Project

General

Profile

Statistics
| Branch: | Tag: | Revision:

lustrec / src / typing.ml @ 06fa8b5e

History | View | Annotate | Download (25.7 KB)

1
(* ----------------------------------------------------------------------------
2
 * SchedMCore - A MultiCore Scheduling Framework
3
 * Copyright (C) 2009-2011, ONERA, Toulouse, FRANCE - LIFL, Lille, FRANCE
4
 *
5
 * This file is part of Prelude
6
 *
7
 * Prelude is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public License
9
 * as published by the Free Software Foundation ; either version 2 of
10
 * the License, or (at your option) any later version.
11
 *
12
 * Prelude is distributed in the hope that it will be useful, but
13
 * WITHOUT ANY WARRANTY ; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with this program ; if not, write to the Free Software
19
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
20
 * USA
21
 *---------------------------------------------------------------------------- *)
22

    
23
(** Main typing module. Classic inference algorithm with destructive
24
    unification. *)
25

    
26
let debug fmt args = () (* Format.eprintf "%a"  *)
27
(* Though it shares similarities with the clock calculus module, no code
28
    is shared.  Simple environments, very limited identifier scoping, no
29
    identifier redefinition allowed. *)
30

    
31
open Utils
32
(* Yes, opening both modules is dirty as some type names will be
33
   overwritten, yet this makes notations far lighter.*)
34
open LustreSpec
35
open Corelang
36
open Types
37
open Format
38

    
39
let pp_typing_env fmt env =
40
  Env.pp_env print_ty fmt env
41

    
42
(** [occurs tvar ty] returns true if the type variable [tvar] occurs in
43
    type [ty]. False otherwise. *)
44
let rec occurs tvar ty =
45
  let ty = repr ty in
46
  match ty.tdesc with
47
  | Tvar -> ty=tvar
48
  | Tarrow (t1, t2) ->
49
      (occurs tvar t1) || (occurs tvar t2)
50
  | Ttuple tl ->
51
      List.exists (occurs tvar) tl
52
  | Tarray (_, t)
53
  | Tstatic (_, t)
54
  | Tclock t
55
  | Tlink t -> occurs tvar t
56
  | Tenum _ | Tconst _ | Tunivar | Tint | Treal | Tbool | Trat -> false
57

    
58
(** Promote monomorphic type variables to polymorphic type variables. *)
59
(* Generalize by side-effects *)
60
let rec generalize ty =
61
  match ty.tdesc with
62
  | Tvar ->
63
      (* No scopes, always generalize *)
64
      ty.tdesc <- Tunivar
65
  | Tarrow (t1,t2) ->
66
      generalize t1; generalize t2
67
  | Ttuple tlist ->
68
      List.iter generalize tlist
69
  | Tstatic (d, t)
70
  | Tarray (d, t) -> Dimension.generalize d; generalize t
71
  | Tclock t
72
  | Tlink t ->
73
      generalize t
74
  | Tenum _ | Tconst _ | Tunivar | Tint | Treal | Tbool | Trat -> ()
75

    
76
(** Downgrade polymorphic type variables to monomorphic type variables *)
77
let rec instantiate inst_vars inst_dim_vars ty =
78
  let ty = repr ty in
79
  match ty.tdesc with
80
  | Tenum _ | Tconst _ | Tvar | Tint | Treal | Tbool | Trat -> ty
81
  | Tarrow (t1,t2) ->
82
      {ty with tdesc =
83
       Tarrow ((instantiate inst_vars inst_dim_vars t1), (instantiate inst_vars inst_dim_vars t2))}
84
  | Ttuple tlist ->
85
      {ty with tdesc = Ttuple (List.map (instantiate inst_vars inst_dim_vars) tlist)}
86
  | Tclock t ->
87
	{ty with tdesc = Tclock (instantiate inst_vars inst_dim_vars t)}
88
  | Tstatic (d, t) ->
89
	{ty with tdesc = Tstatic (Dimension.instantiate inst_dim_vars d, instantiate inst_vars inst_dim_vars t)}
90
  | Tarray (d, t) ->
91
	{ty with tdesc = Tarray (Dimension.instantiate inst_dim_vars d, instantiate inst_vars inst_dim_vars t)}
92
  | Tlink t ->
93
	(* should not happen *)
94
	{ty with tdesc = Tlink (instantiate inst_vars inst_dim_vars t)}
95
  | Tunivar ->
96
      try
97
        List.assoc ty.tid !inst_vars
98
      with Not_found ->
99
        let var = new_var () in
100
	inst_vars := (ty.tid, var)::!inst_vars;
101
	var
102

