lustrec / src / machine_code.ml @ 01d48bb0
History  View  Annotate  Download (21.4 KB)
1 
(********************************************************************) 

2 
(* *) 
3 
(* The LustreC compiler toolset / The LustreC Development Team *) 
4 
(* Copyright 2012   ONERA  CNRS  INPT *) 
5 
(* *) 
6 
(* LustreC is free software, distributed WITHOUT ANY WARRANTY *) 
7 
(* under the terms of the GNU Lesser General Public License *) 
8 
(* version 2.1. *) 
9 
(* *) 
10 
(********************************************************************) 
11  
12 
open LustreSpec 
13 
open Corelang 
14 
open Clocks 
15 
open Causality 
16  
17 
exception NormalizationError 
18  
19 
module OrdVarDecl:Map.OrderedType with type t=var_decl = 
20 
struct type t = var_decl;; let compare = compare end 
21  
22 
module ISet = Set.Make(OrdVarDecl) 
23  
24 
type value_t = 
25 
 Cst of constant 
26 
 LocalVar of var_decl 
27 
 StateVar of var_decl 
28 
 Fun of ident * value_t list 
29 
 Array of value_t list 
30 
 Access of value_t * value_t 
31 
 Power of value_t * value_t 
32  
33 
type instr_t = 
34 
 MLocalAssign of var_decl * value_t 
35 
 MStateAssign of var_decl * value_t 
36 
 MReset of ident 
37 
 MStep of var_decl list * ident * value_t list 
38 
 MBranch of value_t * (label * instr_t list) list 
39  
40 
let rec pp_val fmt v = 
41 
match v with 
42 
 Cst c > Printers.pp_const fmt c 
43 
 LocalVar v > Format.pp_print_string fmt v.var_id 
44 
 StateVar v > Format.pp_print_string fmt v.var_id 
45 
 Array vl > Format.fprintf fmt "[%a]" (Utils.fprintf_list ~sep:", " pp_val) vl 
46 
 Access (t, i) > Format.fprintf fmt "%a[%a]" pp_val t pp_val i 
47 
 Power (v, n) > Format.fprintf fmt "(%a^%a)" pp_val v pp_val n 
48 
 Fun (n, vl) > Format.fprintf fmt "%s (%a)" n (Utils.fprintf_list ~sep:", " pp_val) vl 
49  
50 
let rec pp_instr fmt i = 
51 
match i with 
52 
 MLocalAssign (i,v) > Format.fprintf fmt "%s<l %a" i.var_id pp_val v 
53 
 MStateAssign (i,v) > Format.fprintf fmt "%s<s %a" i.var_id pp_val v 
54 
 MReset i > Format.fprintf fmt "reset %s" i 
55 
 MStep (il, i, vl) > 
56 
Format.fprintf fmt "%a = %s (%a)" 
57 
(Utils.fprintf_list ~sep:", " (fun fmt v > Format.pp_print_string fmt v.var_id)) il 
58 
i 
59 
(Utils.fprintf_list ~sep:", " pp_val) vl 
60 
 MBranch (g,hl) > 
61 
Format.fprintf fmt "@[<v 2>case(%a) {@,%a@,}@]" 
62 
pp_val g 
63 
(Utils.fprintf_list ~sep:"@," pp_branch) hl 
64  
65 
and pp_branch fmt (t, h) = 
66 
Format.fprintf fmt "@[<v 2>%s:@,%a@]" t (Utils.fprintf_list ~sep:"@," pp_instr) h 
67  
68 
type step_t = { 
69 
step_checks: (Location.t * value_t) list; 
70 
step_inputs: var_decl list; 
71 
step_outputs: var_decl list; 
72 
step_locals: var_decl list; 
73 
step_instrs: instr_t list; 
74 
step_asserts: value_t list; 
75 
} 
76  
77 
type static_call = top_decl * (Dimension.dim_expr list) 
78  
79 
type machine_t = { 
80 
mname: node_desc; 
81 
mmemory: var_decl list; 
82 
mcalls: (ident * static_call) list; (* map from stateful/stateless instance to node, no internals *) 
83 
minstances: (ident * static_call) list; (* submap of mcalls, from stateful instance to node *) 
84 
minit: instr_t list; 
85 
mstatic: var_decl list; (* static inputs only *) 
86 
mconst: instr_t list; (* assignments of node constant locals *) 
