: |

266 |
- checking that const formal parameters match real const (maybe symbolic) arguments |

267 |
- checking type adequation between formal and real arguments |

268 |
*) |

269 |
and type_appl env in_main loc const f args = |

270 |
let tfun = type_ident env in_main loc const f in |

271 |
let tins, touts = split_arrow tfun in |

272 |
let tins = type_list_of_type tins in |

273 |
let args = expr_list_of_expr args in |

274 |
List.iter2 (type_subtyping_arg env in_main const) args tins; |

275 |
touts |

276 | |

277 |
(** [type_expr env in_main expr] types expression [expr] in environment |

278 |
[env], expecting it to be [const] or not. *) |

279 |
and type_expr env in_main const expr = |

280 |
let res = |

281 |
match expr.expr_desc with |

282 |
| Expr_const c -> |

283 |
let ty = type_const expr.expr_loc c in |

284 |
let ty = Type_predef.type_static (Dimension.mkdim_var ()) ty in |

285 |
expr.expr_type <- ty; |

286 |
ty |

287 |
| Expr_ident v -> |

288 |
let tyv = |

289 |
try |

290 |
Env.lookup_value (fst env) v |

291 |
with Not_found -> |

292 |
Format.eprintf "Failure in typing expr %a@." Printers.pp_expr expr; |

293 |
raise (Error (expr.expr_loc, Unbound_value ("identifier " ^ v))) |

294 |
in |

295 |
let ty = instantiate (ref []) (ref []) tyv in |

296 |
let ty' = |

297 |
if const |

298 |
then Type_predef.type_static (Dimension.mkdim_var ()) (new_var ()) |

299 |
else new_var () in |

300 |
try_unify ty ty' expr.expr_loc; |

301 |
expr.expr_type <- ty; |

302 |
ty |

303 |
| Expr_array elist -> |

304 |
let ty_elt = type_standard_args env in_main const elist in |

305 |
let d = Dimension.mkdim_int expr.expr_loc (List.length elist) in |

306 |
let ty = Type_predef.type_array d ty_elt in |

307 |
expr.expr_type <- ty; |

308 |
ty |

309 |
| Expr_access (e1, d) -> |

310 |
type_subtyping_arg env in_main true (expr_of_dimension d) Type_predef.type_int; |

311 |
let ty_elt = new_var () in |

312 |
let d = Dimension.mkdim_var () in |

313 |
type_subtyping_arg env in_main const e1 (Type_predef.type_array d ty_elt); |

314 |
expr.expr_type <- ty_elt; |

315 |
ty_elt |

316 |
| Expr_power (e1, d) -> |

317 |
let eval_const id = Types.get_static_value (Env.lookup_value (fst env) id) in |

318 |
type_subtyping_arg env in_main true (expr_of_dimension d) Type_predef.type_int; |

319 |
Dimension.eval Basic_library.eval_env eval_const d; |

320 |
let ty_elt = type_standard_args env in_main const [e1] in |

321 |
let ty = Type_predef.type_array d ty_elt in |

322 |
expr.expr_type <- ty; |

323 |
ty |

324 |
| Expr_tuple elist -> |

325 |
let ty = new_ty (Ttuple (List.map (type_expr env in_main const) elist)) in |

326 |
expr.expr_type <- ty; |

327 |
ty |

328 |
| Expr_ite (c, t, e) -> |

329 |
type_subtyping_arg env in_main const c Type_predef.type_bool; |

330 |
let ty = type_standard_args env in_main const [t; e] in |

331 |
expr.expr_type <- ty; |

332 |
ty |

333 |
| Expr_appl (id, args, r) -> |

334 |
(* application of non internal function is not legal in a constant expression *) |

335 |
(match r with |

336 |
| None -> () |

337 |
| Some (x, l) -> check_constant expr.expr_loc const false; |

338 |
let expr_x = expr_of_ident x expr.expr_loc in |

339 |
let typ_l = Type_predef.type_clock (type_const expr.expr_loc (Const_tag l)) in |

