Project

General

Profile

Download (10.5 KB) Statistics
| Branch: | Tag: | Revision:
1
(********************************************************************)
2
(*                                                                  *)
3
(*  The LustreC compiler toolset   /  The LustreC Development Team  *)
4
(*  Copyright 2012 -    --   ONERA - CNRS - INPT                    *)
5
(*                                                                  *)
6
(*  LustreC is free software, distributed WITHOUT ANY WARRANTY      *)
7
(*  under the terms of the GNU Lesser General Public License        *)
8
(*  version 2.1.                                                    *)
9
(*                                                                  *)
10
(********************************************************************)
11

    
12
open Utils
13
open Lustre_types
14
open Machine_code_types
15
open Corelang
16
open Normalization
17
open Machine_code_common
18

    
19
let mpfr_module = mktop (Open(false, "mpfr_lustre"))
20
let cpt_fresh = ref 0
21
  
22
let mpfr_rnd () = "MPFR_RNDN"
23

    
24
let mpfr_prec () = !Options.mpfr_prec
25

    
26
let inject_id = "MPFRId"
27

    
28
let inject_copy_id = "mpfr_set"
29

    
30
let inject_real_id = "mpfr_set_flt"
31

    
32
let inject_init_id = "mpfr_init2"
33

    
34
let inject_clear_id = "mpfr_clear"
35

    
36
let mpfr_t = "mpfr_t"
37

    
38
let unfoldable_value value =
39
  not (Types.is_real_type value.value_type && is_const_value value)
40

    
41
let inject_id_id expr =
42
  let e = mkpredef_call expr.expr_loc inject_id [expr] in
43
  { e with
44
    expr_type = Type_predef.type_real;
45
    expr_clock = expr.expr_clock;
46
  }
47

    
48
let pp_inject_real pp_var pp_val fmt var value =
49
  Format.fprintf fmt "%s(%a, %a, %s);"
50
    inject_real_id
51
    pp_var var
52
    pp_val value
53
    (mpfr_rnd ())
54

    
55
let inject_assign expr =
56
  let e = mkpredef_call expr.expr_loc inject_copy_id [expr] in
57
  { e with
58
    expr_type = Type_predef.type_real;
59
    expr_clock = expr.expr_clock;
60
  }
61

    
62
let pp_inject_copy pp_var fmt var value =
63
  Format.fprintf fmt "%s(%a, %a, %s);"
64
    inject_copy_id
65
    pp_var var
66
    pp_var value
67
    (mpfr_rnd ())
68

    
69
let rec pp_inject_assign pp_var fmt var value =
70
  if is_const_value value
71
  then
72
    pp_inject_real pp_var pp_var fmt var value
73
  else
74
    pp_inject_copy pp_var fmt var value
75

    
76
let pp_inject_init pp_var fmt var =
77
  Format.fprintf fmt "%s(%a, %i);"
78
    inject_init_id
79
    pp_var var
80
    (mpfr_prec ())
81

    
82
let pp_inject_clear pp_var fmt var =
83
  Format.fprintf fmt "%s(%a);"
84
    inject_clear_id
85
    pp_var var
86

    
87
let base_inject_op id =
88
  match id with
89
  | "+"      -> "MPFRPlus"
90
  | "-"      -> "MPFRMinus"
91
  | "*"      -> "MPFRTimes"
92
  | "/"      -> "MPFRDiv"
93
  | "uminus" -> "MPFRUminus"
94
  | "<="     -> "MPFRLe"
95
  | "<"      -> "MPFRLt"
96
  | ">="     -> "MPFRGe"
97
  | ">"      -> "MPFRGt"
98
  | "="      -> "MPFREq"
99
  | "!="     -> "MPFRNeq"
100
  (* Math library functions *)
101
  | "acos" -> "MPFRacos"
102
  | "acosh" -> "MPFRacosh"
103
  | "asin" -> "MPFRasin"
104
  | "asinh" -> "MPFRasinh"
105
  | "atan" -> "MPFRatan"
106
  | "atan2" -> "MPFRatan2"
107
  | "atanh" -> "MPFRatanh"
108
  | "cbrt" -> "MPFRcbrt"
109
  | "cos" -> "MPFRcos"
110
  | "cosh" -> "MPFRcosh"
111
  | "ceil" -> "MPFRceil"
112
  | "erf" -> "MPFRerf"
113
  | "exp" -> "MPFRexp"
114
  | "fabs" -> "MPFRfabs"
115
  | "floor" -> "MPFRfloor"
116
  | "fmod" -> "MPFRfmod"
117
  | "log" -> "MPFRlog"
118
  | "log10" -> "MPFRlog10"
119
  | "pow" -> "MPFRpow"
120
  | "round" -> "MPFRround"
121
  | "sin" -> "MPFRsin"
122
  | "sinh" -> "MPFRsinh"
123
  | "sqrt" -> "MPFRsqrt"
124
  | "trunc" -> "MPFRtrunc"
125
  | "tan" -> "MPFRtan"
126