87 
mstep: step_t; 
88 
mspec: node_annot option; 
89 
mannot: expr_annot list; 
90 
} 
91  
92 
let pp_step fmt s = 
93 
Format.fprintf fmt "@[<v>inputs : %a@ outputs: %a@ locals : %a@ checks : %a@ instrs : @[%a@]@ asserts : @[%a@]@]@ " 
94 
(Utils.fprintf_list ~sep:", " Printers.pp_var) s.step_inputs 
95 
(Utils.fprintf_list ~sep:", " Printers.pp_var) s.step_outputs 
96 
(Utils.fprintf_list ~sep:", " Printers.pp_var) s.step_locals 
97 
(Utils.fprintf_list ~sep:", " (fun fmt (_, c) > pp_val fmt c)) s.step_checks 
98 
(Utils.fprintf_list ~sep:"@ " pp_instr) s.step_instrs 
99 
(Utils.fprintf_list ~sep:", " pp_val) s.step_asserts 
100  
101  
102 
let pp_static_call fmt (node, args) = 
103 
Format.fprintf fmt "%s<%a>" 
104 
(node_name node) 
105 
(Utils.fprintf_list ~sep:", " Dimension.pp_dimension) args 
106  
107 
let pp_machine fmt m = 
108 
Format.fprintf fmt 
109 
"@[<v 2>machine %s@ mem : %a@ instances: %a@ init : %a@ const : %a@ step :@ @[<v 2>%a@]@ @ spec : @[%t@]@ annot : @[%a@]@]@ " 
110 
m.mname.node_id 
111 
(Utils.fprintf_list ~sep:", " Printers.pp_var) m.mmemory 
112 
(Utils.fprintf_list ~sep:", " (fun fmt (o1, o2) > Format.fprintf fmt "(%s, %a)" o1 pp_static_call o2)) m.minstances 
113 
(Utils.fprintf_list ~sep:"@ " pp_instr) m.minit 
114 
(Utils.fprintf_list ~sep:"@ " pp_instr) m.mconst 
115 
pp_step m.mstep 
116 
(fun fmt > match m.mspec with  None > ()  Some spec > Printers.pp_spec fmt spec) 
117 
(Utils.fprintf_list ~sep:"@ " Printers.pp_expr_annot) m.mannot 
118  
119 
(* Returns the declared stateless status and the computed one. *) 
120 
let get_stateless_status m = 
121 
(m.mname.node_dec_stateless, Utils.desome m.mname.node_stateless) 
122  
123 
let is_input m id = 
124 
List.exists (fun o > o.var_id = id.var_id) m.mstep.step_inputs 
125  
126 
let is_output m id = 
127 
List.exists (fun o > o.var_id = id.var_id) m.mstep.step_outputs 
128  
129 
let is_memory m id = 
130 
List.exists (fun o > o.var_id = id.var_id) m.mmemory 
131  
132 
let conditional c t e = 
133 
MBranch(c, [ (tag_true, t); (tag_false, e) ]) 
134  
135 
let dummy_var_decl name typ = 
136 
{ 
137 
var_id = name; 
138 
var_orig = false; 
139 
var_dec_type = dummy_type_dec; 
140 
var_dec_clock = dummy_clock_dec; 
141 
var_dec_const = false; 
142 
var_dec_value = None; 
143 
var_type = typ; 
144 
var_clock = Clocks.new_ck (Clocks.Cvar Clocks.CSet_all) true; 
145 
var_loc = Location.dummy_loc 
146 
} 
147  
148 
let arrow_id = "_arrow" 
149  
150 
let arrow_typ = Types.new_ty Types.Tunivar 
151  
152 
let arrow_desc = 
153 
{ 
154 
node_id = arrow_id; 
155 
node_type = Type_predef.type_bin_poly_op; 
156 
node_clock = Clock_predef.ck_bin_univ; 
157 
node_inputs= [dummy_var_decl "_in1" arrow_typ; dummy_var_decl "_in2" arrow_typ]; 
158 
node_outputs= [dummy_var_decl "_out" arrow_typ]; 
159 
node_locals= []; 
160 
node_gencalls = []; 
161 
node_checks = []; 
162 
node_asserts = []; 
163 
node_stmts= []; 
164 
node_dec_stateless = false; 
165 
node_stateless = Some false; 
166 
node_spec = None; 
167 
node_annot = []; } 
168  
169 
let arrow_top_decl = 
170 
{ 
171 
top_decl_desc = Node arrow_desc; 
172 
top_decl_owner = Version.include_path; 
173 
top_decl_itf = false; 
174 
top_decl_loc = Location.dummy_loc 
175 
} 
176  
177 