    
103
(* [type_coretype cty] types the type declaration [cty] *)
104
let rec type_coretype type_dim cty =
105
  match (*get_repr_type*) cty with
106
  | Tydec_any -> new_var ()
107
  | Tydec_int -> Type_predef.type_int
108
  | Tydec_real -> Type_predef.type_real
109
  | Tydec_float -> Type_predef.type_real
110
  | Tydec_bool -> Type_predef.type_bool
111
  | Tydec_clock ty -> Type_predef.type_clock (type_coretype type_dim ty)
112
  | Tydec_const c -> Type_predef.type_const c
113
  | Tydec_enum tl -> Type_predef.type_enum tl
114
  | Tydec_array (d, ty) ->
115
    begin
116
      type_dim d;
117
      Type_predef.type_array d (type_coretype type_dim ty)
118
    end
119

    
120
(* [coretype_type is the reciprocal of [type_typecore] *)
121
let rec coretype_type ty =
122
 match (repr ty).tdesc with
123
 | Tvar           -> Tydec_any
124
 | Tint           -> Tydec_int
125
 | Treal          -> Tydec_real
126
 | Tbool          -> Tydec_bool
127
 | Tconst c       -> Tydec_const c
128
 | Tclock t       -> Tydec_clock (coretype_type t)
129
 | Tenum tl       -> Tydec_enum tl
130
 | Tarray (d, t)  -> Tydec_array (d, coretype_type t)
131
 | Tstatic (_, t) -> coretype_type t
132
 | _         -> assert false
133

    
134
let get_type_definition tname =
135
  try
136
    type_coretype (fun d -> ()) (Hashtbl.find type_table (Tydec_const tname))
137
  with Not_found -> raise (Error (Location.dummy_loc, Unbound_type tname))
138

    
139
(** [unify t1 t2] unifies types [t1] and [t2]. Raises [Unify
140
    (t1,t2)] if the types are not unifiable.*)
141
(* Standard destructive unification *)
142
let rec unify t1 t2 =
143
  let t1 = repr t1 in
144
  let t2 = repr t2 in
145
  if t1=t2 then
146
    ()
147
  else
148
    (* No type abbreviations resolution for now *)
149
    match t1.tdesc,t2.tdesc with
150
      (* This case is not mandory but will keep "older" types *)
151
    | Tvar, Tvar ->
152
        if t1.tid < t2.tid then
153
          t2.tdesc <- Tlink t1
154
        else
155
          t1.tdesc <- Tlink t2
156
    | (Tvar, _) when (not (occurs t1 t2)) ->
157
        t1.tdesc <- Tlink t2
158
    | (_,Tvar) when (not (occurs t2 t1)) ->
159
        t2.tdesc <- Tlink t1
160
    | Tarrow (t1,t2), Tarrow (t1',t2') ->
161
      begin
162
        unify t1 t1';
163
	unify t2 t2'
164
      end
165
    | Ttuple tlist1, Ttuple tlist2 ->
166
        if (List.length tlist1) <> (List.length tlist2) then
167
	  raise (Unify (t1, t2))
168
	else
169
          List.iter2 unify tlist1 tlist2
170
    | Tclock _, Tstatic _
171
    | Tstatic _, Tclock _ -> raise (Unify (t1, t2))
172
    | Tclock t1', _ -> unify t1' t2
173
    | _, Tclock t2' -> unify t1 t2'
174
    | Tint, Tint | Tbool, Tbool | Trat, Trat
175
    | Tunivar, _ | _, Tunivar -> ()
176
    | (Tconst t, _) ->
177
      let def_t = get_type_definition t in
178
      unify def_t t2
179
    | (_, Tconst t)  ->
180
      let def_t = get_type_definition t in
181
      unify t1 def_t
182
    | Tenum tl, Tenum tl' when tl == tl' -> ()
183
    | Tstatic (e1, t1'), Tstatic (e2, t2')
184
    | Tarray (e1, t1'), Tarray (e2, t2') ->
185
      begin
186
	unify t1' t2';
187
	Dimension.eval Basic_library.eval_env (fun c -> None) e1;
188
	Dimension.eval Basic_library.eval_env (fun c -> None) e2;
189
	Dimension.unify e1 e2;
190
      end
191
    | _,_ -> raise (Unify (t1, t2))
192

