1
|
(********************************************************************)
|
2
|
(* *)
|
3
|
(* The LustreC compiler toolset / The LustreC Development Team *)
|
4
|
(* Copyright 2012 - -- ONERA - CNRS - INPT *)
|
5
|
(* *)
|
6
|
(* LustreC is free software, distributed WITHOUT ANY WARRANTY *)
|
7
|
(* under the terms of the GNU Lesser General Public License *)
|
8
|
(* version 2.1. *)
|
9
|
(* *)
|
10
|
(********************************************************************)
|
11
|
|
12
|
open Utils
|
13
|
open Lustre_types
|
14
|
open Spec_types
|
15
|
open Machine_code_types
|
16
|
open Corelang
|
17
|
open Causality
|
18
|
open Machine_code_common
|
19
|
module Mpfr = Lustrec_mpfr
|
20
|
|
21
|
let pp_elim m fmt elim =
|
22
|
IMap.pp ~comment:"/* elim table: */" (pp_val m) fmt elim
|
23
|
|
24
|
let eliminate_var_decl elim m v f a =
|
25
|
if is_memory m v then a
|
26
|
else try
|
27
|
f (IMap.find v.var_id elim)
|
28
|
with Not_found -> a
|
29
|
|
30
|
let rec eliminate_val m elim expr =
|
31
|
let eliminate_val = eliminate_val m in
|
32
|
match expr.value_desc with
|
33
|
| Var v ->
|
34
|
eliminate_var_decl elim m v (fun x -> x) expr
|
35
|
| Fun (id, vl) ->
|
36
|
{ expr with value_desc = Fun (id, List.map (eliminate_val elim) vl) }
|
37
|
| Array vl ->
|
38
|
{ expr with value_desc = Array (List.map (eliminate_val elim) vl) }
|
39
|
| Access (v1, v2) ->
|
40
|
{
|
41
|
expr with
|
42
|
value_desc = Access (eliminate_val elim v1, eliminate_val elim v2);
|
43
|
}
|
44
|
| Power (v1, v2) ->
|
45
|
{
|
46
|
expr with
|
47
|
value_desc = Power (eliminate_val elim v1, eliminate_val elim v2);
|
48
|
}
|
49
|
| Cst _ | ResetFlag ->
|
50
|
expr
|
51
|
|
52
|
let eliminate_expr m elim e =
|
53
|
let e_val = eliminate_val m elim in
|
54
|
match e with
|
55
|
| Val v -> Val (e_val v)
|
56
|
| Var v -> eliminate_var_decl elim m v (fun x -> Val x) e
|
57
|
| _ -> e
|
58
|
|
59
|
let eliminate_pred m elim = function
|
60
|
(* the transition is local to the machine *)
|
61
|
| Transition (s, f, inst, Some i, vars, r, mems, insts) ->
|
62
|
let vars = List.filter_map (function
|
63
|
| Spec_types.Val v ->
|
64
|
begin match v.value_desc with
|
65
|
| Var vd when IMap.mem vd.var_id elim -> None
|
66
|
| _ -> Some (Val v)
|
67
|
end
|
68
|
| Spec_types.Var vd when IMap.mem vd.var_id elim -> None
|
69
|
| e -> Some (eliminate_expr m elim e)) vars
|
70
|
in
|
71
|
Transition (s, f, inst, Some i, vars, r, mems, insts)
|
72
|
|
73
|
(* the transition is not local to the machine *)
|
74
|
| Transition (s, f, inst, None, vars, r, mems, insts) ->
|
75
|
let vars = List.map (eliminate_expr m elim) vars in
|
76
|
Transition (s, f, inst, None, vars, r, mems, insts)
|
77
|
|
78
|
| p ->
|
79
|
p
|
80
|
|
81
|
let rec eliminate_formula m elim =
|
82
|
let e_expr = eliminate_expr m elim in
|
83
|
let e_instr i = eliminate_formula m elim i in
|
84
|
let e_pred = eliminate_pred m elim in
|
85
|
function
|
86
|
| Equal (e1, e2) ->
|
87
|
Equal (e_expr e1, e_expr e2)
|
88
|
| GEqual (e1, e2) ->
|
89
|
GEqual (e_expr e1, e_expr e2)
|
90
|
| And f ->
|
91
|
And (List.map e_instr f)
|
92
|
| Or f ->
|
93
|
Or (List.map e_instr f)
|
94
|
| Imply (a, b) ->
|
95
|
Imply (e_instr a, e_instr b)
|
96
|
| Exists (xs, a) ->
|
97
|
let xs = List.filter (fun vd -> not (IMap.mem vd.var_id elim)) xs in
|
98
|
Exists (xs, eliminate_formula m elim a)
|
99
|
| Forall (xs, a) ->
|
100
|
let xs = List.filter (fun vd -> not (IMap.mem vd.var_id elim)) xs in
|
101
|
Forall (xs, eliminate_formula m elim a)
|
102
|
| Ternary (e, a, b) ->
|
103
|
Ternary (e_expr e, e_instr a, e_instr b)
|
104
|
| Predicate p ->
|
105
|
Predicate (e_pred p)
|
106
|
| ExistsMem (f, a, b) ->
|
107
|
ExistsMem (f, e_instr a, e_instr b)
|
108
|
| Value v ->
|
109
|
Value (eliminate_val m elim v)
|
110
|
| f ->
|
111
|
f
|
112
|
|
113
|
let rec eliminate m elim instr =
|
114
|
let e_val = eliminate_val m elim in
|
115
|
let instr = { instr with instr_spec = List.map (eliminate_formula m elim) instr.instr_spec } in
|
116
|
match get_instr_desc instr with
|
117
|
| MLocalAssign (i, v) ->
|
118
|
update_instr_desc instr (MLocalAssign (i, e_val v))
|
119
|
| MStateAssign (i, v) ->
|
120
|
update_instr_desc instr (MStateAssign (i, e_val v))
|
121
|
| MSetReset _
|
122
|
| MNoReset _
|
123
|
| MClearReset
|
124
|
| MResetAssign _
|
125
|
| MSpec _
|
126
|
| MComment _ ->
|
127
|
instr
|
128
|
| MStep (il, i, vl) ->
|
129
|
update_instr_desc instr (MStep (il, i, List.map e_val vl))
|
130
|
| MBranch (g, hl) ->
|
131
|
update_instr_desc
|
132
|
instr
|
133
|
(MBranch
|
134
|
( e_val g,
|
135
|
List.map (fun (l, il) -> l, List.map (eliminate m elim) il) hl ))
|
136
|
|
137
|
let rec fv_value m s v =
|
138
|
match v.value_desc with
|
139
|
| Var v ->
|
140
|
if is_memory m v then s else VSet.add v s
|
141
|
| Fun (_, vl)
|
142
|
| Array vl ->
|
143
|
List.fold_left (fv_value m) s vl
|
144
|
| Access (v1, v2)
|
145
|
| Power (v1, v2) ->
|
146
|
fv_value m (fv_value m s v1) v2
|
147
|
| _ -> s
|
148
|
|
149
|