let arrow_machine = 
178 
let state = "_first" in 
179 
let var_state = dummy_var_decl state (Types.new_ty Types.Tbool) in 
180 
let var_input1 = List.nth arrow_desc.node_inputs 0 in 
181 
let var_input2 = List.nth arrow_desc.node_inputs 1 in 
182 
let var_output = List.nth arrow_desc.node_outputs 0 in 
183 
{ 
184 
mname = arrow_desc; 
185 
mmemory = [var_state]; 
186 
mcalls = []; 
187 
minstances = []; 
188 
minit = [MStateAssign(var_state, Cst (const_of_bool true))]; 
189 
mconst = []; 
190 
mstatic = []; 
191 
mstep = { 
192 
step_inputs = arrow_desc.node_inputs; 
193 
step_outputs = arrow_desc.node_outputs; 
194 
step_locals = []; 
195 
step_checks = []; 
196 
step_instrs = [conditional (StateVar var_state) 
197 
[MStateAssign(var_state, Cst (const_of_bool false)); 
198 
MLocalAssign(var_output, LocalVar var_input1)] 
199 
[MLocalAssign(var_output, LocalVar var_input2)] ]; 
200 
step_asserts = []; 
201 
}; 
202 
mspec = None; 
203 
mannot = []; 
204 
} 
205  
206 
let new_instance = 
207 
let cpt = ref (1) in 
208 
fun caller callee tag > 
209 
begin 
210 
let o = 
211 
if Stateless.check_node callee then 
212 
node_name callee 
213 
else 
214 
Printf.sprintf "ni_%d" (incr cpt; !cpt) in 
215 
let o = 
216 
if !Options.ansi && is_generic_node callee 
217 
then Printf.sprintf "%s_inst_%d" o (Utils.position (fun e > e.expr_tag = tag) caller.node_gencalls) 
218 
else o in 
219 
o 
220 
end 
221  
222  
223 
(* translate_<foo> : node > context > <foo> > machine code/expression *) 
224 
(* the context contains m : state aka memory variables *) 
225 
(* si : initialization instructions *) 
226 
(* j : node aka machine instances *) 
227 
(* d : local variables *) 
228 
(* s : step instructions *) 
229 
let translate_ident node (m, si, j, d, s) id = 
230 
try (* id is a node var *) 
231 
let var_id = get_node_var id node in 
232 
if ISet.exists (fun v > v.var_id = id) m 
233 
then StateVar var_id 
234 
else LocalVar var_id 
235 
with Not_found > 
236 
try (* id is a constant *) 
237 
LocalVar (Corelang.var_decl_of_const (const_of_top (Hashtbl.find Corelang.consts_table id))) 
238 
with Not_found > 
239 
(* id is a tag *) 
240 
Cst (Const_tag id) 
241  
242 
let rec control_on_clock node ((m, si, j, d, s) as args) ck inst = 
243 
match (Clocks.repr ck).cdesc with 
244 
 Con (ck1, cr, l) > 
245 
let id = Clocks.const_of_carrier cr in 
246 
control_on_clock node args ck1 (MBranch (translate_ident node args id, 
247 
[l, [inst]] )) 
248 
 _ > inst 
249  
250 
let rec join_branches hl1 hl2 = 
251 
match hl1, hl2 with 
252 
 [] , _ > hl2 
253 
 _ , [] > hl1 
254 
 (t1, h1)::q1, (t2, h2)::q2 > 
255 
if t1 < t2 then (t1, h1) :: join_branches q1 hl2 else 
256 
if t1 > t2 then (t2, h2) :: join_branches hl1 q2 
257 
else (t1, List.fold_right join_guards h1 h2) :: join_branches q1 q2 
258  
259 
and join_guards inst1 insts2 = 
260 
match inst1, insts2 with 
261 
 _ , [] > 
262 
[inst1] 
263 
 MBranch (x1, hl1), MBranch (x2, hl2) :: q when x1 = x2 > 
264 
MBranch (x1, join_branches (sort_handlers hl1) (sort_handlers hl2)) 
265 
:: q 
266 
 _ > inst1 :: insts2 
267  
268 
let join_guards_list insts = 
269 
List.fold_right join_guards insts [] 
270  
271 
(* specialize predefined (polymorphic) operators 
272 
wrt their instances, so that the C semantics 