    
193
(** [semi_unify t1 t2] checks whether type [t1] is an instance of type [t2]. Raises [Unify
194
    (t1,t2)] if the types are not semi-unifiable.*)
195
(* Standard destructive semi-unification *)
196
let rec semi_unify t1 t2 =
197
  let t1 = repr t1 in
198
  let t2 = repr t2 in
199
  if t1=t2 then
200
    ()
201
  else
202
    (* No type abbreviations resolution for now *)
203
    match t1.tdesc,t2.tdesc with
204
      (* This case is not mandory but will keep "older" types *)
205
    | Tvar, Tvar ->
206
        if t1.tid < t2.tid then
207
          t2.tdesc <- Tlink t1
208
        else
209
          t1.tdesc <- Tlink t2
210
    | (Tvar, _) -> raise (Unify (t1, t2))
211
    | (_,Tvar) when (not (occurs t2 t1)) ->
212
        t2.tdesc <- Tlink t1
213
    | Tarrow (t1,t2), Tarrow (t1',t2') ->
214
      begin
215
        unify t1 t1';
216
	unify t2 t2'
217
      end
218
    | Ttuple tlist1, Ttuple tlist2 ->
219
        if (List.length tlist1) <> (List.length tlist2) then
220
	  raise (Unify (t1, t2))
221
	else
222
          List.iter2 semi_unify tlist1 tlist2
223
    | Tclock _, Tstatic _
224
    | Tstatic _, Tclock _ -> raise (Unify (t1, t2))
225
    | Tclock t1', _ -> semi_unify t1' t2
226
    | _, Tclock t2' -> semi_unify t1 t2'
227
    | Tint, Tint | Tbool, Tbool | Trat, Trat
228
    | Tunivar, _ | _, Tunivar -> ()
229
    | (Tconst t, _) ->
230
      let def_t = get_type_definition t in
231
      semi_unify def_t t2
232
    | (_, Tconst t)  ->
233
      let def_t = get_type_definition t in
234
      semi_unify t1 def_t
235
    | Tenum tl, Tenum tl' when tl == tl' -> ()
236
    | Tstatic (e1, t1'), Tstatic (e2, t2')
237
    | Tarray (e1, t1'), Tarray (e2, t2') ->
238
      begin
239
	semi_unify t1' t2';
240
	Dimension.eval Basic_library.eval_env (fun c -> None) e1;
241
	Dimension.eval Basic_library.eval_env (fun c -> None) e2;
242
	Dimension.semi_unify e1 e2;
243
      end
244
    | _,_ -> raise (Unify (t1, t2))
245

    
246
let try_unify ty1 ty2 loc =
247
  try
248
    unify ty1 ty2
249
  with
250
  | Unify _ ->
251
    raise (Error (loc, Type_clash (ty1,ty2)))
252
  | Dimension.Unify _ ->
253
    raise (Error (loc, Type_clash (ty1,ty2)))
254

    
255
let rec type_const loc c = 
256
  match c with
257
  | Const_int _ -> Type_predef.type_int
258
  | Const_real _ -> Type_predef.type_real
259
  | Const_float _ -> Type_predef.type_real
260
  | Const_array ca -> let d = Dimension.mkdim_int loc (List.length ca) in
261
		      let ty = new_var () in
262
		      List.iter (fun e -> try_unify (type_const loc e) ty loc) ca;
263
		      Type_predef.type_array d ty
264
  | Const_tag t  ->
265
    if Hashtbl.mem tag_table t
266
    then type_coretype (fun d -> ()) (Hashtbl.find tag_table t)
267
    else raise (Error (loc, Unbound_value ("enum tag " ^ t)))
268

    
269
(* The following typing functions take as parameter an environment [env]
270
   and whether the element being typed is expected to be constant [const]. 
271
   [env] is a pair composed of:
272
  - a map from ident to type, associating to each ident, i.e. 
273
    variables, constants and (imported) nodes, its type including whether
274
    it is constant or not. This latter information helps in checking constant 
275
    propagation policy in Lustre.
276
  - a vdecl list, in order to modify types of declared variables that are
277
    later discovered to be clocks during the typing process.
278
*)
279
let check_constant loc const_expected const_real =
280
  if const_expected && not const_real
281
  then raise (Error (loc, Not_a_constant))
282