let fv_expr m s = function
|
150
|
| Val v -> fv_value m s v
|
151
|
| Var v ->
|
152
|
if is_memory m v then s else VSet.add v s
|
153
|
| _ -> s
|
154
|
|
155
|
let fv_predicate m s = function
|
156
|
| Transition (_, _, _, _, vars, _, _, _) ->
|
157
|
List.fold_left (fv_expr m) s vars
|
158
|
| _ -> s
|
159
|
|
160
|
let rec fv_formula m s = function
|
161
|
| Equal (e1, e2)
|
162
|
| GEqual (e1, e2) ->
|
163
|
fv_expr m (fv_expr m s e1) e2
|
164
|
| And f
|
165
|
| Or f ->
|
166
|
List.fold_left (fv_formula m) s f
|
167
|
| Imply (a, b)
|
168
|
| ExistsMem (_, a, b) ->
|
169
|
fv_formula m (fv_formula m s a) b
|
170
|
| Exists (xs, a)
|
171
|
| Forall (xs, a) ->
|
172
|
VSet.filter (fun v -> not (List.mem v xs)) (fv_formula m s a)
|
173
|
| Ternary (e, a, b) ->
|
174
|
fv_expr m (fv_formula m (fv_formula m s a) b) e
|
175
|
| Predicate p ->
|
176
|
fv_predicate m s p
|
177
|
| Value v ->
|
178
|
fv_value m s v
|
179
|
| _ -> s
|
180
|
|
181
|
let eliminate_transition m elim t =
|
182
|
let tvars = List.filter (fun vd -> not (IMap.mem vd.var_id elim)) t.tvars in
|
183
|
let tformula = eliminate_formula m elim t.tformula in
|
184
|
let fv = VSet.(elements (diff (fv_formula m empty tformula) (of_list tvars))) in
|
185
|
let tformula = Exists (fv, tformula) in
|
186
|
{ t with
|
187
|
tvars;
|
188
|
tformula
|
189
|
}
|
190
|
|
191
|
(* XXX: UNUSED *)
|
192
|
(* let eliminate_dim elim dim =
|
193
|
* Dimension.expr_replace_expr
|
194
|
* (fun v ->
|
195
|
* try dimension_of_value (IMap.find v elim)
|
196
|
* with Not_found -> mkdim_ident dim.dim_loc v)
|
197
|
* dim *)
|
198
|
|
199
|
(* 8th Jan 2016: issues when merging salsa with horn_encoding: The following
|
200
|
functions seem unsused. They have to be adapted to the new type for expr *)
|
201
|
|
202
|
let unfold_expr_offset m offset expr =
|
203
|
List.fold_left
|
204
|
(fun res -> function
|
205
|
| Index i ->
|
206
|
mk_val
|
207
|
(Access (res, value_of_dimension m i))
|
208
|
(Types.array_element_type res.value_type)
|
209
|
| Field _ ->
|
210
|
Format.eprintf "internal error: not yet implemented !";
|
211
|
assert false)
|
212
|
expr
|
213
|
offset
|
214
|
|
215
|
let rec simplify_cst_expr m offset typ cst =
|
216
|
match offset, cst with
|
217
|
| [], _ ->
|
218
|
mk_val (Cst cst) typ
|
219
|
| Index i :: q, Const_array cl when Dimension.is_const i ->
|
220
|
let elt_typ = Types.array_element_type typ in
|
221
|
simplify_cst_expr m q elt_typ (List.nth cl (Dimension.size_const i))
|
222
|
| Index i :: q, Const_array cl ->
|
223
|
let elt_typ = Types.array_element_type typ in
|
224
|
unfold_expr_offset
|
225
|
m
|
226
|
[ Index i ]
|
227
|
(mk_val (Array (List.map (simplify_cst_expr m q elt_typ) cl)) typ)
|
228
|
| Field f :: q, Const_struct fl ->
|
229
|
let fld_typ = Types.struct_field_type typ f in
|
230
|
simplify_cst_expr m q fld_typ (List.assoc f fl)
|
231
|
| _ ->
|
232
|
Format.eprintf
|
233
|
"internal error: Optimize_machine.simplify_cst_expr %a@."
|
234
|
Printers.pp_const
|
235
|
cst;
|
236
|
assert false
|
237
|
|
238
|
let simplify_expr_offset m expr =
|
239
|
let rec simplify offset expr =
|
240
|
match offset, expr.value_desc with
|
241
|
| Field _ :: _, _ ->
|
242
|
failwith "not yet implemented"
|
243
|
| _, Fun (id, vl) when Basic_library.is_value_internal_fun expr ->
|
244
|
mk_val (Fun (id, List.map (simplify offset) vl)) expr.value_type
|
245
|
| _, Fun _ | _, Var _ ->
|
246
|
unfold_expr_offset m offset expr
|
247
|
| _, Cst cst ->
|
248
|
simplify_cst_expr m offset expr.value_type cst
|
249
|
| _, Access (expr, i) ->
|
250
|
simplify (Index (dimension_of_value i) :: offset) expr
|
251
|
| _, ResetFlag ->
|
252
|
expr
|
253
|
| [], _ ->
|
254
|
expr
|
255
|
| Index _ :: q, Power (expr, _) ->
|
256
|
simplify q expr
|
257
|
| Index i :: q, Array vl when Dimension.is_const i ->
|
258
|
simplify q (List.nth vl (Dimension.size_const i))
|
259
|
| Index i :: q, Array vl ->
|
260
|
unfold_expr_offset
|
261
|
m
|
262
|
[ Index i ]
|
263
|
(mk_val (Array (List.map (simplify q) vl)) expr.value_type)
|
264
|
(*Format.eprintf "simplify_expr %a %a = %a@." pp_val expr
|
265
|
(Utils.fprintf_list ~sep:"" Printers.pp_offset) offset pp_val res; res)
|
266
|
with e -> (Format.eprintf "simplify_expr %a %a = <FAIL>@." pp_val expr
|
267
|
(Utils.fprintf_list ~sep:"" Printers.pp_offset) offset; raise e*)
|
268
|
in
|
269
|
simplify [] expr
|
270
|
|
271
|
let rec simplify_instr_offset m instr =
|
272
|
match get_instr_desc instr with
|
273
|
| MLocalAssign (v, expr) ->
|
274
|
update_instr_desc instr (MLocalAssign (v, simplify_expr_offset m expr))
|
275
|
| MStateAssign (v, expr) ->
|
276
|
update_instr_desc instr (MStateAssign (v, simplify_expr_offset m expr))
|
277
|
| MSetReset _
|
278
|
| MNoReset _
|
279
|
| MClearReset
|
280
|
| MResetAssign _
|
281
|
| MSpec _
|
282
|
| MComment _ ->
|
283
|
instr
|
284
|
| MStep (outputs, id, inputs) ->
|
285
|
update_instr_desc
|
286
|
instr
|
287
|
(MStep (outputs, id, List.map (simplify_expr_offset m) inputs))
|
288
|
| MBranch (cond, brl) ->