273 
is preserved *) 
274 
let specialize_to_c expr = 
275 
match expr.expr_desc with 
276 
 Expr_appl (id, e, r) > 
277 
if List.exists (fun e > Types.is_bool_type e.expr_type) (expr_list_of_expr e) 
278 
then let id = 
279 
match id with 
280 
 "=" > "equi" 
281 
 "!=" > "xor" 
282 
 _ > id in 
283 
{ expr with expr_desc = Expr_appl (id, e, r) } 
284 
else expr 
285 
 _ > expr 
286  
287 
let specialize_op expr = 
288 
match !Options.output with 
289 
 "C" > specialize_to_c expr 
290 
 _ > expr 
291  
292 
let rec translate_expr ?(ite=false) node ((m, si, j, d, s) as args) expr = 
293 
let expr = specialize_op expr in 
294 
match expr.expr_desc with 
295 
 Expr_const v > Cst v 
296 
 Expr_ident x > translate_ident node args x 
297 
 Expr_array el > Array (List.map (translate_expr node args) el) 
298 
 Expr_access (t, i) > Access (translate_expr node args t, translate_expr node args (expr_of_dimension i)) 
299 
 Expr_power (e, n) > Power (translate_expr node args e, translate_expr node args (expr_of_dimension n)) 
300 
 Expr_tuple _ 
301 
 Expr_arrow _ 
302 
 Expr_fby _ 
303 
 Expr_pre _ > (Printers.pp_expr Format.err_formatter expr; Format.pp_print_flush Format.err_formatter (); raise NormalizationError) 
304 
 Expr_when (e1, _, _) > translate_expr node args e1 
305 
 Expr_merge (x, _) > raise NormalizationError 
306 
 Expr_appl (id, e, _) when Basic_library.is_internal_fun id > 
307 
let nd = node_from_name id in 
308 
Fun (node_name nd, List.map (translate_expr node args) (expr_list_of_expr e)) 
309 
 Expr_ite (g,t,e) > ( 
310 
(* special treatment depending on the active backend. For horn backend, ite 
311 
are preserved in expression. While they are removed for C or Java 
312 
backends. *) 
313 
match !Options.output with 
314 
 "horn" 
315 
 ("C"  "java") when ite > 
316 
Fun ("ite", [translate_expr node args g; translate_expr node args t; translate_expr node args e]) 
317 
 _ > 
318 
(Printers.pp_expr Format.err_formatter expr; Format.pp_print_flush Format.err_formatter (); raise NormalizationError) 
319 
) 
320 
 _ > raise NormalizationError 
321  
322 
let translate_guard node args expr = 
323 
match expr.expr_desc with 
324 
 Expr_ident x > translate_ident node args x 
325 
 _ > (Format.eprintf "internal error: translate_guard %s %a@." node.node_id Printers.pp_expr expr;assert false) 
326  
327 
let rec translate_act node ((m, si, j, d, s) as args) (y, expr) = 
328 
match expr.expr_desc with 
329 
 Expr_ite (c, t, e) > let g = translate_guard node args c in 
330 
conditional g [translate_act node args (y, t)] 
331 
[translate_act node args (y, e)] 
332 
 Expr_merge (x, hl) > MBranch (translate_ident node args x, List.map (fun (t, h) > t, [translate_act node args (y, h)]) hl) 
333 
 _ > 
334 
MLocalAssign (y, translate_expr node args expr) 
335  
336 
let reset_instance node args i r c = 
337 
match r with 
338 
 None > [] 
339 
 Some r > let g = translate_guard node args r in 
340 
[control_on_clock node args c (conditional g [MReset i] [])] 
341  
342 
let translate_eq node ((m, si, j, d, s) as args) eq = 
343 
(* Format.eprintf "translate_eq %a with clock %a@." Printers.pp_node_eq eq Clocks.print_ck eq.eq_rhs.expr_clock; *) 
344 
match eq.eq_lhs, eq.eq_rhs.expr_desc with 
345 