    
283
let rec type_standard_args env in_main const expr_list =
284
  let ty_list = List.map (fun e -> dynamic_type (type_expr env in_main const e)) expr_list in
285
  let ty_res = new_var () in
286
  List.iter2 (fun e ty -> try_unify ty_res ty e.expr_loc) expr_list ty_list;
287
  ty_res
288

    
289
(* emulates a subtyping relation between types t and (d : t),
290
   used during node applications and assignments *)
291
and type_subtyping_arg env in_main ?(sub=true) const real_arg formal_type =
292
  let loc = real_arg.expr_loc in
293
  let const = const || (Types.get_static_value formal_type <> None) in
294
  let real_type = type_expr env in_main const real_arg in
295
  let real_type =
296
    if const
297
    then let d =
298
	   if is_dimension_type real_type
299
	   then dimension_of_expr real_arg
300
	   else Dimension.mkdim_var () in
301
	 let eval_const id = Types.get_static_value (Env.lookup_value (fst env) id) in
302
	 Dimension.eval Basic_library.eval_env eval_const d;
303
	 let real_static_type = Type_predef.type_static d (Types.dynamic_type real_type) in
304
	 (match Types.get_static_value real_type with
305
	 | None    -> ()
306
	 | Some d' -> try_unify real_type real_static_type loc);
307
	 real_static_type
308
    else real_type in
309
(*Format.eprintf "subtyping const %B real %a:%a vs formal %a@." const Printers.pp_expr real_arg Types.print_ty real_type Types.print_ty formal_type;*)
310
  let real_types   = type_list_of_type real_type in
311
  let formal_types = type_list_of_type formal_type in
312
  if (List.length real_types) <> (List.length formal_types)
313
  then raise (Unify (real_type, formal_type))
314
  else List.iter2 (type_subtyping loc sub) real_types formal_types
315

    
316
and type_subtyping loc sub real_type formal_type =
317
  match (repr real_type).tdesc, (repr formal_type).tdesc with
318
  | Tstatic _          , Tstatic _ when sub -> try_unify formal_type real_type loc
319
  | Tstatic (r_d, r_ty), _         when sub -> try_unify formal_type r_ty loc
320
  | _                                       -> try_unify formal_type real_type loc
321

    
322
and type_ident env in_main loc const id =
323
  type_expr env in_main const (expr_of_ident id loc)
324

    
325
(* typing an application implies:
326
   - checking that const formal parameters match real const (maybe symbolic) arguments
327
   - checking type adequation between formal and real arguments
328
*)
329
and type_appl env in_main loc const f args =
330
  let tfun = type_ident env in_main loc const f in
331
  let tins, touts = split_arrow tfun in
332
  let tins = type_list_of_type tins in
333
  let args = expr_list_of_expr args in
334
  List.iter2 (type_subtyping_arg env in_main const) args tins;
335
  touts
336