|
289
|
update_instr_desc
|
290
|
instr
|
291
|
(MBranch
|
292
|
( simplify_expr_offset m cond,
|
293
|
List.map (fun (l, il) -> l, simplify_instrs_offset m il) brl ))
|
294
|
|
295
|
and simplify_instrs_offset m instrs = List.map (simplify_instr_offset m) instrs
|
296
|
|
297
|
(* XXX: UNUSED *)
|
298
|
(* let is_scalar_const c =
|
299
|
* match c with Const_real _ | Const_int _ | Const_tag _ -> true | _ -> false *)
|
300
|
|
301
|
(* An instruction v = expr may (and will) be unfolded iff: - either expr is
|
302
|
atomic (no complex expressions, only const, vars and array/struct accesses) -
|
303
|
or v has a fanin <= 1 (used at most once) *)
|
304
|
let is_unfoldable_expr fanin expr =
|
305
|
let rec unfold_const offset cst =
|
306
|
match offset, cst with
|
307
|
| _, Const_int _ | _, Const_real _ | _, Const_tag _ ->
|
308
|
true
|
309
|
| Field f :: q, Const_struct fl ->
|
310
|
unfold_const q (List.assoc f fl)
|
311
|
| [], Const_struct _ ->
|
312
|
false
|
313
|
| Index i :: q, Const_array cl when Dimension.is_const i ->
|
314
|
unfold_const q (List.nth cl (Dimension.size_const i))
|
315
|
| _, Const_array _ ->
|
316
|
false
|
317
|
| _ ->
|
318
|
assert false
|
319
|
in
|
320
|
let rec unfold offset expr =
|
321
|
match offset, expr.value_desc with
|
322
|
| _, Cst cst ->
|
323
|
unfold_const offset cst
|
324
|
| _, Var _ ->
|
325
|
true
|
326
|
| [], Power _ | [], Array _ ->
|
327
|
false
|
328
|
| Index _ :: q, Power (v, _) ->
|
329
|
unfold q v
|
330
|
| Index i :: q, Array vl when Dimension.is_const i ->
|
331
|
unfold q (List.nth vl (Dimension.size_const i))
|
332
|
| _, Array _ ->
|
333
|
false
|
334
|
| _, Access (v, i) ->
|
335
|
unfold (Index (dimension_of_value i) :: offset) v
|
336
|
| _, Fun (_, vl) when fanin < 2 && Basic_library.is_value_internal_fun expr
|
337
|
->
|
338
|
List.for_all (unfold offset) vl
|
339
|
| _, Fun _ ->
|
340
|
false
|
341
|
| _ ->
|
342
|
assert false
|
343
|
in
|
344
|
unfold [] expr
|
345
|
|
346
|
let basic_unfoldable_assign fanin v expr =
|
347
|
try
|
348
|
let d = Hashtbl.find fanin v.var_id in
|
349
|
is_unfoldable_expr d expr
|
350
|
with Not_found -> false
|
351
|
|
352
|
let unfoldable_assign fanin v expr =
|
353
|
(if !Options.mpfr then Mpfr.unfoldable_value expr else true)
|
354
|
&& basic_unfoldable_assign fanin v expr
|
355
|
|
356
|
let merge_elim elim1 elim2 =
|
357
|
let merge _ e1 e2 =
|
358
|
match e1, e2 with
|
359
|
| Some e1, Some e2 ->
|
360
|
if e1 = e2 then Some e1 else None
|
361
|
| _, Some e2 ->
|
362
|
Some e2
|
363
|
| Some e1, _ ->
|
364
|
Some e1
|
365
|
| _ ->
|
366
|
None
|
367
|
in
|
368
|
IMap.merge merge elim1 elim2
|
369
|
|
370
|
(* see if elim has to take in account the provided instr: if so, update elim and
|
371
|
return the remove flag, otherwise, the expression should be kept and elim is
|
372
|
left untouched *)
|
373
|
let rec instrs_unfold m fanin elim instrs =
|
374
|
let elim, rev_instrs =
|
375
|
List.fold_left
|
376
|
(fun (elim, instrs) instr ->
|
377
|
(* each subexpression in instr that could be rewritten by the elim set
|
378
|
is rewritten *)
|
379
|
let instr = eliminate m (IMap.map fst elim) instr in
|
380
|
(* if instr is a simple local assign, then (a) elim is simplified with
|
381
|
it (b) it is stored as the elim set *)
|
382
|
instr_unfold m fanin instrs elim instr)
|
383
|
(elim, [])
|
384
|
instrs
|
385
|
in
|
386
|
elim, List.rev rev_instrs
|
387
|
|
388
|
and instr_unfold m fanin instrs (elim : (value_t * eq) IMap.t) instr =
|
389
|
(* Format.eprintf "SHOULD WE STORE THE EXPRESSION IN INSTR %a TO ELIMINATE
|
390
|
IT@." pp_instr instr;*)
|
391
|
match get_instr_desc instr with
|
392
|
(* Simple cases*)
|
393
|
| MStep ([ v ], id, vl)
|
394
|
when Basic_library.is_value_internal_fun (mk_val (Fun (id, vl)) v.var_type)
|
395
|
->
|
396
|
instr_unfold
|
397
|
m
|
398
|
fanin
|
399
|
instrs
|
400
|
elim
|
401
|
(update_instr_desc
|
402
|
instr
|
403
|
(MLocalAssign (v, mk_val (Fun (id, vl)) v.var_type)))
|
404
|
| MLocalAssign (v, expr)
|
405
|
when (not (is_clock_dec_type v.var_dec_type.ty_dec_desc))
|
406
|
&& unfoldable_assign fanin v expr ->
|
407
|
(* we don't eliminate clock definitions *)
|
408
|
let new_eq =
|
409
|
Corelang.mkeq
|
410
|
(desome instr.lustre_eq).eq_loc
|
411
|
([ v.var_id ], (desome instr.lustre_eq).eq_rhs)
|
412
|
in
|
413
|
IMap.add v.var_id (expr, new_eq) elim, instrs
|
414
|
| MBranch (g, hl) when false ->
|
415
|
let elim_branches =
|
416
|
List.map (fun (h, l) -> h, instrs_unfold m fanin elim l) hl
|
417
|
in
|
418
|
let elim, branches =
|
419
|
List.fold_right
|
420
|
(fun (h, (e, l)) (elim, branches) ->
|
421
|
merge_elim elim e, (h, l) :: branches)
|
422
|
elim_branches
|
423
|
(elim, [])
|
424
|
in
|
425
|
elim, update_instr_desc instr (MBranch (g, branches)) :: instrs
|
426
|
| _ ->
|
427
|
elim, instr :: instrs
|
428
|
(* default case, we keep the instruction and do not modify elim *)
|
429
|
|
430
|
(** We iterate in the order, recording simple local assigns in an accumulator 1.