 [x], Expr_arrow (e1, e2) > 
346 
let var_x = get_node_var x node in 
347 
let o = new_instance node arrow_top_decl eq.eq_rhs.expr_tag in 
348 
let c1 = translate_expr node args e1 in 
349 
let c2 = translate_expr node args e2 in 
350 
(m, 
351 
MReset o :: si, 
352 
Utils.IMap.add o (arrow_top_decl, []) j, 
353 
d, 
354 
(control_on_clock node args eq.eq_rhs.expr_clock (MStep ([var_x], o, [c1;c2]))) :: s) 
355 
 [x], Expr_pre e1 when ISet.mem (get_node_var x node) d > 
356 
let var_x = get_node_var x node in 
357 
(ISet.add var_x m, 
358 
si, 
359 
j, 
360 
d, 
361 
control_on_clock node args eq.eq_rhs.expr_clock (MStateAssign (var_x, translate_expr node args e1)) :: s) 
362 
 [x], Expr_fby (e1, e2) when ISet.mem (get_node_var x node) d > 
363 
let var_x = get_node_var x node in 
364 
(ISet.add var_x m, 
365 
MStateAssign (var_x, translate_expr node args e1) :: si, 
366 
j, 
367 
d, 
368 
control_on_clock node args eq.eq_rhs.expr_clock (MStateAssign (var_x, translate_expr node args e2)) :: s) 
369  
370 
 p , Expr_appl (f, arg, r) when not (Basic_library.is_internal_fun f) > 
371 
let var_p = List.map (fun v > get_node_var v node) p in 
372 
let el = expr_list_of_expr arg in 
373 
let vl = List.map (translate_expr node args) el in 
374 
let node_f = node_from_name f in 
375 
let call_f = 
376 
node_f, 
377 
NodeDep.filter_static_inputs (node_inputs node_f) el in 
378 
let o = new_instance node node_f eq.eq_rhs.expr_tag in 
379 
let env_cks = List.fold_right (fun arg cks > arg.expr_clock :: cks) el [eq.eq_rhs.expr_clock] in 
380 
let call_ck = Clock_calculus.compute_root_clock (Clock_predef.ck_tuple env_cks) in 
381 
(*Clocks.new_var true in 
382 
Clock_calculus.unify_imported_clock (Some call_ck) eq.eq_rhs.expr_clock eq.eq_rhs.expr_loc; 
383 
Format.eprintf "call %a: %a: %a@," Printers.pp_expr eq.eq_rhs Clocks.print_ck (Clock_predef.ck_tuple env_cks) Clocks.print_ck call_ck;*) 
384 
(m, 
385 
(if Stateless.check_node node_f then si else MReset o :: si), 
386 
Utils.IMap.add o call_f j, 
387 
d, 
388 
(if Stateless.check_node node_f 
389 
then [] 
390 
else reset_instance node args o r call_ck) @ 
391 
(control_on_clock node args call_ck (MStep (var_p, o, vl))) :: s) 
392  
393 
(* special treatment depending on the active backend. For horn backend, x = ite (g,t,e) 
394 
are preserved. While they are replaced as if g then x = t else x = e in C or Java 
395 
backends. *) 
396 
 [x], Expr_ite (c, t, e) 
397 
when (match !Options.output with  "horn" > true  "C"  "java"  _ > false) 
398 
> 
399 
let var_x = get_node_var x node in 
400 
(m, 
401 
si, 
402 
j, 
403 
d, 
404 
(control_on_clock node args eq.eq_rhs.expr_clock 
405 
(MLocalAssign (var_x, translate_expr node args eq.eq_rhs))::s) 
406 
) 
407  
408 
 [x], _ > ( 
409 
let var_x = get_node_var x node in 
410 
(m, si, j, d, 
411 
control_on_clock 
412 
node 
413 
args 
414 
eq.eq_rhs.expr_clock 
415 
(translate_act node args (var_x, eq.eq_rhs)) :: s 
416 
) 
417 
) 
418 
 _ > 
419 
begin 
420 
Format.eprintf "unsupported equation: %a@?" Printers.pp_node_eq eq; 
421 
assert false 
422 
end 
423  
424 
let find_eq xl eqs = 
425 
let rec aux accu eqs = 
426 
match eqs with 
427 
 [] > 
428 
begin 
429 
Format.eprintf "Looking for variables %a in the following equations@.%a@." 