    
337
(** [type_expr env in_main expr] types expression [expr] in environment
338
    [env], expecting it to be [const] or not. *)
339
and type_expr env in_main const expr =
340
  let res = 
341
  match expr.expr_desc with
342
  | Expr_const c ->
343
    let ty = type_const expr.expr_loc c in
344
    let ty = Type_predef.type_static (Dimension.mkdim_var ()) ty in
345
    expr.expr_type <- ty;
346
    ty
347
  | Expr_ident v ->
348
    let tyv =
349
      try
350
        Env.lookup_value (fst env) v
351
      with Not_found ->
352
	Format.eprintf "Failure in typing expr %a@." Printers.pp_expr expr;
353
        raise (Error (expr.expr_loc, Unbound_value ("identifier " ^ v)))
354
    in
355
    let ty = instantiate (ref []) (ref []) tyv in
356
    let ty' =
357
      if const
358
      then Type_predef.type_static (Dimension.mkdim_var ()) (new_var ())
359
      else new_var () in
360
    try_unify ty ty' expr.expr_loc;
361
    expr.expr_type <- ty;
362
    ty 
363
  | Expr_array elist ->
364
    let ty_elt = type_standard_args env in_main const elist in
365
    let d = Dimension.mkdim_int expr.expr_loc (List.length elist) in
366
    let ty = Type_predef.type_array d ty_elt in
367
    expr.expr_type <- ty;
368
    ty
369
  | Expr_access (e1, d) ->
370
    type_subtyping_arg env in_main true (expr_of_dimension d) Type_predef.type_int;
371
    let ty_elt = new_var () in
372
    let d = Dimension.mkdim_var () in
373
    type_subtyping_arg env in_main const e1 (Type_predef.type_array d ty_elt);
374
    expr.expr_type <- ty_elt;
375
    ty_elt
376
  | Expr_power (e1, d) ->
377
    let eval_const id = Types.get_static_value (Env.lookup_value (fst env) id) in
378
    type_subtyping_arg env in_main true (expr_of_dimension d) Type_predef.type_int;
379
    Dimension.eval Basic_library.eval_env eval_const d;
380
    let ty_elt = type_standard_args env in_main const [e1] in
381
    let ty = Type_predef.type_array d ty_elt in
382
    expr.expr_type <- ty;
383
    ty
384
  | Expr_tuple elist ->
385
    let ty = new_ty (Ttuple (List.map (type_expr env in_main const) elist)) in
386
    expr.expr_type <- ty;
387
    ty
388
  | Expr_ite (c, t, e) ->
389
    type_subtyping_arg env in_main const c Type_predef.type_bool;
390
    let ty = type_standard_args env in_main const [t; e] in
391
    expr.expr_type <- ty;
392
    ty
393
  | Expr_appl (id, args, r) ->
394
    (* application of non internal function is not legal in a constant
395
       expression *)
396
    (match r with
397
    | None        -> ()
398
    | Some (x, l) -> 
399
      check_constant expr.expr_loc const false;
400
      let expr_x = expr_of_ident x expr.expr_loc in	
401
      let typ_l = 
402
	Type_predef.type_clock 
403
	  (type_const expr.expr_loc (Const_tag l)) in
404
      type_subtyping_arg env in_main ~sub:false const expr_x typ_l);
405
    let touts = type_appl env in_main expr.expr_loc const id args in
406
    expr.expr_type <- touts;
407
    touts
408
  | Expr_fby (e1,e2)
409
  | Expr_arrow (e1,e2) ->
410
    (* fby/arrow is not legal in a constant expression *)
411
    check_constant expr.expr_loc const false;
412
    let ty = type_standard_args env in_main const [e1; e2] in
413
    expr.expr_type <- ty;
414
    ty
415
  | Expr_pre e ->
416
    (* pre is not legal in a constant expression *)
417
    check_constant expr.expr_loc const false;
418
    let ty = type_standard_args env in_main const [e] in
419
    expr.expr_type <- ty;
420
    ty
421
  | Expr_when (e1,c,l) ->
422
    (* when is not legal in a constant expression *)
423
    check_constant expr.expr_loc const false;
424
    let typ_l = Type_predef.type_clock (type_const expr.expr_loc (Const_tag l)) in
425
    let expr_c = expr_of_ident c expr.expr_loc in
426
    type_subtyping_arg env in_main ~sub:false const expr_c typ_l;
427
    update_clock env in_main c expr.expr_loc typ_l;
428
    let ty = type_standard_args env in_main const [e1] in
429
    expr.expr_type <- ty;
430
    ty
431
  | Expr_merge (c,hl) ->
432
    (* merge is not legal in a constant expression *)
433
    check_constant expr.expr_loc const false;
434
    let typ_in, typ_out = type_branches env in_main expr.expr_loc const hl in
435
    let expr_c = expr_of_ident c expr.expr_loc in
436
    let typ_l = Type_predef.type_clock typ_in in
437
    type_subtyping_arg env in_main ~sub:false const expr_c typ_l;
438
    update_clock env in_main c expr.expr_loc typ_l;
439
    expr.expr_type <- typ_out;
440
    typ_out
441
  | Expr_uclock (e,k) | Expr_dclock (e,k) ->
442
      let ty = type_expr env in_main const e in
443
      expr.expr_type <- ty;
444
      ty
445
  | Expr_phclock (e,q) ->
446
      let ty = type_expr env in_main const e in
447
      expr.expr_type <- ty;
448
      ty
449
  in (*Format.eprintf "typing %B %a at %a = %a@." const Printers.pp_expr expr Location.pp_loc expr.expr_loc Types.print_ty res;*) res
450