340 |
type_subtyping_arg env in_main ~sub:false const expr_x typ_l); |

341 |
let touts = type_appl env in_main expr.expr_loc const id args in |

342 |
expr.expr_type <- touts; |

343 |
touts |

344 |
| Expr_fby (e1,e2) |

345 |
| Expr_arrow (e1,e2) -> |

346 |
(* fby/arrow is not legal in a constant expression *) |

347 |
check_constant expr.expr_loc const false; |

348 |
let ty = type_standard_args env in_main const [e1; e2] in |

349 |
expr.expr_type <- ty; |

350 |
ty |

351 |
| Expr_pre e -> |

352 |
(* pre is not legal in a constant expression *) |

353 |
check_constant expr.expr_loc const false; |

354 |
let ty = type_standard_args env in_main const [e] in |

355 |
expr.expr_type <- ty; |

356 |
ty |

357 |
| Expr_when (e1,c,l) -> |

358 |
(* when is not legal in a constant expression *) |

359 |
check_constant expr.expr_loc const false; |

360 |
let typ_l = Type_predef.type_clock (type_const expr.expr_loc (Const_tag l)) in |

361 |
let expr_c = expr_of_ident c expr.expr_loc in |

362 |
type_subtyping_arg env in_main ~sub:false const expr_c typ_l; |

363 |
update_clock env in_main c expr.expr_loc typ_l; |

364 |
let ty = type_standard_args env in_main const [e1] in |

365 |
expr.expr_type <- ty; |

366 |
ty |

367 |
| Expr_merge (c,hl) -> |

368 |
(* merge is not legal in a constant expression *) |

369 |
check_constant expr.expr_loc const false; |

370 |
let typ_in, typ_out = type_branches env in_main expr.expr_loc const hl in |

371 |
let expr_c = expr_of_ident c expr.expr_loc in |

372 |
let typ_l = Type_predef.type_clock typ_in in |

373 |
type_subtyping_arg env in_main ~sub:false const expr_c typ_l; |

374 |
update_clock env in_main c expr.expr_loc typ_l; |

375 |
expr.expr_type <- typ_out; |

376 |
typ_out |

377 |
| Expr_uclock (e,k) | Expr_dclock (e,k) -> |

378 |
let ty = type_expr env in_main const e in |

379 |
expr.expr_type <- ty; |

380 |
ty |

381 |
| Expr_phclock (e,q) -> |

382 |
let ty = type_expr env in_main const e in |

383 |
expr.expr_type <- ty; |

384 |
ty |

385 |
in (*Format.eprintf "typing %B %a at %a = %a@." const Printers.pp_expr expr Location.pp_loc expr.expr_loc Types.print_ty res;*) res |

386 | |

387 |
and type_branches env in_main loc const hl = |

388 |
let typ_in = new_var () in |

389 |
let typ_out = new_var () in |

390 |
try |

391 |
let used_labels = |

392 |
List.fold_left (fun accu (t, h) -> |

393 |
unify typ_in (type_const loc (Const_tag t)); |

394 |
type_subtyping_arg env in_main const h typ_out; |

395 |
if List.mem t accu |

396 |
then raise (Error (loc, Already_bound t)) |

397 |
else t :: accu) [] hl in |

398 |
let type_labels = get_enum_type_tags (coretype_type typ_in) in |

399 |
if List.sort compare used_labels <> List.sort compare type_labels |

400 |
then let unbound_tag = List.find (fun t -> not (List.mem t used_labels)) type_labels in |

401 |
raise (Error (loc, Unbound_value ("branching tag " ^ unbound_tag))) |

402 |
else (typ_in, typ_out) |

403 |
with Unify (t1, t2) -> |

404 |
raise (Error (loc, Type_clash (t1,t2))) |

405 | |

406 |
and update_clock env in_main id loc typ = |

407 |
(*Log.report ~level:1 (fun fmt -> Format.fprintf fmt "update_clock %s with %a@ " id print_ty typ);*) |