|
431
|
each expression is rewritten according to the accumulator 2. local assigns
|
432
|
then rewrite occurrences of the lhs in the computed accumulator *)
|
433
|
|
434
|
let static_call_unfold elim (inst, (n, args)) =
|
435
|
let replace v =
|
436
|
try dimension_of_value (IMap.find v elim)
|
437
|
with Not_found -> Dimension.mkdim_ident Location.dummy v
|
438
|
in
|
439
|
inst, (n, List.map (Dimension.expr_replace_expr replace) args)
|
440
|
|
441
|
(** Perform optimization on machine code: - iterate through step instructions
|
442
|
and remove simple local assigns *)
|
443
|
let machine_unfold fanin elim machine =
|
444
|
Log.report ~level:3 (fun fmt ->
|
445
|
Format.fprintf
|
446
|
fmt
|
447
|
"machine_unfold %s %a@ "
|
448
|
machine.mname.node_id
|
449
|
(pp_elim machine)
|
450
|
(IMap.map fst elim));
|
451
|
let elim_consts, mconst = instrs_unfold machine fanin elim machine.mconst in
|
452
|
let elim_vars, instrs =
|
453
|
instrs_unfold machine fanin elim_consts machine.mstep.step_instrs
|
454
|
in
|
455
|
let step_instrs = simplify_instrs_offset machine instrs in
|
456
|
let step_checks =
|
457
|
List.map
|
458
|
(fun (loc, check) ->
|
459
|
loc, eliminate_val machine (IMap.map fst elim_vars) check)
|
460
|
machine.mstep.step_checks
|
461
|
in
|
462
|
let step_locals =
|
463
|
List.filter
|
464
|
(fun v -> not (IMap.mem v.var_id elim_vars))
|
465
|
machine.mstep.step_locals
|
466
|
in
|
467
|
let mtransitions = List.map (eliminate_transition machine (IMap.map fst elim_vars)) machine.mspec.mtransitions in
|
468
|
let elim_consts = IMap.map fst elim_consts in
|
469
|
let minstances =
|
470
|
List.map (static_call_unfold elim_consts) machine.minstances
|
471
|
in
|
472
|
let mcalls = List.map (static_call_unfold elim_consts) machine.mcalls in
|
473
|
( {
|
474
|
machine with
|
475
|
mstep =
|
476
|
{
|
477
|
machine.mstep with
|
478
|
step_locals;
|
479
|
step_instrs;
|
480
|
step_checks;
|
481
|
};
|
482
|
mspec =
|
483
|
{
|
484
|
machine.mspec with
|
485
|
mtransitions
|
486
|
};
|
487
|
mconst;
|
488
|
minstances;
|
489
|
mcalls;
|
490
|
},
|
491
|
elim_vars )
|
492
|
|
493
|
let instr_of_const top_const =
|
494
|
let const = const_of_top top_const in
|
495
|
let loc = const.const_loc in
|
496
|
let id = const.const_id in
|
497
|
let vdecl =
|
498
|
mkvar_decl
|
499
|
loc
|
500
|
( id,
|
501
|
mktyp Location.dummy Tydec_any,
|
502
|
mkclock loc Ckdec_any,
|
503
|
true,
|
504
|
None,
|
505
|
None )
|
506
|
in
|
507
|
let vdecl = { vdecl with var_type = const.const_type } in
|
508
|
let lustre_eq =
|
509
|
mkeq loc ([ const.const_id ], mkexpr loc (Expr_const const.const_value))
|
510
|
in
|
511
|
mkinstr
|
512
|
~lustre_eq
|
513
|
(MLocalAssign (vdecl, mk_val (Cst const.const_value) vdecl.var_type))
|
514
|
|
515
|
(* We do not perform this optimization on contract nodes since there is not
|
516
|
explicit dependence btw variables and their use in contracts. *)
|
517
|
let machines_unfold consts node_schs machines =
|
518
|
List.fold_right
|
519
|
(fun m (machines, removed) ->
|
520
|
let is_contract =
|
521
|
match m.mspec.mnode_spec with Some (Contract _) -> true | _ -> false
|
522
|
in
|
523
|
if is_contract then m :: machines, removed
|
524
|
else
|
525
|
let fanin =
|
526
|
(IMap.find m.mname.node_id node_schs).Scheduling_type.fanin_table
|
527
|
in
|
528
|
let elim_consts, _ =
|
529
|
instrs_unfold m fanin IMap.empty (List.map instr_of_const consts)
|
530
|
in
|
531
|
let m, removed_m = machine_unfold fanin elim_consts m in
|
532
|
m :: machines, IMap.add m.mname.node_id removed_m removed)
|
533
|
machines
|
534
|
([], IMap.empty)
|
535
|
|
536
|
let get_assign_lhs instr =
|
537
|
match get_instr_desc instr with
|
538
|
| MLocalAssign (v, e) ->
|
539
|
mk_val (Var v) e.value_type
|
540
|
| MStateAssign (v, e) ->
|
541
|
mk_val (Var v) e.value_type
|
542
|
| _ ->
|
543
|
assert false
|
544
|
|
545
|
let get_assign_rhs instr =
|
546
|
match get_instr_desc instr with
|
547
|
| MLocalAssign (_, e) | MStateAssign (_, e) ->
|
548
|
e
|
549
|
| _ ->
|
550
|
assert false
|
551
|
|
552
|
let is_assign instr =
|
553
|
match get_instr_desc instr with
|
554
|
| MLocalAssign _ | MStateAssign _ ->
|
555
|
true
|
556
|
| _ ->
|
557
|
false
|
558
|
|
559
|
let mk_assign m v e =
|
560
|
match v.value_desc with
|
561
|
| Var v ->
|
562
|
if is_memory m v then MStateAssign (v, e) else MLocalAssign (v, e)
|
563
|
| _ ->
|
564
|
assert false
|
565
|
|
566
|
let rec assigns_instr instr assign =
|
567
|
match get_instr_desc instr with
|
568
|
| MLocalAssign (i, _) | MStateAssign (i, _) ->
|
569
|
VSet.add i assign
|
570
|
| MStep (ol, _, _) ->
|
571
|
List.fold_right VSet.add ol assign
|
572
|
| MBranch (_, hl) ->
|
573
|
List.fold_right (fun (_, il) -> assigns_instrs il) hl assign
