1
|
|
2
|
open Machine_code_types
|
3
|
open Lustre_types
|
4
|
open Corelang
|
5
|
(*
|
6
|
open Machine_code_common
|
7
|
*)
|
8
|
|
9
|
let is_machine_statefull m = not m.mname.node_dec_stateless
|
10
|
|
11
|
(** Return true if its the arrow machine
|
12
|
@param machine the machine to test
|
13
|
*)
|
14
|
let is_arrow machine = String.equal Arrow.arrow_id machine.mname.node_id
|
15
|
|
16
|
(** Extract a node from an instance.
|
17
|
@param instance the instance
|
18
|
**)
|
19
|
let extract_node instance =
|
20
|
let (_, (node, _)) = instance in
|
21
|
match node.top_decl_desc with
|
22
|
| Node nd -> nd
|
23
|
| _ -> assert false (*TODO*)
|
24
|
|
25
|
(** Extract from a machine list the one corresponding to the given instance.
|
26
|
assume that the machine is in the list.
|
27
|
@param machines list of all machines
|
28
|
@param instance instance of a machine
|
29
|
@return the machine corresponding to hte given instance
|
30
|
**)
|
31
|
let get_machine machines instance =
|
32
|
let id = (extract_node instance).node_id in
|
33
|
try
|
34
|
List.find (function m -> m.mname.node_id=id) machines
|
35
|
with
|
36
|
Not_found -> assert false (*TODO*)
|
37
|
|
38
|
(** Extract all the inputs and outputs.
|
39
|
@param machine the machine
|
40
|
@return a list of all the var_decl of a macine
|
41
|
**)
|
42
|
let get_all_vars_machine m =
|
43
|
m.mmemory@m.mstep.step_inputs@m.mstep.step_outputs@m.mstatic
|
44
|
|
45
|
(** Check if a type is polymorphic.
|
46
|
@param typ the type
|
47
|
@return true if its polymorphic
|
48
|
**)
|
49
|
let is_Tunivar typ = (Types.repr typ).tdesc == Types.Tunivar
|
50
|
|
51
|
(** Find all polymorphic type : Types.Tunivar in a machine.
|
52
|
@param machine the machine
|
53
|
@return a list of id corresponding to polymorphic type
|
54
|
**)
|
55
|
let find_all_polymorphic_type m =
|
56
|
let vars = get_all_vars_machine m in
|
57
|
let extract id = id.var_type.tid in
|
58
|
let polymorphic_type_vars =
|
59
|
List.filter (function x-> is_Tunivar x.var_type) vars in
|
60
|
List.sort_uniq (-) (List.map extract polymorphic_type_vars)
|
61
|
|
62
|
|
63
|
(** Check if a submachine is statefull.
|
64
|
@param submachine a submachine
|
65
|
@return true if the submachine is statefull
|
66
|
**)
|
67
|
let is_submachine_statefull submachine =
|
68
|
not (snd (snd submachine)).mname.node_dec_stateless
|
69
|
|
70
|
(** Find a submachine step call in a list of instructions.
|
71
|
@param ident submachine instance ident
|
72
|
@param instr_list List of instruction sto search
|
73
|
@return a list of pair containing input types and output types for each step call found
|
74
|
**)
|
75
|
let rec find_submachine_step_call ident instr_list =
|
76
|
let search_instr instruction =
|
77
|
match instruction.instr_desc with
|
78
|
| MStep (il, i, vl) when String.equal i ident -> [
|
79
|
(List.map (function x-> x.value_type) vl,
|
80
|
List.map (function x-> x.var_type) il)]
|
81
|
| MBranch (_, l) -> List.flatten
|
82
|
(List.map (function x, y -> find_submachine_step_call ident y) l)
|
83
|
| _ -> []
|
84
|
in
|
85
|
List.flatten (List.map search_instr instr_list)
|
86
|
|
87
|
(* Replace this function by check_type_equal but be careful to the fact that
|
88
|
this function chck equality and that it is both basic type.