408 |
try |

409 |
let vdecl = List.find (fun v -> v.var_id = id) (snd env) |

410 |
in vdecl.var_type <- typ |

411 |
with |

412 |
Not_found -> |

413 |
raise (Error (loc, Unbound_value ("clock " ^ id))) |

414 | |

415 |
(** [type_eq env eq] types equation [eq] in environment [env] *) |

416 |
let type_eq env in_main undefined_vars eq = |

417 |
(* Check undefined variables, type lhs *) |

418 |
let expr_lhs = expr_of_expr_list eq.eq_loc (List.map (fun v -> expr_of_ident v eq.eq_loc) eq.eq_lhs) in |

419 |
let ty_lhs = type_expr env in_main false expr_lhs in |

420 |
(* Check multiple variable definitions *) |

421 |
let define_var id uvars = |

422 |
try |

423 |
ignore(IMap.find id uvars); |

424 |
IMap.remove id uvars |

425 |
with Not_found -> |

426 |
raise (Error (eq.eq_loc, Already_defined id)) |

427 |
in |

428 |
let undefined_vars = |

429 |
List.fold_left (fun uvars v -> define_var v uvars) undefined_vars eq.eq_lhs in |

430 |
(* Type rhs wrt to lhs type with subtyping, i.e. a constant rhs value may be assigned |

431 |
to a (always non-constant) lhs variable *) |

432 |
type_subtyping_arg env in_main false eq.eq_rhs ty_lhs; |

433 |
undefined_vars |

434 | |

435 | |

436 |
(* [type_coreclock env ck id loc] types the type clock declaration [ck] |

437 |
in environment [env] *) |

438 |
let type_coreclock env ck id loc = |

439 |
match ck.ck_dec_desc with |

440 |
| Ckdec_any | Ckdec_pclock (_,_) -> () |

441 |
| Ckdec_bool cl -> |

442 |
let dummy_id_expr = expr_of_ident id loc in |

443 |
let when_expr = |

444 |
List.fold_left |

445 |
(fun expr (x, l) -> |

446 |
{expr_tag = new_tag (); |

447 |
expr_desc= Expr_when (expr,x,l); |

448 |
expr_type = new_var (); |

449 |
expr_clock = Clocks.new_var true; |

450 |
expr_delay = Delay.new_var (); |

451 |
expr_loc=loc; |

452 |
expr_annot = None}) |

453 |
dummy_id_expr cl |

454 |
in |

455 |
Format.eprintf "yiihii@."; |

456 |
ignore (type_expr env false false when_expr) |

457 | |

458 |
let rec check_type_declaration loc cty = |

459 |
match cty with |

460 |
| Tydec_clock ty |

461 |
| Tydec_array (_, ty) -> check_type_declaration loc ty |

462 |
| Tydec_const tname -> |

463 |
if not (Hashtbl.mem type_table cty) |

464 |
then raise (Error (loc, Unbound_type tname)); |

465 |
| _ -> () |

466 | |

467 |
let type_var_decl vd_env env vdecl = |

468 |
check_type_declaration vdecl.var_loc vdecl.var_dec_type.ty_dec_desc; |

469 |
let eval_const id = Types.get_static_value (Env.lookup_value env id) in |

470 |
let type_dim d = |

471 |
begin |

472 |
type_subtyping_arg (env, vd_env) false true (expr_of_dimension d) Type_predef.type_int; |

473 |
Dimension.eval Basic_library.eval_env eval_const d; |

474 |
end in |

475 |
let ty = type_coretype type_dim vdecl.var_dec_type.ty_dec_desc in |

476 |
let ty_status = |

477 |
if vdecl.var_dec_const |

478 |
then Type_predef.type_static (Dimension.mkdim_var ()) ty |

479 |
else ty in |

480 |
let new_env = Env.add_value env vdecl.var_id ty_status in |

481 |
type_coreclock (new_env,vd_env) vdecl.var_dec_clock vdecl.var_id vdecl.var_loc; |