|
574
|
| _ ->
|
575
|
assign
|
576
|
|
577
|
and assigns_instrs instrs assign =
|
578
|
List.fold_left (fun assign instr -> assigns_instr instr assign) assign instrs
|
579
|
|
580
|
(* and substitute_expr subst expr = match expr with | Var v -> (try IMap.find
|
581
|
expr subst with Not_found -> expr) | Fun (id, vl) -> Fun (id, List.map
|
582
|
(substitute_expr subst) vl) | Array(vl) -> Array(List.map (substitute_expr
|
583
|
subst) vl) | Access(v1, v2) -> Access(substitute_expr subst v1,
|
584
|
substitute_expr subst v2) | Power(v1, v2) -> Power(substitute_expr subst v1,
|
585
|
substitute_expr subst v2) | Cst _ -> expr *)
|
586
|
|
587
|
(** Finds a substitute for [instr] in [instrs], i.e. another instr' with the
|
588
|
same rhs expression. Then substitute this expression with the first assigned
|
589
|
var *)
|
590
|
let subst_instr m subst instrs instr =
|
591
|
(* Format.eprintf "subst instr: %a@." (pp_instr m) instr; *)
|
592
|
let instr = eliminate m subst instr in
|
593
|
let instr_v = get_assign_lhs instr in
|
594
|
let instr_e = get_assign_rhs instr in
|
595
|
try
|
596
|
(* Searching for equivalent asssign *)
|
597
|
let instr' =
|
598
|
List.find
|
599
|
(fun instr' -> is_assign instr' && get_assign_rhs instr' = instr_e)
|
600
|
instrs
|
601
|
in
|
602
|
(* Registering the instr_v as instr'_v while replacing *)
|
603
|
match instr_v.value_desc with
|
604
|
| Var v -> (
|
605
|
let instr'_v = get_assign_lhs instr' in
|
606
|
if not (is_memory m v) then
|
607
|
(* The current instruction defines a local variables, ie not memory, we
|
608
|
can just record the relationship and continue *)
|
609
|
IMap.add v.var_id instr'_v subst, instrs
|
610
|
else
|
611
|
(* The current instruction defines a memory. We need to keep the
|
612
|
definition, simplified *)
|
613
|
match instr'_v.value_desc with
|
614
|
| Var v' ->
|
615
|
if not (is_memory m v') then
|
616
|
(* We define v' = v. Don't need to update the records. *)
|
617
|
let instr =
|
618
|
eliminate
|
619
|
m
|
620
|
subst
|
621
|
(update_instr_desc instr (mk_assign m instr_v instr'_v))
|
622
|
in
|
623
|
subst, instr :: instrs
|
624
|
else
|
625
|
(* Last case, v', the lhs of the previous similar definition is,
|
626
|
itself, a memory *)
|
627
|
|
628
|
(* TODO regarder avec X. Il me semble qu'on peut faire plus
|
629
|
simple: *)
|
630
|
(* Filtering out the list of instructions: - we copy in the same
|
631
|
order the list of instr in instrs (fold_right) - if the current
|
632
|
instr is this instr' then apply the elimination with v' -> v on
|
633
|
instr' before recording it as an instruction. *)
|
634
|
let subst_v' = IMap.add v'.var_id instr_v IMap.empty in
|
635
|
let instrs' =
|
636
|
snd
|
637
|
(List.fold_right
|
638
|
(fun instr (ok, instrs) ->
|
639
|
( ok || instr = instr',
|
640
|
if ok then instr :: instrs
|
641
|
else if instr = instr' then instrs
|
642
|
else eliminate m subst_v' instr :: instrs ))
|
643
|
instrs
|
644
|
(false, []))
|
645
|
in
|
646
|
IMap.add v'.var_id instr_v subst, instr :: instrs'
|
647
|
| _ ->
|
648
|
assert false)
|
649
|
| _ ->
|
650
|
assert false
|
651
|
with Not_found ->
|
652
|
(* No such equivalent expr: keeping the definition *)
|
653
|
subst, instr :: instrs
|
654
|
|
655
|
(* - [subst] : hashtable from ident to (simple) definition it is an equivalence
|
656
|
table - [elim] : set of eliminated variables - [instrs] : previous
|
657
|
instructions, which [instr] is compared against - [instr] : current
|
658
|
instruction, normalized by [subst] *)
|
659
|
|
660
|
(** Common sub-expression elimination for machine instructions *)
|
661
|
let rec instr_cse m (subst, instrs) instr =
|
662
|
match get_instr_desc instr with
|
663
|
(* Simple cases*)
|
664
|
| MStep ([ v ], id, vl)
|
665
|
when Basic_library.is_internal_fun id (List.map (fun v -> v.value_type) vl)
|
666
|
->
|
667
|
instr_cse
|
668
|
m
|
669
|
(subst, instrs)
|
670
|
(update_instr_desc
|
671
|
instr
|
672
|
(MLocalAssign (v, mk_val (Fun (id, vl)) v.var_type)))
|
673
|
| MLocalAssign (v, expr) when is_unfoldable_expr 2 expr ->
|
674
|
IMap.add v.var_id expr subst, instr :: instrs
|
675
|
| _ when is_assign instr ->
|
676
|
subst_instr m subst instrs instr
|
677
|
| _ ->
|
678
|
subst, instr :: instrs
|
679
|
|
680
|
(** Apply common sub-expression elimination to a sequence of instrs *)
|
681
|
let instrs_cse m subst instrs =
|
682
|
let subst, rev_instrs = List.fold_left (instr_cse m) (subst, []) instrs in
|
683
|
subst, List.rev rev_instrs
|
684
|
|
685
|
(** Apply common sub-expression elimination to a machine - iterate through step
|
686
|
instructions and remove simple local assigns *)
|
687
|
let machine_cse subst machine =
|
688
|
(*Log.report ~level:1 (fun fmt -> Format.fprintf fmt "machine_cse %a@."