430 
(Utils.fprintf_list ~sep:" , " (fun fmt v > Format.fprintf fmt "%s" v)) xl 
431 
Printers.pp_node_eqs eqs; 
432 
assert false 
433 
end 
434 
 hd::tl > 
435 
if List.exists (fun x > List.mem x hd.eq_lhs) xl then hd, accu@tl else aux (hd::accu) tl 
436 
in 
437 
aux [] eqs 
438  
439 
(* Sort the set of equations of node [nd] according 
440 
to the computed schedule [sch] 
441 
*) 
442 
let sort_equations_from_schedule nd sch = 
443 
(*Format.eprintf "%s schedule: %a@." 
444 
nd.node_id 
445 
(Utils.fprintf_list ~sep:" ; " Scheduling.pp_eq_schedule) sch;*) 
446 
let split_eqs = Splitting.tuple_split_eq_list (get_node_eqs nd) in 
447 
let eqs_rev, remainder = 
448 
List.fold_left 
449 
(fun (accu, node_eqs_remainder) vl > 
450 
if List.exists (fun eq > List.exists (fun v > List.mem v eq.eq_lhs) vl) accu 
451 
then 
452 
(accu, node_eqs_remainder) 
453 
else 
454 
let eq_v, remainder = find_eq vl node_eqs_remainder in 
455 
eq_v::accu, remainder 
456 
) 
457 
([], split_eqs) 
458 
sch 
459 
in 
460 
begin 
461 
if List.length remainder > 0 then ( 
462 
Format.eprintf "Equations not used are@.%a@.Full equation set is:@.%a@.@?" 
463 
Printers.pp_node_eqs remainder 
464 
Printers.pp_node_eqs (get_node_eqs nd); 
465 
assert false); 
466 
List.rev eqs_rev 
467 
end 
468  
469 
let constant_equations nd = 
470 
List.fold_right (fun vdecl eqs > 
471 
if vdecl.var_dec_const 
472 
then 
473 
{ eq_lhs = [vdecl.var_id]; 
474 
eq_rhs = Utils.desome vdecl.var_dec_value; 
475 
eq_loc = vdecl.var_loc 
476 
} :: eqs 
477 
else eqs) 
478 
nd.node_locals [] 
479  
480 
let translate_eqs node args eqs = 
481 
List.fold_right (fun eq args > translate_eq node args eq) eqs args;; 
482  
483 
let translate_decl nd sch = 
484 
(*Log.report ~level:1 (fun fmt > Printers.pp_node fmt nd);*) 
485  
486 
let sorted_eqs = sort_equations_from_schedule nd sch in 
487 
let constant_eqs = constant_equations nd in 
488 

489 
let init_args = ISet.empty, [], Utils.IMap.empty, List.fold_right (fun l > ISet.add l) nd.node_locals ISet.empty, [] in 
490 
(* memories, init instructions, node calls, local variables (including memories), step instrs *) 
491 
let m0, init0, j0, locals0, s0 = translate_eqs nd init_args constant_eqs in 
492 
assert (ISet.is_empty m0); 
493 
assert (init0 = []); 
494 
assert (Utils.IMap.is_empty j0); 
495 
let m, init, j, locals, s = translate_eqs nd (m0, init0, j0, locals0, s0) sorted_eqs in 
496 
let mmap = Utils.IMap.fold (fun i n res > (i, n)::res) j [] in 
497 
{ 
498 
mname = nd; 
499 
mmemory = ISet.elements m; 
500 
mcalls = mmap; 
501 
minstances = List.filter (fun (_, (n,_)) > not (Stateless.check_node n)) mmap; 
502 
minit = init; 
503 
mconst = s0; 
504 
mstatic = List.filter (fun v > v.var_dec_const) nd.node_inputs; 
505 
mstep = { 
506 
step_inputs = nd.node_inputs; 
507 
step_outputs = nd.node_outputs; 
508 
step_locals = ISet.elements (ISet.diff locals m); 
509 
step_checks = List.map (fun d > d.Dimension.dim_loc, translate_expr nd init_args (expr_of_dimension d)) nd.node_checks; 
