1


2

(* 

3

* SchedMCore  A MultiCore Scheduling Framework

4

* Copyright (C) 20092013, ONERA, Toulouse, FRANCE  LIFL, Lille, FRANCE

5

* Copyright (C) 20122013, INPT, Toulouse, FRANCE

6

*

7

* This file is part of Prelude

8

*

9

* Prelude is free software; you can redistribute it and/or

10

* modify it under the terms of the GNU Lesser General Public License

11

* as published by the Free Software Foundation ; either version 2 of

12

* the License, or (at your option) any later version.

13

*

14

* Prelude is distributed in the hope that it will be useful, but

15

* WITHOUT ANY WARRANTY ; without even the implied warranty of

16

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

17

* Lesser General Public License for more details.

18

*

19

* You should have received a copy of the GNU Lesser General Public

20

* License along with this program ; if not, write to the Free Software

21

* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 021111307

22

* USA

23

* *)

24


25

(* This module is used for the lustre to C compiler *)

26


27

open LustreSpec

28

open Corelang

29

open Clocks

30

open Causality

31


32

exception NormalizationError

33


34

module OrdVarDecl:Map.OrderedType with type t=var_decl =

35

struct type t = var_decl;; let compare = compare end

36


37

module ISet = Set.Make(OrdVarDecl)

38


39

type value_t =

40

 Cst of constant

41

 LocalVar of var_decl

42

 StateVar of var_decl

43

 Fun of ident * value_t list

44

 Array of value_t list

45

 Access of value_t * value_t

46

 Power of value_t * value_t

47


48

type instr_t =

49

 MLocalAssign of var_decl * value_t

50

 MStateAssign of var_decl * value_t

51

 MReset of ident

52

 MStep of var_decl list * ident * value_t list

53

 MBranch of value_t * (label * instr_t list) list

54


55

let rec pp_val fmt v =

56

match v with

57

 Cst c > Printers.pp_const fmt c

58

 LocalVar v > Format.pp_print_string fmt v.var_id

59

 StateVar v > Format.pp_print_string fmt v.var_id

60

 Array vl > Format.fprintf fmt "[%a]" (Utils.fprintf_list ~sep:", " pp_val) vl

61

 Access (t, i) > Format.fprintf fmt "%a[%a]" pp_val t pp_val i

62

 Power (v, n) > Format.fprintf fmt "(%a^%a)" pp_val v pp_val n

63

 Fun (n, vl) > Format.fprintf fmt "%s (%a)" n (Utils.fprintf_list ~sep:", " pp_val) vl

64


65

let rec pp_instr fmt i =

66

match i with

67

 MLocalAssign (i,v) > Format.fprintf fmt "%s<l %a" i.var_id pp_val v

68

 MStateAssign (i,v) > Format.fprintf fmt "%s<s %a" i.var_id pp_val v

69

 MReset i > Format.fprintf fmt "reset %s" i

70

 MStep (il, i, vl) >

71

Format.fprintf fmt "%a = %s (%a)"

72

(Utils.fprintf_list ~sep:", " (fun fmt v > Format.pp_print_string fmt v.var_id)) il

73

i

74

(Utils.fprintf_list ~sep:", " pp_val) vl

75

 MBranch (g,hl) >

76

Format.fprintf fmt "@[<v 2>case(%a) {@,%a@,}@]"

77

pp_val g

78

(Utils.fprintf_list ~sep:"@," pp_branch) hl

79


80

and pp_branch fmt (t, h) =

81

Format.fprintf fmt "@[<v 2>%s:@,%a@]" t (Utils.fprintf_list ~sep:"@," pp_instr) h

82


83

type step_t = {

84

step_checks: (Location.t * value_t) list;

85

step_inputs: var_decl list;

86

step_outputs: var_decl list;

87

step_locals: var_decl list;

88

step_instrs: instr_t list;

89

}

90


91

type static_call = top_decl * (Dimension.dim_expr list)

92


93

type machine_t = {

94

mname: node_desc;

95

mmemory: var_decl list;

96

mcalls: (ident * static_call) list; (* map from stateful/stateless instance to node, no internals *)