|
689
|
pp_elim subst);*)
|
690
|
let _, instrs = instrs_cse machine subst machine.mstep.step_instrs in
|
691
|
let assigned = assigns_instrs instrs VSet.empty in
|
692
|
{
|
693
|
machine with
|
694
|
mmemory = List.filter (fun vdecl -> VSet.mem vdecl assigned) machine.mmemory;
|
695
|
mstep =
|
696
|
{
|
697
|
machine.mstep with
|
698
|
step_locals =
|
699
|
List.filter
|
700
|
(fun vdecl -> VSet.mem vdecl assigned)
|
701
|
machine.mstep.step_locals;
|
702
|
step_instrs = instrs;
|
703
|
};
|
704
|
}
|
705
|
|
706
|
let machines_cse machines = List.map (machine_cse IMap.empty) machines
|
707
|
|
708
|
(* variable substitution for optimizing purposes *)
|
709
|
|
710
|
(* checks whether an [instr] is skip and can be removed from program *)
|
711
|
let rec instr_is_skip instr =
|
712
|
match get_instr_desc instr with
|
713
|
| MLocalAssign (i, { value_desc = Var v; _ }) when i = v ->
|
714
|
true
|
715
|
| MStateAssign (i, { value_desc = Var v; _ }) when i = v ->
|
716
|
true
|
717
|
| MBranch (_, hl) ->
|
718
|
List.for_all (fun (_, il) -> instrs_are_skip il) hl
|
719
|
| _ ->
|
720
|
false
|
721
|
|
722
|
and instrs_are_skip instrs = List.for_all instr_is_skip instrs
|
723
|
|
724
|
let instr_cons instr cont = if instr_is_skip instr then cont else instr :: cont
|
725
|
|
726
|
(* XXX: UNUSED *)
|
727
|
(* let rec instr_remove_skip instr cont =
|
728
|
* match get_instr_desc instr with
|
729
|
* | MLocalAssign (i, { value_desc = Var v; _ }) when i = v ->
|
730
|
* cont
|
731
|
* | MStateAssign (i, { value_desc = Var v; _ }) when i = v ->
|
732
|
* cont
|
733
|
* | MBranch (g, hl) ->
|
734
|
* update_instr_desc instr
|
735
|
* (MBranch (g, List.map (fun (h, il) -> h, instrs_remove_skip il []) hl))
|
736
|
* :: cont
|
737
|
* | _ ->
|
738
|
* instr :: cont
|
739
|
*
|
740
|
* and instrs_remove_skip instrs cont =
|
741
|
* List.fold_right instr_remove_skip instrs cont *)
|
742
|
|
743
|
let rec value_replace_var fvar value =
|
744
|
match value.value_desc with
|
745
|
| Cst _ | ResetFlag ->
|
746
|
value
|
747
|
| Var v ->
|
748
|
{ value with value_desc = Var (fvar v) }
|
749
|
| Fun (id, args) ->
|
750
|
{ value with value_desc = Fun (id, List.map (value_replace_var fvar) args) }
|
751
|
| Array vl ->
|
752
|
{ value with value_desc = Array (List.map (value_replace_var fvar) vl) }
|
753
|
| Access (t, i) ->
|
754
|
{ value with value_desc = Access (value_replace_var fvar t, i) }
|
755
|
| Power (v, n) ->
|
756
|
{ value with value_desc = Power (value_replace_var fvar v, n) }
|
757
|
|
758
|
let expr_spec_replace fvar = function
|
759
|
| Val v ->
|
760
|
Val (value_replace_var fvar v)
|
761
|
| Var v ->
|
762
|
Var (fvar v)
|
763
|
| e ->
|
764
|
e
|
765
|
|
766
|
let predicate_spec_replace fvar = function
|
767
|
| Transition (s, f, inst, i, vars, r, mems, insts) ->
|
768
|
Transition
|
769
|
(s, f, inst, i, List.map (expr_spec_replace fvar) vars, r, mems, insts)
|
770
|
| p ->
|
771
|
p
|
772
|
|
773
|
let rec instr_spec_replace fvar =
|
774
|
let aux instr = instr_spec_replace fvar instr in
|
775
|
function
|
776
|
| Equal (e1, e2) ->
|
777
|
Equal (expr_spec_replace fvar e1, expr_spec_replace fvar e2)
|
778
|
| GEqual (e1, e2) ->
|
779
|
GEqual (expr_spec_replace fvar e1, expr_spec_replace fvar e2)
|
780
|
| And f ->
|
781
|
And (List.map aux f)
|
782
|
| Or f ->
|
783
|
Or (List.map aux f)
|
784
|
| Imply (a, b) ->
|
785
|
Imply (aux a, aux b)
|
786
|
| Exists (xs, a) ->
|
787
|
let fvar v = if List.mem v xs then v else fvar v in
|
788
|
Exists (xs, instr_spec_replace fvar a)
|
789
|
| Forall (xs, a) ->
|
790
|
let fvar v = if List.mem v xs then v else fvar v in
|
791
|
Forall (xs, instr_spec_replace fvar a)
|
792
|
| Ternary (e, a, b) ->
|
793
|
Ternary (expr_spec_replace fvar e, aux a, aux b)
|
794
|
| Predicate p ->
|
795
|
Predicate (predicate_spec_replace fvar p)
|
796
|
| ExistsMem (f, a, b) ->
|
797
|
ExistsMem (f, aux a, aux b)
|
798
|
| f ->
|
799
|
f
|
800
|
|
801
|
let rec instr_replace_var fvar instr =
|
802
|
let instr_desc =
|
803
|
match instr.instr_desc with
|
804
|
| MLocalAssign (i, v) ->
|
805
|
MLocalAssign (fvar i, value_replace_var fvar v)
|
806
|
| MStateAssign (i, v) ->
|
807
|
MStateAssign (i, value_replace_var fvar v)
|
808
|
| MStep (il, i, vl) ->
|
809
|
MStep (List.map fvar il, i, List.map (value_replace_var fvar) vl)
|
810
|
| MBranch (g, hl) ->
|
811
|
MBranch
|
812
|
( value_replace_var fvar g,
|
813
|
List.map (fun (h, il) -> h, instrs_replace_var fvar il []) hl )
|
814
|
| MSetReset _
|
815
|
| MNoReset _
|
816
|
| MClearReset
|
817
|
| MResetAssign _
|
818
|
| MSpec _
|
819
|
| MComment _ ->
|
820
|
instr.instr_desc
|
821
|
in
|
822
|
let instr_spec = List.map (instr_spec_replace fvar) instr.instr_spec in
|
823
|
instr_cons { instr with instr_desc; instr_spec }
|
824
|
|
825
|
and instrs_replace_var fvar instrs cont =
|
826
|
List.fold_right (instr_replace_var fvar) instrs cont
|
827
|
|
828
|
let step_replace_var fvar step =
|
829
|
(* Some outputs may have been replaced by locals. We then need to rename those
|
830
|
outputs without changing their clocks, etc *)
|
831
|
let outputs' =
|
832
|
List.map (fun o -> { o with var_id = (fvar o).var_id }) step.step_outputs
|
833
|
in
|
834
|
let locals' =
|
835
|
List.fold_left
|
836
|
(fun res l ->
|
837
|
let l' = fvar l in
|
838
|
if List.exists (fun o -> o.var_id = l'.var_id) outputs' then res
|
839
|
else Utils.add_cons l' res)
|
840
|
[]
|
841
|
step.step_locals
|
842
|
in
|
843
|
{
|
844
|
step with
|
845
|
step_checks =
|
846
|
List.map (fun (l, v) -> l, value_replace_var fvar v) step.step_checks;
|
847
|
step_outputs = outputs';
|
848
|
step_locals = locals';
|
849
|
step_instrs = instrs_replace_var fvar step.step_instrs [];
|
850
|
}
|
851
|
|
852
|