    
127
           
128
  | "pow"    -> "MPFRpow"
129
  | _        -> raise Not_found
130

    
131
let inject_op id =
132
  Format.eprintf "trying to inject mpfr into function %s@." id;
133
  try
134
    base_inject_op id
135
  with Not_found -> id
136

    
137
let homomorphic_funs =
138
  List.fold_right (fun id res -> try base_inject_op id :: res with Not_found -> res) Basic_library.internal_funs []
139

    
140
let is_homomorphic_fun id =
141
  List.mem id homomorphic_funs
142

    
143
let inject_call expr =
144
  match expr.expr_desc with
145
  | Expr_appl (id, args, None) when not (Basic_library.is_expr_internal_fun expr) ->
146
    { expr with expr_desc = Expr_appl (inject_op id, args, None) }
147
  | _ -> expr
148

    
149
let expr_of_const_array expr =
150
  match expr.expr_desc with
151
  | Expr_const (Const_array cl) ->
152
    let typ = Types.array_element_type expr.expr_type in
153
    let expr_of_const c =
154
      { expr_desc = Expr_const c;
155
	expr_type = typ;
156
	expr_clock = expr.expr_clock;
157
	expr_loc = expr.expr_loc;
158
	expr_delay = Delay.new_var ();
159
	expr_annot = None;
160
	expr_tag = new_tag ();
161
      }
162
    in { expr with expr_desc = Expr_array (List.map expr_of_const cl) }
163
  | _                           -> assert false
164

    
165
(* inject_<foo> : defs * used vars -> <foo> -> (updated defs * updated vars) * normalized <foo> *)
166
let rec inject_list alias node inject_element defvars elist =
167
  List.fold_right
168
    (fun t (defvars, qlist) ->
169
      let defvars, norm_t = inject_element alias node defvars t in
170
      (defvars, norm_t :: qlist)
171
    ) elist (defvars, [])
172

    
173
let rec inject_expr ?(alias=true) node defvars expr =
174
let res =
175
  match expr.expr_desc with
176
  | Expr_const (Const_real _)  -> mk_expr_alias_opt alias node defvars expr
177
  | Expr_const (Const_array _) -> inject_expr ~alias:alias node defvars (expr_of_const_array expr)
178
  | Expr_const (Const_struct _) -> assert false
179
  | Expr_ident _
180
  | Expr_const _  -> defvars, expr
181
  | Expr_array elist ->
182
    let defvars, norm_elist = inject_list alias node (fun _ -> inject_expr ~alias:true) defvars elist in
183
    let norm_expr = { expr with expr_desc = Expr_array norm_elist } in
184
    defvars, norm_expr
185
  | Expr_power (e1, d) ->
186
    let defvars, norm_e1 = inject_expr node defvars e1 in
187
    let norm_expr = { expr with expr_desc = Expr_power (norm_e1, d) } in
188
    defvars, norm_expr
189
  | Expr_access (e1, d) ->
190
    let defvars, norm_e1 = inject_expr node defvars e1 in
191
    let norm_expr = { expr with expr_desc = Expr_access (norm_e1, d) } in
192
    defvars, norm_expr
193
  | Expr_tuple elist -> 
194
    let defvars, norm_elist =
195
      inject_list alias node (fun alias -> inject_expr ~alias:alias) defvars elist in
196
    let norm_expr = { expr with expr_desc = Expr_tuple norm_elist } in
197
    defvars, norm_expr
198
  | Expr_appl (id, args, r) ->
199
    let defvars, norm_args = inject_expr node defvars args in
200
    let norm_expr = { expr with expr_desc = Expr_appl (id, norm_args, r) } in
201
    mk_expr_alias_opt alias node defvars (inject_call norm_expr)
202
  | Expr_arrow _ -> defvars, expr
203
  | Expr_pre e ->
204
    let defvars, norm_e = inject_expr node defvars e in
205
    let norm_expr = { expr with expr_desc = Expr_pre norm_e } in
206
    defvars, norm_expr
207
  | Expr_fby (e1, e2) ->
208
    let defvars, norm_e1 = inject_expr node defvars e1 in
209
    let defvars, norm_e2 = inject_expr node defvars e2 in
210
    let norm_expr = { expr with expr_desc = Expr_fby (norm_e1, norm_e2) } in
211
    defvars, norm_expr
212
  | Expr_when (e, c, l) ->
213
    let defvars, norm_e = inject_expr node defvars e in
214
    let norm_expr = { expr with expr_desc = Expr_when (norm_e, c, l) } in
215
    defvars, norm_expr
216
  | Expr_ite (c, t, e) ->
217
    let defvars, norm_c = inject_expr node defvars c in
218
    let defvars, norm_t = inject_expr node defvars t in
219
    let defvars, norm_e = inject_expr node defvars e in
220
    let norm_expr = { expr with expr_desc = Expr_ite (norm_c, norm_t, norm_e) } in
221
    defvars, norm_expr
222
  | Expr_merge (c, hl) ->
223
    let defvars, norm_hl = inject_branches node defvars hl in
224
    let norm_expr = { expr with expr_desc = Expr_merge (c, norm_hl) } in
225
    defvars, norm_expr
226
in
227
(*Format.eprintf "inject_expr %B %a = %a@." alias Printers.pp_expr expr Printers.pp_expr (snd res);*)
228
res
229