97

minstances: (ident * static_call) list; (* submap of mcalls, from stateful instance to node *)

98

minit: instr_t list;

99

mstatic: var_decl list; (* static inputs only *)

100

mstep: step_t;

101

mspec: node_annot option;

102

mannot: expr_annot option;

103

}

104


105

let pp_step fmt s =

106

Format.fprintf fmt "@[<v>inputs : %a@ outputs: %a@ locals : %a@ checks : %a@ instrs : @[%a@]@]@ "

107

(Utils.fprintf_list ~sep:", " Printers.pp_var) s.step_inputs

108

(Utils.fprintf_list ~sep:", " Printers.pp_var) s.step_outputs

109

(Utils.fprintf_list ~sep:", " Printers.pp_var) s.step_locals

110

(Utils.fprintf_list ~sep:", " (fun fmt (_, c) > pp_val fmt c)) s.step_checks

111

(Utils.fprintf_list ~sep:"@ " pp_instr) s.step_instrs

112


113

let pp_static_call fmt (node, args) =

114

Format.fprintf fmt "%s<%a>"

115

(node_name node)

116

(Utils.fprintf_list ~sep:", " Dimension.pp_dimension) args

117


118

let pp_machine fmt m =

119

Format.fprintf fmt

120

"@[<v 2>machine %s@ mem : %a@ instances: %a@ init : %a@ step :@ @[<v 2>%a@]@ @]@ "

121

m.mname.node_id

122

(Utils.fprintf_list ~sep:", " Printers.pp_var) m.mmemory

123

(Utils.fprintf_list ~sep:", " (fun fmt (o1, o2) > Format.fprintf fmt "(%s, %a)" o1 pp_static_call o2)) m.minstances

124

(Utils.fprintf_list ~sep:"@ " pp_instr) m.minit

125

pp_step m.mstep

126


127

let is_output m id =

128

List.exists (fun o > o.var_id = id.var_id) m.mstep.step_outputs

129


130

let conditional c t e =

131

MBranch(c, [ (tag_true, t); (tag_false, e) ])

132


133

let dummy_var_decl name typ =

134

{

135

var_id = name;

136

var_dec_type = dummy_type_dec;

137

var_dec_clock = dummy_clock_dec;

138

var_dec_const = false;

139

var_type = typ;

140

var_clock = Clocks.new_ck (Clocks.Cvar Clocks.CSet_all) true;

141

var_loc = Location.dummy_loc

142

}

143


144

let arrow_id = "_arrow"

145


146

let arrow_typ = Types.new_ty Types.Tunivar

147


148

let arrow_desc =

149

{

150

node_id = arrow_id;

151

node_type = Type_predef.type_bin_poly_op;

152

node_clock = Clock_predef.ck_bin_univ;

153

node_inputs= [dummy_var_decl "_in1" arrow_typ; dummy_var_decl "_in2" arrow_typ];

154

node_outputs= [dummy_var_decl "_out" arrow_typ];

155

node_locals= [];

156

node_gencalls = [];

157

node_checks = [];

158

node_asserts = [];

159

node_eqs= [];

160

node_spec = None;

161

node_annot = None; }

162


163

let arrow_top_decl =

164

{

165

top_decl_desc = Node arrow_desc;

166

top_decl_loc = Location.dummy_loc

167

}

168


169

let arrow_machine =

170

let state = "_first" in

171

let var_state = dummy_var_decl state (Types.new_ty Types.Tbool) in

172

let var_input1 = List.nth arrow_desc.node_inputs 0 in

173

let var_input2 = List.nth arrow_desc.node_inputs 1 in

174

let var_output = List.nth arrow_desc.node_outputs 0 in

175

{

176

mname = arrow_desc;

177

mmemory = [var_state];

178

mcalls = [];

179

minstances = [];

180

minit = [MStateAssign(var_state, Cst (const_of_bool true))];

181

mstatic = [];

182

mstep = {

183

step_inputs = arrow_desc.node_inputs;

184

step_outputs = arrow_desc.node_outputs;

185

step_locals = [];