let machine_replace_variables fvar m =
|
853
|
{ m with mstep = step_replace_var fvar m.mstep }
|
854
|
|
855
|
let machine_reuse_variables reuse m =
|
856
|
let fvar v = try Hashtbl.find reuse v.var_id with Not_found -> v in
|
857
|
machine_replace_variables fvar m
|
858
|
|
859
|
let machines_reuse_variables reuse_tables =
|
860
|
List.map (fun m ->
|
861
|
machine_reuse_variables (Utils.IMap.find m.mname.node_id reuse_tables) m)
|
862
|
|
863
|
let rec instr_assign res instr =
|
864
|
match get_instr_desc instr with
|
865
|
| MLocalAssign (i, _) ->
|
866
|
Disjunction.CISet.add i res
|
867
|
| MStateAssign (i, _) ->
|
868
|
Disjunction.CISet.add i res
|
869
|
| MBranch (_, hl) ->
|
870
|
List.fold_left (fun res (_, b) -> instrs_assign res b) res hl
|
871
|
| MStep (il, _, _) ->
|
872
|
List.fold_right Disjunction.CISet.add il res
|
873
|
| _ ->
|
874
|
res
|
875
|
|
876
|
and instrs_assign res instrs = List.fold_left instr_assign res instrs
|
877
|
|
878
|
let rec instr_constant_assign var instr =
|
879
|
match get_instr_desc instr with
|
880
|
| MLocalAssign (i, { value_desc = Cst (Const_tag _); _ })
|
881
|
| MStateAssign (i, { value_desc = Cst (Const_tag _); _ }) ->
|
882
|
i = var
|
883
|
| MBranch (_, hl) ->
|
884
|
List.for_all (fun (_, b) -> instrs_constant_assign var b) hl
|
885
|
| _ ->
|
886
|
false
|
887
|
|
888
|
and instrs_constant_assign var instrs =
|
889
|
List.fold_left
|
890
|
(fun res i ->
|
891
|
if Disjunction.CISet.mem var (instr_assign Disjunction.CISet.empty i) then
|
892
|
instr_constant_assign var i
|
893
|
else res)
|
894
|
false
|
895
|
instrs
|
896
|
|
897
|
let rec instr_reduce branches instr1 cont =
|
898
|
match get_instr_desc instr1 with
|
899
|
| MLocalAssign (_, { value_desc = Cst (Const_tag c); _ }) ->
|
900
|
instr1 :: (List.assoc c branches @ cont)
|
901
|
| MStateAssign (_, { value_desc = Cst (Const_tag c); _ }) ->
|
902
|
instr1 :: (List.assoc c branches @ cont)
|
903
|
| MBranch (g, hl) ->
|
904
|
update_instr_desc
|
905
|
instr1
|
906
|
(MBranch (g, List.map (fun (h, b) -> h, instrs_reduce branches b []) hl))
|
907
|
:: cont
|
908
|
| _ ->
|
909
|
instr1 :: cont
|
910
|
|
911
|
and instrs_reduce branches instrs cont =
|
912
|
match instrs with
|
913
|
| [] ->
|
914
|
cont
|
915
|
| [ i ] ->
|
916
|
instr_reduce branches i cont
|
917
|
| i1 :: i2 :: q ->
|
918
|
i1 :: instrs_reduce branches (i2 :: q) cont
|
919
|
|
920
|
let rec instrs_fusion instrs =
|
921
|
match instrs with
|
922
|
| [] | [ _ ] ->
|
923
|
instrs
|
924
|
| i1 :: i2 :: q -> (
|
925
|
match i2.instr_desc with
|
926
|
| MBranch ({ value_desc = Var v; _ }, hl) when instr_constant_assign v i1 ->
|
927
|
instr_reduce
|
928
|
(List.map (fun (h, b) -> h, instrs_fusion b) hl)
|
929
|
{ i1 with instr_spec = i1.instr_spec @ i2.instr_spec }
|
930
|
(instrs_fusion q)
|
931
|
| _ ->
|
932
|
i1 :: instrs_fusion (i2 :: q))
|
933
|
|
934
|
let step_fusion step =
|
935
|
{ step with step_instrs = instrs_fusion step.step_instrs }
|
936
|
|
937
|
let machine_fusion m = { m with mstep = step_fusion m.mstep }
|
938
|
|
939
|
let machines_fusion prog = List.map machine_fusion prog
|
940
|
|
941
|
(* Additional function to modify the prog according to removed variables map *)
|
942
|
|
943
|
let elim_prog_variables prog removed_table =
|
944
|
List.map
|
945
|
(fun t ->
|
946
|
match t.top_decl_desc with
|
947
|
| Node nd -> (
|
948
|
match IMap.find_opt nd.node_id removed_table with
|
949
|
| Some nd_elim_map ->
|
950
|
(* Iterating through the elim map to compute - the list of variables
|
951
|
to remove - the associated list of lustre definitions x = expr to
|
952
|
be used when removing these variables *)
|
953
|
let vars_to_replace, defs =
|
954
|
(* Recovering vid from node locals *)
|
955
|
IMap.fold
|
956
|
(fun v (_, eq) (accu_locals, accu_defs) ->
|
957
|
let locals =
|
958
|
try
|
959
|
List.find (fun v' -> v'.var_id = v) nd.node_locals
|
960
|
:: accu_locals
|
961
|
with Not_found -> accu_locals
|
962
|
(* Variable v shall be a global constant, we do no need to
|
963
|
eliminate it from the locals *)
|
964
|
in
|
965
|
(* xxx let new_eq = { eq_lhs = [v]; eq_rhs = e; eq_loc =
|
966
|
e.expr_loc } in *)
|
967
|
let defs = eq :: accu_defs in
|
968
|
locals, defs)
|
969
|
nd_elim_map
|
970
|
([], [])
|
971
|
in
|
972
|
let node_locals, node_stmts =
|
973
|
List.fold_right
|
974
|
(fun stmt (locals, res_stmts) ->
|
975
|
match stmt with
|
976
|
| Aut _ ->
|
977
|
assert false (* should be processed by now *)
|
978
|
| Eq eq -> (
|
979
|
match eq.eq_lhs with
|
980
|
| [] ->
|
981
|
assert false (* shall not happen *)
|
982
|
| [lhs] when List.exists (fun v -> v.var_id = lhs) vars_to_replace ->
|
983
|
(* We remove the def *)
|
984
|
List.filter (fun v -> v.var_id <> lhs) locals, res_stmts
|
985
|
| _ ->
|
986
|
(* When more than one lhs we just keep the equation and do
|
987
|
not delete it *)
|
988
|
let eq_rhs =
|
989
|
substitute_expr vars_to_replace defs eq.eq_rhs
|
990
|
in
|
991
|
locals, Eq { eq with eq_rhs } :: res_stmts))
|
992
|
nd.node_stmts
|
993
|
(nd.node_locals, [])
|
994
|
in
|
995
|
let nd' = { nd with node_locals; node_stmts } in
|
996
|
{ t with top_decl_desc = Node nd' }
|
997
|
| None ->
|
998
|
t)
|
999
|
| _ ->
|
1000
|
t)
|
1001
|
prog
|
1002
|
|
1003
|
(*** Main function ***)
|
1004
|
|
1005
|
(* This functions produces an optimzed prog * machines It 1- eliminates common
|
1006
|
sub-expressions (TODO how is this different from normalization?) 2- inline
|
1007
|
constants and eliminate duplicated variables 3- try to reuse variables
|
1008
|
whenever possible
|
1009
|
|
1010
|
When item (2) identified eliminated variables, the initial prog is modified,
|
1011
|
its normalized recomputed, as well as its scheduling, before regenerating the
|
1012
|
machines.