|
89
|
This might be a required feature when it used *)
|
90
|
(** Test if two types are the same.
|
91
|
@param typ1 the first type
|
92
|
@param typ2 the second type
|
93
|
**)
|
94
|
let pp_eq_type typ1 typ2 =
|
95
|
let get_basic typ = match (Types.repr typ).Types.tdesc with
|
96
|
| Types.Tbasic Types.Basic.Tint -> Types.Basic.Tint
|
97
|
| Types.Tbasic Types.Basic.Treal -> Types.Basic.Treal
|
98
|
| Types.Tbasic Types.Basic.Tbool -> Types.Basic.Tbool
|
99
|
| _ -> assert false (*TODO*)
|
100
|
in
|
101
|
get_basic typ1 = get_basic typ2
|
102
|
|
103
|
(** Check that two types are the same.
|
104
|
@param t1 a type
|
105
|
@param t2 an other type
|
106
|
@param return true if the two types are Tbasic or Tunivar and equal
|
107
|
**)
|
108
|
let rec check_type_equal (t1:Types.type_expr) (t2:Types.type_expr) =
|
109
|
match (Types.repr t1).Types.tdesc, (Types.repr t2).Types.tdesc with
|
110
|
| Types.Tbasic x, Types.Tbasic y -> x = y
|
111
|
| Types.Tunivar, Types.Tunivar -> t1.tid = t2.tid
|
112
|
| Types.Ttuple l, _ -> assert (List.length l = 1); check_type_equal (List.hd l) t2
|
113
|
| _, Types.Ttuple l -> assert (List.length l = 1); check_type_equal t1 (List.hd l)
|
114
|
| Types.Tstatic (_, t), _ -> check_type_equal t t2
|
115
|
| _, Types.Tstatic (_, t) -> check_type_equal t1 t
|
116
|
| _ -> assert false
|
117
|
|
118
|
(** Extend a substitution to unify the two given types. Only the
|
119
|
first type can be polymorphic.
|
120
|
@param subsitution the base substitution
|
121
|
@param type_poly the type which can be polymorphic
|
122
|
@param typ the type to match type_poly with
|
123
|
**)
|
124
|
let unification (substituion:(int*Types.type_expr) list) ((type_poly:Types.type_expr), (typ:Types.type_expr)) =
|
125
|
assert(not (is_Tunivar typ));
|
126
|
(* If type_poly is polymorphic *)
|
127
|
if is_Tunivar type_poly then
|
128
|
(* If a subsitution exists for it *)
|
129
|
if List.mem_assoc type_poly.tid substituion then
|
130
|
begin
|
131
|
(* We check that the type corresponding to type_poly in the subsitution
|
132
|
match typ *)
|
133
|
(try
|
134
|
assert(check_type_equal (List.assoc type_poly.tid substituion) typ)
|
135
|
with
|
136
|
Not_found -> assert false);
|
137
|
(* We return the original substituion, it is already correct *)
|
138
|
substituion
|
139
|
end
|
140
|
(* If type_poly is not in the subsitution *)
|
141
|
else
|
142
|
(* We add it to the substituion *)
|
143
|
(type_poly.tid, typ)::substituion
|
144
|
(* iftype_poly is not polymorphic *)
|
145
|
else
|
146
|
begin
|
147
|
(* We check that type_poly and typ are the same *)
|
148
|
assert(check_type_equal type_poly typ);
|
149
|
(* We return the original substituion, it is already correct *)
|
150
|
substituion
|
151
|
end
|
152
|
|
153
|
(** Check that two calls are equal. A call is
|
154
|
a pair of list of types, the inputs and the outputs.