186

step_checks = [];

187

step_instrs = [conditional (StateVar var_state)

188

[MStateAssign(var_state, Cst (const_of_bool false));

189

MLocalAssign(var_output, LocalVar var_input1)]

190

[MLocalAssign(var_output, LocalVar var_input2)] ]

191

};

192

mspec = None;

193

mannot = None;

194

}

195


196

let is_stateless_node node =

197

(node_name node <> arrow_id) &&

198

match node.top_decl_desc with

199

 Node id > false (* TODO: add a check after the machines are produced. Start from the main node and do a DFS to compute the stateless/statefull property of nodes. Stateless nodes should not be reset *)

200

 ImportedNode id > id.nodei_stateless

201

 ImportedFun _ > true

202

 _ > assert false

203


204

let new_instance =

205

let cpt = ref (1) in

206

fun caller callee tag >

207

begin

208

let o =

209

if is_stateless_node callee then

210

node_name callee

211

else

212

Printf.sprintf "ni_%d" (incr cpt; !cpt) in

213

let o =

214

if !Options.ansi && is_generic_node callee

215

then Printf.sprintf "%s_inst_%d" o (Utils.position (fun e > e.expr_tag = tag) caller.node_gencalls)

216

else o in

217

o

218

end

219


220

let const_of_carrier cr =

221

match (carrier_repr cr).carrier_desc with

222

 Carry_const id > id

223

 Carry_name > assert false

224

 Carry_var > assert false

225

 Carry_link _ > assert false (* TODO check this Xavier *)

226


227

(* translate_<foo> : node > context > <foo> > machine code/expression *)

228

(* the context contains m : state aka memory variables *)

229

(* si : initialization instructions *)

230

(* j : node aka machine instances *)

231

(* d : local variables *)

232

(* s : step instructions *)

233

let translate_ident node (m, si, j, d, s) id =

234

try (* id is a node var *)

235

let var_id = node_var id node in

236

if ISet.exists (fun v > v.var_id = id) m

237

then StateVar var_id

238

else LocalVar var_id

239

with Not_found > (* id is a constant *)

240

LocalVar (Corelang.var_decl_of_const (Hashtbl.find Corelang.consts_table id))

241


242

let rec control_on_clock node ((m, si, j, d, s) as args) ck inst =

243

match ck.cdesc with

244

 Con (ck1, cr, l) >

245

let id = const_of_carrier cr in

246

control_on_clock node args ck1 (MBranch (translate_ident node args id,

247

[l, [inst]] ))

248

 _ > inst

249


250

let rec join_branches hl1 hl2 =

251

match hl1, hl2 with

252

 [] , _ > hl2

253

 _ , [] > hl1

254

 (t1, h1)::q1, (t2, h2)::q2 >

255

if t1 < t2 then (t1, h1) :: join_branches q1 hl2 else

256

if t1 > t2 then (t2, h2) :: join_branches hl1 q2

257

else (t1, List.fold_right join_guards h1 h2) :: join_branches q1 q2

258


259

and join_guards inst1 insts2 =

260

match inst1, insts2 with

261

 _ , [] >

262

[inst1]

263

 MBranch (x1, hl1), MBranch (x2, hl2) :: q when x1 = x2 >

264

MBranch (x1, join_branches (sort_handlers hl1) (sort_handlers hl2))

265

:: q

266

 _ > inst1 :: insts2

267


268

let join_guards_list insts =

269

List.fold_right join_guards insts []

270


271

let find_eq x eqs =

272

let rec aux accu eqs =

273

match eqs with

274

 [] >

275

begin

276

Format.eprintf "Looking for variable %a in the following equations@.%a@."