510 
step_instrs = ( 
511 
(* special treatment depending on the active backend. For horn backend, 
512 
common branches are not merged while they are in C or Java 
513 
backends. *) 
514 
match !Options.output with 
515 
 "horn" > s 
516 
 "C"  "java"  _ > join_guards_list s 
517 
); 
518 
step_asserts = 
519 
let exprl = List.map (fun assert_ > assert_.assert_expr ) nd.node_asserts in 
520 
List.map (translate_expr nd init_args) exprl 
521 
; 
522 
}; 
523 
mspec = nd.node_spec; 
524 
mannot = nd.node_annot; 
525 
} 
526  
527 
(** takes the global declarations and the scheduling associated to each node *) 
528 
let translate_prog decls node_schs = 
529 
let nodes = get_nodes decls in 
530 
List.map 
531 
(fun decl > 
532 
let node = node_of_top decl in 
533 
let sch = (Utils.IMap.find node.node_id node_schs).Scheduling.schedule in 
534 
translate_decl node sch 
535 
) nodes 
536  
537 
let get_machine_opt name machines = 
538 
List.fold_left 
539 
(fun res m > 
540 
match res with 
541 
 Some _ > res 
542 
 None > if m.mname.node_id = name then Some m else None) 
543 
None machines 
544  
545 
let get_const_assign m id = 
546 
try 
547 
match (List.find (fun instr > match instr with MLocalAssign (v, _) > v == id  _ > false) m.mconst) with 
548 
 MLocalAssign (_, e) > e 
549 
 _ > assert false 
550 
with Not_found > assert false 
551  
552  
553 
let value_of_ident m id = 
554 
(* is is a state var *) 
555 
try 
556 
StateVar (List.find (fun v > v.var_id = id) m.mmemory) 
557 
with Not_found > 
558 
try (* id is a node var *) 
559 
LocalVar (get_node_var id m.mname) 
560 
with Not_found > 
561 
try (* id is a constant *) 
562 
LocalVar (Corelang.var_decl_of_const (const_of_top (Hashtbl.find Corelang.consts_table id))) 
563 
with Not_found > 
564 
(* id is a tag *) 
565 
Cst (Const_tag id) 
566  
567 
let rec value_of_dimension m dim = 
568 
match dim.Dimension.dim_desc with 
569 
 Dimension.Dbool b > Cst (Const_tag (if b then Corelang.tag_true else Corelang.tag_false)) 
570 
 Dimension.Dint i > Cst (Const_int i) 
571 
 Dimension.Dident v > value_of_ident m v 
572 
 Dimension.Dappl (f, args) > Fun (f, List.map (value_of_dimension m) args) 
573 
 Dimension.Dite (i, t, e) > Fun ("ite", List.map (value_of_dimension m) [i; t; e]) 
574 
 Dimension.Dlink dim' > value_of_dimension m dim' 
575 
 _ > assert false 
576  
577 
let rec dimension_of_value value = 
578 
match value with 
579 
 Cst (Const_tag t) when t = Corelang.tag_true > Dimension.mkdim_bool Location.dummy_loc true 
580 
 Cst (Const_tag t) when t = Corelang.tag_false > Dimension.mkdim_bool Location.dummy_loc false 
581 
 Cst (Const_int i) > Dimension.mkdim_int Location.dummy_loc i 
582 
 LocalVar v > Dimension.mkdim_ident Location.dummy_loc v.var_id 
583 
 Fun (f, args) > Dimension.mkdim_appl Location.dummy_loc f (List.map dimension_of_value args) 
584 
 _ > assert false 
585  
586 
(* Local Variables: *) 
587 
(* compilecommand:"make C .." *) 
588 
(* End: *) 