|
1013
|
|
1014
|
The function returns both the (possibly updated) prog as well as the
|
1015
|
machines *)
|
1016
|
let optimize params prog node_schs machine_code =
|
1017
|
let machine_code =
|
1018
|
if !Options.optimization >= 4 (* && !Options.output <> "horn" *) then (
|
1019
|
Log.report ~level:1 (fun fmt ->
|
1020
|
Format.fprintf
|
1021
|
fmt
|
1022
|
"@ @[<v 2>.. machines optimization: sub-expression elimination@ ");
|
1023
|
let machine_code = machines_cse machine_code in
|
1024
|
Log.report ~level:3 (fun fmt ->
|
1025
|
Format.fprintf
|
1026
|
fmt
|
1027
|
"@[<v 2>.. generated machines (sub-expr elim):@ %a@]@ "
|
1028
|
pp_machines
|
1029
|
machine_code);
|
1030
|
Log.report ~level:1 (fun fmt -> Format.fprintf fmt "@]");
|
1031
|
machine_code)
|
1032
|
else machine_code
|
1033
|
in
|
1034
|
(* Optimize machine code *)
|
1035
|
let prog, machine_code, removed_table =
|
1036
|
if
|
1037
|
!Options.optimization >= 2 && !Options.output <> Options.OutEMF
|
1038
|
(*&& !Options.output <> "horn"*)
|
1039
|
then (
|
1040
|
Log.report ~level:1 (fun fmt ->
|
1041
|
Format.fprintf
|
1042
|
fmt
|
1043
|
"@ @[<v 2>.. machines optimization: const. inlining (partial eval. \
|
1044
|
with const)@ ");
|
1045
|
let machine_code, removed_table =
|
1046
|
machines_unfold (Corelang.get_consts prog) node_schs machine_code
|
1047
|
in
|
1048
|
Log.report ~level:3 (fun fmt ->
|
1049
|
Format.fprintf
|
1050
|
fmt
|
1051
|
"@ Eliminated flows: %a@ "
|
1052
|
(IMap.pp (fun fmt m -> pp_elim empty_machine fmt (IMap.map fst m)))
|
1053
|
removed_table);
|
1054
|
(* If variables were eliminated, relaunch the normalization/machine
|
1055
|
generation *)
|
1056
|
let prog, machine_code, removed_table =
|
1057
|
if IMap.is_empty removed_table then
|
1058
|
(* stopping here, no need to reupdate the prog *)
|
1059
|
prog, machine_code, removed_table
|
1060
|
else
|
1061
|
let prog = elim_prog_variables prog removed_table in
|
1062
|
(* Mini stage1 *)
|
1063
|
let prog = Normalization.normalize_prog ~first:false params prog in
|
1064
|
let prog = SortProg.sort_nodes_locals prog in
|
1065
|
(* Mini stage2: note that we do not protect against alg. loop since
|
1066
|
this should have been handled before *)
|
1067
|
let prog, node_schs = Scheduling.schedule_prog prog in
|
1068
|
let machine_code = Machine_code.translate_prog prog node_schs in
|
1069
|
(* Mini stage2 machine optimiation *)
|
1070
|
let machine_code, removed_table =
|
1071
|
machines_unfold (Corelang.get_consts prog) node_schs machine_code
|
1072
|
in
|
1073
|
prog, machine_code, removed_table
|
1074
|
in
|
1075
|
Log.report ~level:3 (fun fmt ->
|
1076
|
Format.fprintf
|
1077
|
fmt
|
1078
|
"@ @[<v 2>.. generated machines (const inlining):@ %a@]@ "
|
1079
|
pp_machines
|
1080
|
machine_code);
|
1081
|
Log.report ~level:1 (fun fmt -> Format.fprintf fmt "@]");
|
1082
|
prog, machine_code, removed_table)
|
1083
|
else prog, machine_code, IMap.empty
|
1084
|
in
|
1085
|
(* Optimize machine code *)
|
1086
|
let machine_code =
|
1087
|
if !Options.optimization >= 3 && not (Backends.is_functional ()) then (
|
1088
|
Log.report ~level:1 (fun fmt ->
|
1089
|
Format.fprintf
|
1090
|
fmt
|
1091
|
".. machines optimization: minimize stack usage by reusing \
|
1092
|
variables@,");
|
1093
|
let node_schs =
|
1094
|
Scheduling.remove_prog_inlined_locals removed_table node_schs
|
1095
|
in
|
1096
|
let reuse_tables = Scheduling.compute_prog_reuse_table node_schs in
|
1097
|
machines_fusion (machines_reuse_variables reuse_tables machine_code))
|
1098
|
else machine_code
|
1099
|
in
|
1100
|
|
1101
|
prog, machine_code
|
1102
|
|
1103
|
(* Local Variables: *)
|
1104
|
(* compile-command:"make -C .." *)
|
1105
|
(* End: *)
|