    
451
and type_branches env in_main loc const hl =
452
  let typ_in = new_var () in
453
  let typ_out = new_var () in
454
  try
455
    let used_labels =
456
      List.fold_left (fun accu (t, h) ->
457
	unify typ_in (type_const loc (Const_tag t));
458
	type_subtyping_arg env in_main const h typ_out;
459
	if List.mem t accu
460
	then raise (Error (loc, Already_bound t))
461
	else t :: accu) [] hl in
462
    let type_labels = get_enum_type_tags (coretype_type typ_in) in
463
    if List.sort compare used_labels <> List.sort compare type_labels
464
    then let unbound_tag = List.find (fun t -> not (List.mem t used_labels)) type_labels in
465
	 raise (Error (loc, Unbound_value ("branching tag " ^ unbound_tag)))
466
    else (typ_in, typ_out)
467
  with Unify (t1, t2) ->
468
    raise (Error (loc, Type_clash (t1,t2)))
469

    
470
and update_clock env in_main id loc typ =
471
 (*Log.report ~level:1 (fun fmt -> Format.fprintf fmt "update_clock %s with %a@ " id print_ty typ);*)
472
 try
473
   let vdecl = List.find (fun v -> v.var_id = id) (snd env)
474
   in vdecl.var_type <- typ
475
 with
476
   Not_found ->
477
   raise (Error (loc, Unbound_value ("clock " ^ id)))
478

    
479
(** [type_eq env eq] types equation [eq] in environment [env] *)
480
let type_eq env in_main undefined_vars eq =
481
  (* Check undefined variables, type lhs *)
482
  let expr_lhs = expr_of_expr_list eq.eq_loc (List.map (fun v -> expr_of_ident v eq.eq_loc) eq.eq_lhs) in
483
  let ty_lhs = type_expr env in_main false expr_lhs in
484
  (* Check multiple variable definitions *)
485
  let define_var id uvars =
486
    try
487
      ignore(IMap.find id uvars);
488
      IMap.remove id uvars
489
    with Not_found ->
490
      raise (Error (eq.eq_loc, Already_defined id))
491
  in
492
  let undefined_vars =
493
    List.fold_left (fun uvars v -> define_var v uvars) undefined_vars eq.eq_lhs in
494
  (* Type rhs wrt to lhs type with subtyping, i.e. a constant rhs value may be assigned
495
     to a (always non-constant) lhs variable *)
496
  type_subtyping_arg env in_main false eq.eq_rhs ty_lhs;
497
  undefined_vars
498

    
499

    
500
(* [type_coreclock env ck id loc] types the type clock declaration [ck]
501
   in environment [env] *)
502
let type_coreclock env ck id loc =
503
  match ck.ck_dec_desc with
504
  | Ckdec_any | Ckdec_pclock (_,_) -> ()
505
  | Ckdec_bool cl ->
506
      let dummy_id_expr = expr_of_ident id loc in
507
      let when_expr =
508
        List.fold_left
509
          (fun expr (x, l) ->
510
                {expr_tag = new_tag ();
511
                 expr_desc= Expr_when (expr,x,l);
512
                 expr_type = new_var ();
513
                 expr_clock = Clocks.new_var true;
514
                 expr_delay = Delay.new_var ();
515
                 expr_loc=loc;
516
		 expr_annot = None})
517
          dummy_id_expr cl
518
      in
519
Format.eprintf "yiihii@.";
520
      ignore (type_expr env false false when_expr)
521

    
522
let rec check_type_declaration loc cty =
523
 match cty with
524
 | Tydec_clock ty
525
 | Tydec_array (_, ty) -> check_type_declaration loc ty
526
 | Tydec_const tname   ->
527
   if not (Hashtbl.mem type_table cty)
528
   then raise (Error (loc, Unbound_type tname));
529
 | _                   -> ()
530