|
155
|
@param calls a list of pair of list of types
|
156
|
@param return true if the two pairs are equal
|
157
|
**)
|
158
|
let check_call_equal (i1, o1) (i2, o2) =
|
159
|
(List.for_all2 check_type_equal i1 i2)
|
160
|
&& (List.for_all2 check_type_equal i1 i2)
|
161
|
|
162
|
(** Check that all the elements of list of calls are equal to one.
|
163
|
A call is a pair of list of types, the inputs and the outputs.
|
164
|
@param call a pair of list of types
|
165
|
@param calls a list of pair of list of types
|
166
|
@param return true if all the elements are equal
|
167
|
**)
|
168
|
let check_calls call calls =
|
169
|
List.for_all (check_call_equal call) calls
|
170
|
|
171
|
(** Extract from a subinstance that can have polymorphic type the instantiation
|
172
|
of all its polymorphic type instanciation for a given machine. It searches
|
173
|
the step calls and extract a substitution for all polymorphic type from
|
174
|
it.
|
175
|
@param machine the machine which instantiate the subinstance
|
176
|
@param ident the identifier of the instance which permits to find the step call
|
177
|
@param submachine the machine corresponding to the subinstance
|
178
|
@return the correspondance between polymorphic type id and their instantiation
|
179
|
**)
|
180
|
let get_substitution machine ident submachine =
|
181
|
(* extract the calls to submachines from the machine *)
|
182
|
let calls = find_submachine_step_call ident machine.mstep.step_instrs in
|
183
|
(* extract the first call *)
|
184
|
let call = match calls with
|
185
|
(* assume that there is always one call to a subinstance *)
|
186
|
| [] -> assert(false)
|
187
|
| h::t -> h in
|
188
|
(* assume that all the calls to a subinstance are using the same type *)
|
189
|
assert(check_calls call calls);
|
190
|
(* make a list of all types from input and output vars *)
|
191
|
let call_types = (fst call)@(snd call) in
|
192
|
(* extract all the input and output vars from the submachine *)
|
193
|
let machine_vars = submachine.mstep.step_inputs@submachine.mstep.step_outputs in
|
194
|
(* keep only the type of vars *)
|
195
|
let machine_types = List.map (function x-> x.var_type) machine_vars in
|
196
|
(* assume that there is the same numer of input and output in the submachine
|
197
|
and the call *)
|
198
|
assert (List.length machine_types = List.length call_types);
|
199
|
(* Unify the two lists of types *)
|
200
|
let substitution = List.fold_left unification [] (List.combine machine_types call_types) in
|
201
|
(* Assume that our substitution match all the possible
|
202
|
polymorphic type of the node *)
|
203
|
let polymorphic_types = find_all_polymorphic_type submachine in
|
204
|
assert (List.length polymorphic_types = List.length substitution);
|
205
|
(try
|
206
|
assert (List.for_all (fun x -> List.mem_assoc x substitution) polymorphic_types)
|
207
|
with
|
208
|
Not_found -> assert false);
|
209
|
substitution
|
210
|
|
211
|
|
212
|
(** Extract from a machine the instance corresponding to the identifier,
|
213
|
assume that the identifier exists in the instances of the machine.