482 |
vdecl.var_type <- ty_status; |

483 |
new_env |

484 | |

485 |
let type_var_decl_list vd_env env l = |

486 |
List.fold_left (type_var_decl vd_env) env l |

487 | |

488 |
let type_of_vlist vars = |

489 |
let tyl = List.map (fun v -> v.var_type) vars in |

490 |
type_of_type_list tyl |

491 | |

492 |
let add_vdecl vd_env vdecl = |

493 |
if List.exists (fun v -> v.var_id = vdecl.var_id) vd_env |

494 |
then raise (Error (vdecl.var_loc, Already_bound vdecl.var_id)) |

495 |
else vdecl::vd_env |

496 | |

497 |
let check_vd_env vd_env = |

498 |
ignore (List.fold_left add_vdecl [] vd_env) |

499 | |

500 |
(** [type_node env nd loc] types node [nd] in environment env. The |

501 |
location is used for error reports. *) |

502 |
let type_node env nd loc = |

503 |
let is_main = nd.node_id = !Options.main_node in |

504 |
let vd_env_ol = nd.node_outputs@nd.node_locals in |

505 |
let vd_env = nd.node_inputs@vd_env_ol in |

506 |
check_vd_env vd_env; |

507 |
let init_env = env in |

508 |
let delta_env = type_var_decl_list vd_env init_env nd.node_inputs in |

509 |
let delta_env = type_var_decl_list vd_env delta_env nd.node_outputs in |

510 |
let delta_env = type_var_decl_list vd_env delta_env nd.node_locals in |

511 |
let new_env = Env.overwrite env delta_env in |

512 |
let undefined_vars_init = |

513 |
List.fold_left |

514 |
(fun uvs v -> IMap.add v.var_id () uvs) |

515 |
IMap.empty vd_env_ol in |

516 |
let undefined_vars = |

517 |
List.fold_left (type_eq (new_env, vd_env) is_main) undefined_vars_init nd.node_eqs |