    
531
let type_var_decl vd_env env vdecl =
532
  check_type_declaration vdecl.var_loc vdecl.var_dec_type.ty_dec_desc;
533
  let eval_const id = Types.get_static_value (Env.lookup_value env id) in
534
  let type_dim d =
535
    begin
536
      type_subtyping_arg (env, vd_env) false true (expr_of_dimension d) Type_predef.type_int;
537
      Dimension.eval Basic_library.eval_env eval_const d;
538
    end in
539
  let ty = type_coretype type_dim vdecl.var_dec_type.ty_dec_desc in
540
  let ty_status =
541
    if vdecl.var_dec_const
542
    then Type_predef.type_static (Dimension.mkdim_var ()) ty
543
    else ty in
544
  let new_env = Env.add_value env vdecl.var_id ty_status in
545
  type_coreclock (new_env,vd_env) vdecl.var_dec_clock vdecl.var_id vdecl.var_loc;
546
  vdecl.var_type <- ty_status;
547
  new_env
548

    
549
let type_var_decl_list vd_env env l =
550
  List.fold_left (type_var_decl vd_env) env l
551

    
552
let type_of_vlist vars =
553
  let tyl = List.map (fun v -> v.var_type) vars in
554
  type_of_type_list tyl
555

    
556
let add_vdecl vd_env vdecl =
557
 if List.exists (fun v -> v.var_id = vdecl.var_id) vd_env
558
 then raise (Error (vdecl.var_loc, Already_bound vdecl.var_id))
559
 else vdecl::vd_env
560

    
561
let check_vd_env vd_env =
562
  ignore (List.fold_left add_vdecl [] vd_env)
563

    
564
(** [type_node env nd loc] types node [nd] in environment env. The
565
    location is used for error reports. *)
566
let type_node env nd loc =
567
  let is_main = nd.node_id = !Options.main_node in
568
  let vd_env_ol = nd.node_outputs@nd.node_locals in
569
  let vd_env =  nd.node_inputs@vd_env_ol in
570
  check_vd_env vd_env;
571
  let init_env = env in
572
  let delta_env = type_var_decl_list vd_env init_env nd.node_inputs in
573
  let delta_env = type_var_decl_list vd_env delta_env nd.node_outputs in
574
  let delta_env = type_var_decl_list vd_env delta_env nd.node_locals in
575
  let new_env = Env.overwrite env delta_env in
576
  let undefined_vars_init =
577
    List.fold_left
578
      (fun uvs v -> IMap.add v.var_id () uvs)
579
      IMap.empty vd_env_ol in
580
  let undefined_vars =
581
    List.fold_left (type_eq (new_env, vd_env) is_main) undefined_vars_init nd.node_eqs
582
  in
583
  (* check that table is empty *)
584
  if (not (IMap.is_empty undefined_vars)) then
585
    raise (Error (loc, Undefined_var undefined_vars));
586
  let ty_ins = type_of_vlist nd.node_inputs in
587
  let ty_outs = type_of_vlist nd.node_outputs in
588
  let ty_node = new_ty (Tarrow (ty_ins,ty_outs)) in
589
  generalize ty_node;
590
  (* TODO ? Check that no node in the hierarchy remains polymorphic ? *)
591
  nd.node_type <- ty_node;
592
  Env.add_value env nd.node_id ty_node
593

    
594
let type_imported_node env nd loc =
595
  let new_env = type_var_decl_list nd.nodei_inputs env nd.nodei_inputs in
596
  let vd_env = nd.nodei_inputs@nd.nodei_outputs in
597
  check_vd_env vd_env;
598
  ignore(type_var_decl_list vd_env new_env nd.nodei_outputs);
599
  let ty_ins = type_of_vlist nd.nodei_inputs in
600
  let ty_outs = type_of_vlist nd.nodei_outputs in
601
  let ty_node = new_ty (Tarrow (ty_ins,ty_outs)) in
602
  generalize ty_node;
603
(*
604
  if (is_polymorphic ty_node) then
605
    raise (Error (loc, Poly_imported_node nd.nodei_id));
606
*)
607
  let new_env = Env.add_value env nd.nodei_id ty_node in
608
  nd.nodei_type <- ty_node;
609
  new_env
610