    
230
and inject_branches node defvars hl =
231
 List.fold_right
232
   (fun (t, h) (defvars, norm_q) ->
233
     let (defvars, norm_h) = inject_expr node defvars h in
234
     defvars, (t, norm_h) :: norm_q
235
   )
236
   hl (defvars, [])
237

    
238

    
239
let rec inject_eq node defvars eq =
240
  let (defs', vars'), norm_rhs = inject_expr ~alias:false node defvars eq.eq_rhs in
241
  let norm_eq = { eq with eq_rhs = norm_rhs } in
242
  norm_eq::defs', vars'
243

    
244
(* let inject_eexpr ee =
245
 *   { ee with eexpr_qfexpr = inject_expr ee.eexpr_qfexpr }
246
 *   
247
 * let inject_spec s =
248
 *   { s with
249
 *     assume = List.map inject_eexpr s.assume;
250
 *     guarantees = List.map inject_eexpr s.guarantees;
251
 *     modes = List.map (fun m ->
252
 *                 { m with
253
 *                   require = List.map inject_eexpr m.require;
254
 *                   ensure = List.map inject_eexpr m.ensure
255
 *                 }
256
 *               ) s.modes
257
 *   } *)
258
  
259
(** normalize_node node returns a normalized node, 
260
    ie. 
261
    - updated locals
262
    - new equations
263
    - 
264
*)
265
let inject_node node = 
266
  cpt_fresh := 0;
267
  let inputs_outputs = node.node_inputs@node.node_outputs in
268
  let is_local v =
269
    List.for_all ((!=) v) inputs_outputs in
270
  let orig_vars = inputs_outputs@node.node_locals in
271
  let defs, vars =
272
    let eqs, auts = get_node_eqs node in
273
    if auts != [] then assert false; (* Automata should be expanded by now. *)
274
    List.fold_left (inject_eq node) ([], orig_vars) eqs in
275
  (* Normalize the asserts *)
276
  let vars, assert_defs, asserts = 
277
    List.fold_left (
278
    fun (vars, def_accu, assert_accu) assert_ ->
279
      let assert_expr = assert_.assert_expr in
280
      let (defs, vars'), expr = 
281
	inject_expr 
282
	  ~alias:false 
283
	  node 
284
	  ([], vars) (* defvar only contains vars *)
285
	  assert_expr
286
      in
287
      vars', defs@def_accu, {assert_ with assert_expr = expr}::assert_accu
288
    ) (vars, [], []) node.node_asserts in
289
  let new_locals = List.filter is_local vars in
290
  (* Compute traceability info: 
291
     - gather newly bound variables
292
     - compute the associated expression without aliases     
293
  *)
294
  (* let diff_vars = List.filter (fun v -> not (List.mem v node.node_locals)) new_locals in *)
295
  (* See comment below
296
   *  let spec = match node.node_spec with
297
   *   | None -> None
298
   *   | Some spec -> Some (inject_spec spec)
299
   * in *)
300
  let node =
301
  { node with 
302
    node_locals = new_locals; 
303
    node_stmts = List.map (fun eq -> Eq eq) (defs @ assert_defs);
304
    (* Incomplete work: TODO. Do we have to inject MPFR code here?
305
       Does it make sense for annotations? For me, only if we produce
306
       C code for annotations. Otherwise the various verification
307
       backend should have their own understanding, but would not
308
       necessarily require this additional normalization. *)
309
    (* 
310
       node_spec = spec;
311
       node_annot = List.map (fun ann -> {ann with
312
           annots = List.map (fun (ids, ee) -> ids, inject_eexpr ee) ann.annots}
313
         ) node.node_annot *)
314
  }
315
  in ((*Printers.pp_node Format.err_formatter node;*) node)
316

    
317
let inject_decl decl =
318
  match decl.top_decl_desc with
319
  | Node nd ->
320
    {decl with top_decl_desc = Node (inject_node nd)}
321
  | Open _ | ImportedNode _ | Const _ | TypeDef _ -> decl
322
  
323
let inject_prog decls = 
324
  List.map inject_decl decls
325

    
326

    
327
(* Local Variables: *)
328
(* compile-command:"make -C .." *)
329
(* End: *)
(2-2/2)