|
214
|
|
215
|
@param identifier the instance identifier
|
216
|
@param machine a machine
|
217
|
@return the instance of machine.minstances corresponding to identifier
|
218
|
**)
|
219
|
let get_instance identifier typed_submachines =
|
220
|
try
|
221
|
List.assoc identifier typed_submachines
|
222
|
with Not_found -> assert false
|
223
|
|
224
|
(*Usefull for debug*)
|
225
|
let pp_type_debug fmt typ =
|
226
|
(match (Types.repr typ).Types.tdesc with
|
227
|
| Types.Tbasic Types.Basic.Tint -> Format.fprintf fmt "INTEGER"
|
228
|
| Types.Tbasic Types.Basic.Treal -> Format.fprintf fmt "FLOAT"
|
229
|
| Types.Tbasic Types.Basic.Tbool -> Format.fprintf fmt "BOOLEAN"
|
230
|
| Types.Tunivar -> Format.fprintf fmt "POLY(%i)" typ.Types.tid
|
231
|
| _ -> assert false
|
232
|
)
|
233
|
|
234
|
let build_if g c1 i1 tl =
|
235
|
let neg = c1=tag_false in
|
236
|
let other = match tl with
|
237
|
| [] -> None
|
238
|
| [(c2, i2)] -> Some i2
|
239
|
| _ -> assert false
|
240
|
in
|
241
|
match neg, other with
|
242
|
| true, Some x -> (false, g, x, Some i1)
|
243
|
| _ ->
|
244
|
(neg, g, i1, other)
|
245
|
|
246
|
let rec push_if_in_expr = function
|
247
|
| [] -> []
|
248
|
| instr::q ->
|
249
|
(
|
250
|
match get_instr_desc instr with
|
251
|
| MBranch (g, (c1, i1)::tl) when c1=tag_false || c1=tag_true ->
|
252
|
let (neg, g, instrs1, instrs2) = build_if g c1 i1 tl in
|
253
|
let instrs1_pushed = push_if_in_expr instrs1 in
|
254
|
let get_assign instr = match get_instr_desc instr with
|
255
|
| MLocalAssign (id, value) -> (false, id, value)
|
256
|
| MStateAssign (id, value) -> (true, id, value)
|
257
|
| _ -> assert false
|
258
|
in
|
259
|
let gen_eq ident state value1 value2 =
|
260
|
assert(check_type_equal ident.var_type value1.value_type);
|
261
|
assert(check_type_equal ident.var_type value2.value_type);
|
262
|
let value = {
|
263
|
value_desc = Fun ("ite", [g;value1;value2]);
|
264
|
value_type = ident.var_type;
|
265
|
value_annot = None
|
266
|
}
|
267
|
in
|
268
|
let assign = if state then MStateAssign (ident, value) else MLocalAssign (ident, value) in
|
269
|
{ instr_desc = assign;
|
270
|
lustre_eq = None
|
271
|
}
|
272
|
in
|
273
|
let mkval_var id = {
|
274
|
value_desc = Var id;
|
275
|
value_type = id.var_type;
|
276
|
value_annot = None
|
277
|
}
|
278
|
in
|
279
|
let rec find_split s1 id1 accu = function
|
280
|
| [] -> [], accu, mkval_var id1
|
281
|
| (s2, id2, v2)::q when s1 = s2
|
282
|
&& id1.var_id = id2.var_id -> accu, q, v2
|
283
|
| t::q -> find_split s1 id1 (t::accu) q
|
284
|
in
|
285
|
let gen_from_else l =
|
286
|
List.map
|
287
|
(fun (s2, id2, v2) -> gen_eq id2 s2 (mkval_var id2) v2)
|
288
|
l
|
289
|
in
|
290
|
let rec gen_assigns if_assigns else_assigns =
|
291
|
let res, accu_else = match if_assigns with
|
292
|
| (s1, id1, v1)::q ->
|
293
|
let accu, remain, v2 = find_split s1 id1 [] else_assigns in
|
294
|
(gen_eq id1 s1 v1 v2)::(gen_assigns q remain), accu
|
295
|
| [] -> [], else_assigns
|
296
|
in
|
297
|
(gen_from_else accu_else)@res
|
298
|
in
|
299
|
let if_assigns = List.map get_assign instrs1_pushed in
|
300
|
let else_assigns = match instrs2 with
|
301
|
| None -> []
|
302
|
| Some instrs2 ->
|
303
|
let instrs2_pushed = push_if_in_expr instrs2 in
|
304
|
List.map get_assign instrs2_pushed
|
305
|
in
|
306
|
gen_assigns if_assigns else_assigns
|
307
|
| x -> [instr]
|
308
|
)@(push_if_in_expr q)
|
309
|
|
310
|
|
311
|
|
312
|
|