    
611
let type_imported_fun env nd loc =
612
  let new_env = type_var_decl_list nd.fun_inputs env nd.fun_inputs in
613
  let vd_env =  nd.fun_inputs@nd.fun_outputs in
614
  check_vd_env vd_env;
615
  ignore(type_var_decl_list vd_env new_env nd.fun_outputs);
616
  let ty_ins = type_of_vlist nd.fun_inputs in
617
  let ty_outs = type_of_vlist nd.fun_outputs in
618
  let ty_node = new_ty (Tarrow (ty_ins,ty_outs)) in
619
  generalize ty_node;
620
(*
621
  if (is_polymorphic ty_node) then
622
    raise (Error (loc, Poly_imported_node nd.fun_id));
623
*)
624
  let new_env = Env.add_value env nd.fun_id ty_node in
625
  nd.fun_type <- ty_node;
626
  new_env
627

    
628
let type_top_consts env clist =
629
  List.fold_left (fun env cdecl ->
630
    let ty = type_const cdecl.const_loc cdecl.const_value in
631
    let d =
632
      if is_dimension_type ty
633
      then dimension_of_const cdecl.const_loc cdecl.const_value
634
      else Dimension.mkdim_var () in
635
    let ty = Type_predef.type_static d ty in
636
    let new_env = Env.add_value env cdecl.const_id ty in
637
    cdecl.const_type <- ty;
638
    new_env) env clist
639

    
640
let type_top_decl env decl =
641
  match decl.top_decl_desc with
642
  | Node nd ->
643
      type_node env nd decl.top_decl_loc
644
  | ImportedNode nd ->
645
      type_imported_node env nd decl.top_decl_loc
646
  | ImportedFun nd ->
647
      type_imported_fun env nd decl.top_decl_loc
648
  | Consts clist ->
649
      type_top_consts env clist
650
  | Open _  -> env
651

    
652
let type_prog env decls =
653
try
654
  List.fold_left type_top_decl env decls
655
with Failure _ as exc -> raise exc
656

    
657
(* Once the Lustre program is fully typed,
658
   we must get back to the original description of dimensions,
659
   with constant parameters, instead of unifiable internal variables. *)
660

    
661
(* The following functions aims at 'unevaluating' dimension expressions occuring in array types,
662
   i.e. replacing unifiable second_order variables with the original static parameters.
663
   Once restored in this formulation, dimensions may be meaningfully printed.
664
*)
665
(*
666
let uneval_vdecl_generics vdecl ty =
667
 if vdecl.var_dec_const
668
 then
669
   match get_static_value ty with
670
   | None   -> (Format.eprintf "internal error: %a@." Types.print_ty vdecl.var_type; assert false)
671
   | Some d -> Dimension.unify d (Dimension.mkdim_ident vdecl.var_loc vdecl.var_id)
672

    
673
let uneval_node_generics vdecls =
674
  let inst_typ_vars = ref [] in
675
  let inst_dim_vars = ref [] in
676
  let inst_ty_list = List.map (fun v -> instantiate inst_typ_vars inst_dim_vars v.var_type) vdecls in
677
  List.iter2 (fun v ty -> uneval_vdecl_generics v ty) vdecls inst_ty_list;
678
  List.iter2 (fun v ty -> generalize ty; v.var_type <- ty) vdecls inst_ty_list
679
*)
680
let uneval_vdecl_generics vdecl =
681
 if vdecl.var_dec_const
682
 then
683
   match get_static_value vdecl.var_type with
684
   | None   -> (Format.eprintf "internal error: %a@." Types.print_ty vdecl.var_type; assert false)
685
   | Some d -> Dimension.uneval vdecl.var_id d
686

    
687
let uneval_node_generics vdecls =
688
  List.iter uneval_vdecl_generics vdecls
689

    
690
let uneval_top_generics decl =
691
  match decl.top_decl_desc with
692
  | Node nd ->
693
      uneval_node_generics (nd.node_inputs @ nd.node_outputs)
694
  | ImportedNode nd ->
695
      uneval_node_generics (nd.nodei_inputs @ nd.nodei_outputs)
696
  | ImportedFun nd ->
697
      ()
698
  | Consts clist -> ()
699
  | Open _  -> ()
700

    
701
let uneval_prog_generics prog =
702
 List.iter uneval_top_generics prog
703

    
704
let check_env_compat declared computed =
705
  Env.iter declared (fun k decl_type_k -> 
706
    let computed_t = Env.lookup_value computed k in
707
    try_unify decl_type_k computed_t Location.dummy_loc
708
  ) 
709

    
710
(* Local Variables: *)
711
(* compile-command:"make -C .." *)
712
(* End: *)