518 |
in |

519 |
(* check that table is empty *) |

520 |
if (not (IMap.is_empty undefined_vars)) then |

521 |
raise (Error (loc, Undefined_var undefined_vars)); |

522 |
let ty_ins = type_of_vlist nd.node_inputs in |

523 |
let ty_outs = type_of_vlist nd.node_outputs in |

524 |
let ty_node = new_ty (Tarrow (ty_ins,ty_outs)) in |

525 |
generalize ty_node; |

526 |
(* TODO ? Check that no node in the hierarchy remains polymorphic ? *) |

527 |
nd.node_type <- ty_node; |

528 |
Env.add_value env nd.node_id ty_node |

529 | |

530 |
let type_imported_node env nd loc = |

531 |
let new_env = type_var_decl_list nd.nodei_inputs env nd.nodei_inputs in |

532 |
let vd_env = nd.nodei_inputs@nd.nodei_outputs in |

533 |
check_vd_env vd_env; |

534 |
ignore(type_var_decl_list vd_env new_env nd.nodei_outputs); |

535 |
let ty_ins = type_of_vlist nd.nodei_inputs in |

536 |
let ty_outs = type_of_vlist nd.nodei_outputs in |

537 |
let ty_node = new_ty (Tarrow (ty_ins,ty_outs)) in |

538 |
generalize ty_node; |

539 |
(* |

540 |
if (is_polymorphic ty_node) then |

541 |
raise (Error (loc, Poly_imported_node nd.nodei_id)); |

542 |
*) |

543 |
let new_env = Env.add_value env nd.nodei_id ty_node in |

544 |
nd.nodei_type <- ty_node; |

545 |
new_env |

546 | |

547 |
let type_imported_fun env nd loc = |

548 |
let new_env = type_var_decl_list nd.fun_inputs env nd.fun_inputs in |

549 |
let vd_env = nd.fun_inputs@nd.fun_outputs in |

550 |
check_vd_env vd_env; |

551 |
ignore(type_var_decl_list vd_env new_env nd.fun_outputs); |

552 |
let ty_ins = type_of_vlist nd.fun_inputs in |

553 |
let ty_outs = type_of_vlist nd.fun_outputs in |

554 |
let ty_node = new_ty (Tarrow (ty_ins,ty_outs)) in |

555 |
generalize ty_node; |

556 |
(* |

557 |
if (is_polymorphic ty_node) then |

558 |
raise (Error (loc, Poly_imported_node nd.fun_id)); |

559 |
*) |

560 |
let new_env = Env.add_value env nd.fun_id ty_node in |

561 |
nd.fun_type <- ty_node; |

562 |
new_env |

563 | |

564 |
let type_top_consts env clist = |

565 |
List.fold_left (fun env cdecl -> |

566 |
let ty = type_const cdecl.const_loc cdecl.const_value in |

567 |
let d = |

568 |
if is_dimension_type ty |

569 |
then dimension_of_const cdecl.const_loc cdecl.const_value |

570 |
else Dimension.mkdim_var () in |

571 |
let ty = Type_predef.type_static d ty in |

572 |
let new_env = Env.add_value env cdecl.const_id ty in |

573 |
cdecl.const_type <- ty; |

574 |
new_env) env clist |

575 | |

576 |
let type_top_decl env decl = |

577 |
match decl.top_decl_desc with |

578 |
| Node nd -> |

579 |
type_node env nd decl.top_decl_loc |

580 |
| ImportedNode nd -> |

581 |
type_imported_node env nd decl.top_decl_loc |

582 |
| ImportedFun nd -> |

583 |
type_imported_fun env nd decl.top_decl_loc |

584 |
| Consts clist -> |

585 |
type_top_consts env clist |

586 |
| Include _ -> env |

587 | |

588 |
let type_prog env decls = |

589 |
try |

590 |
ignore(List.fold_left type_top_decl env decls) |

591 |
with Failure _ as exc -> raise exc |

592 | |

593 |
(* Once the Lustre program is fully typed, |

594 |
we must get back to the original description of dimensions, |

595 |
with constant parameters, instead of unifiable internal variables. *) |

596 | |

597 |
(* The following functions aims at 'unevaluating' dimension expressions occuring in array types, |

598 |
i.e. replacing unifiable second_order variables with the original static parameters. |

599 |
Once restored in this formulation, dimensions may be meaningfully printed. |

600 |
*) |

601 |
(* |

602 |
let uneval_vdecl_generics vdecl ty = |

603 |
if vdecl.var_dec_const |

604 |
then |

605 |
match get_static_value ty with |

606 |
| None -> (Format.eprintf "internal error: %a@." Types.print_ty vdecl.var_type; assert false) |

607 |
| Some d -> Dimension.unify d (Dimension.mkdim_ident vdecl.var_loc vdecl.var_id) |

608 | |

609 |
let uneval_node_generics vdecls = |

610 |
let inst_typ_vars = ref [] in |

611 |
let inst_dim_vars = ref [] in |

612 |
let inst_ty_list = List.map (fun v -> instantiate inst_typ_vars inst_dim_vars v.var_type) vdecls in |

613 |
List.iter2 (fun v ty -> uneval_vdecl_generics v ty) vdecls inst_ty_list; |

614 |
List.iter2 (fun v ty -> generalize ty; v.var_type <- ty) vdecls inst_ty_list |

615 |
*) |

616 |
let uneval_vdecl_generics vdecl = |

617 |
if vdecl.var_dec_const |

618 |
then |

619 |
match get_static_value vdecl.var_type with |

620 |
| None -> (Format.eprintf "internal error: %a@." Types.print_ty vdecl.var_type; assert false) |

621 |
| Some d -> Dimension.uneval vdecl.var_id d |

622 | |

623 |
let uneval_node_generics vdecls = |

624 |
List.iter uneval_vdecl_generics vdecls |

625 | |

626 |
let uneval_top_generics decl = |

627 |
match decl.top_decl_desc with |

628 |
| Node nd -> |

629 |
uneval_node_generics (nd.node_inputs @ nd.node_outputs) |

630 |
| ImportedNode nd -> |

631 |
uneval_node_generics (nd.nodei_inputs @ nd.nodei_outputs) |

632 |
| ImportedFun nd -> |

633 |
() |

634 |
| Consts clist -> () |

635 |
| Include _ -> () |

636 | |

637 |
let uneval_prog_generics prog = |

638 |
List.iter uneval_top_generics prog |

639 |
(* Local Variables: *) |

640 |
(* compile-command:"make -C .." *) |

641 |
(* End: *) |