277

Format.pp_print_string x

278

Printers.pp_node_eqs eqs;

279

assert false

280

end

281

 hd::tl >

282

if List.mem x hd.eq_lhs then hd, accu@tl else aux (hd::accu) tl

283

in

284

aux [] eqs

285


286

let rec translate_expr node ((m, si, j, d, s) as args) expr =

287

match expr.expr_desc with

288

 Expr_const v > Cst v

289

 Expr_ident x > translate_ident node args x

290

 Expr_array el > Array (List.map (translate_expr node args) el)

291

 Expr_access (t, i) > Access (translate_expr node args t, translate_expr node args (expr_of_dimension i))

292

 Expr_power (e, n) > Power (translate_expr node args e, translate_expr node args (expr_of_dimension n))

293

 Expr_tuple _

294

 Expr_arrow _

295

 Expr_fby _

296

 Expr_pre _ > (Printers.pp_expr Format.err_formatter expr; Format.pp_print_flush Format.err_formatter (); raise NormalizationError)

297

 Expr_when (e1, _, _) > translate_expr node args e1

298

 Expr_merge (x, _) > raise NormalizationError

299

 Expr_appl (id, e, _) when Basic_library.is_internal_fun id >

300

let nd = node_from_name id in

301

(match e.expr_desc with

302

 Expr_tuple el > Fun (node_name nd, List.map (translate_expr node args) el)

303

 _ > Fun (node_name nd, [translate_expr node args e]))

304

 Expr_ite (g,t,e) > Fun ("ite", [translate_expr node args g; translate_expr node args t; translate_expr node args e])

305


306

 _ > raise NormalizationError

307


308

let translate_guard node args expr =

309

match expr.expr_desc with

310

 Expr_ident x > translate_ident node args x

311

 _ > assert false

312


313

let rec translate_act node ((m, si, j, d, s) as args) (y, expr) =

314

match expr.expr_desc with

315

 Expr_ite (c, t, e) > let g = translate_guard node args c in

316

conditional g [translate_act node args (y, t)]

317

[translate_act node args (y, e)]

318

 Expr_merge (x, hl) > MBranch (translate_ident node args x, List.map (fun (t, h) > t, [translate_act node args (y, h)]) hl)

319

 _ > MLocalAssign (y, translate_expr node args expr)

320


321

let reset_instance node args i r c =

322

match r with

323

 None > []

324

 Some (x, l) > [control_on_clock node args c (MBranch (translate_ident node args x, [l, [MReset i]]))]

325


326

let translate_eq node ((m, si, j, d, s) as args) eq =

327

(*Format.eprintf "translate_eq %a@." Printers.pp_node_eq eq;*)

328

match eq.eq_lhs, eq.eq_rhs.expr_desc with

329

 [x], Expr_arrow (e1, e2) >

330

let var_x = node_var x node in

331

let o = new_instance node arrow_top_decl eq.eq_rhs.expr_tag in

332

let c1 = translate_expr node args e1 in

333

let c2 = translate_expr node args e2 in

334

(m,

335

MReset o :: si,

336

Utils.IMap.add o (arrow_top_decl, []) j,

337

d,

338

(control_on_clock node args eq.eq_rhs.expr_clock (MStep ([var_x], o, [c1;c2]))) :: s)

339

 [x], Expr_pre e1 when ISet.mem (node_var x node) d >

340

let var_x = node_var x node in

341

(ISet.add var_x m,

342

si,

343

j,

344

d,

345

control_on_clock node args eq.eq_rhs.expr_clock (MStateAssign (var_x, translate_expr node args e1)) :: s)

346

 [x], Expr_fby (e1, e2) when ISet.mem (node_var x node) d >

347

let var_x = node_var x node in

348

(ISet.add var_x m,

349

MStateAssign (var_x, translate_expr node args e1) :: si,

350

j,

351

d,

352

control_on_clock node args eq.eq_rhs.expr_clock (MStateAssign (var_x, translate_expr node args e2)) :: s)

353

 p , Expr_appl (f, arg, r) >

354

let var_p = List.map (fun v > node_var v node) p in

355

let el =

356

match arg.expr_desc with

357

 Expr_tuple el > el

358

 _ > [arg] in

359

let vl = List.map (translate_expr node args) el in

360

let node_f = node_from_name f in

361

let call_f =

362

node_f,

363

NodeDep.filter_static_inputs (node_inputs node_f) el in

364

let o = new_instance node node_f eq.eq_rhs.expr_tag in

365

(m,

366

(if is_stateless_node node_f then si else MReset o :: si),

367

(if Basic_library.is_internal_fun f then j else Utils.IMap.add o call_f j),

368

d,

369

reset_instance node args o r eq.eq_rhs.expr_clock @

370

(control_on_clock node args eq.eq_rhs.expr_clock (MStep (var_p, o, vl))) :: s)

371

 [x], Expr_ite (c, t, e) >

372

let var_x = node_var x node in

373

(m,

374

si,

375

j,

376

d,

377

(control_on_clock node args eq.eq_rhs.expr_clock

378

(MLocalAssign (var_x, translate_expr node args eq.eq_rhs))::s)

379

)

380

 [x], _ >

381

let var_x = node_var x node in

382

(m, si, j, d,

383

control_on_clock node args eq.eq_rhs.expr_clock (translate_act node args (var_x, eq.eq_rhs)) :: s)

384

 _ >

385

begin

386

Format.eprintf "unsupported equation: %a@?" Printers.pp_node_eq eq;

387

assert false

388

end

389


390

let translate_eqs node args eqs =

391

List.fold_right (fun eq args > translate_eq node args eq) eqs args;;

392


393

let translate_decl nd =

394

(*Log.report ~level:1 (fun fmt > Printers.pp_node fmt nd);*)

395

let nd, sch = Scheduling.schedule_node nd in

396

let split_eqs = Splitting.tuple_split_eq_list nd.node_eqs in

397

let eqs_rev, remainder =

398

List.fold_left

399

(fun (accu, node_eqs_remainder) v >

400

if List.exists (fun eq > List.mem v eq.eq_lhs) accu

401

then

402

(accu, node_eqs_remainder)

403

else

404

if List.exists (fun vdecl > vdecl.var_id = v) nd.node_locals

405

 List.exists (fun vdecl > vdecl.var_id = v) nd.node_outputs

406

then

407

let eq_v, remainder = find_eq v node_eqs_remainder in

408

eq_v::accu, remainder

409

(* else it is a constant value, checked during typing phase *)

410

else

411

accu, node_eqs_remainder

412

)

413

([], split_eqs)

414

sch

415

in

416

if List.length remainder > 0 then (

417

Format.eprintf "Equations not used are@.%a@.Full equation set is:@.%a@.@?"

418

Printers.pp_node_eqs remainder

419

Printers.pp_node_eqs nd.node_eqs;

420

assert false )

421

;

422


423

let init_args = ISet.empty, [], Utils.IMap.empty, List.fold_right (fun l > ISet.add l) nd.node_locals ISet.empty, [] in

424

let m, init, j, locals, s = translate_eqs nd init_args (List.rev eqs_rev) in

425

let mmap = Utils.IMap.fold (fun i n res > (i, n)::res) j [] in

426

{

427

mname = nd;

428

mmemory = ISet.elements m;

429

mcalls = mmap;

430

minstances = List.filter (fun (_, (n,_)) > not (is_stateless_node n)) mmap;

431

minit = init;

432

mstatic = List.filter (fun v > v.var_dec_const) nd.node_inputs;

433

mstep = {

434

step_inputs = nd.node_inputs;

435

step_outputs = nd.node_outputs;

436

step_locals = ISet.elements (ISet.diff locals m);

437

step_checks = List.map (fun d > d.Dimension.dim_loc, translate_expr nd init_args (expr_of_dimension d)) nd.node_checks;

438

step_instrs = (* join_guards_list *) s;

439

};

440

mspec = nd.node_spec;

441

mannot = nd.node_annot;

442

}

443


444


445

let translate_prog decls =

446

let nodes = get_nodes decls in

447

(* What to do with Imported/Sensor/Actuators ? *)

448

arrow_machine :: List.map translate_decl nodes

449


450

let get_machine_opt name machines =

451

List.fold_left

452

(fun res m >

453

match res with

454

 Some _ > res

455

 None > if m.mname.node_id = name then Some m else None)

456

None machines

457


458


459

(* Local Variables: *)

460

(* compilecommand:"make C .." *)

461

(* End: *)
