Project

General

Profile

Download (46.9 KB) Statistics
| Branch: | Tag: | Revision:
1
(********************************************************************)
2
(*                                                                  *)
3
(*  The LustreC compiler toolset   /  The LustreC Development Team  *)
4
(*  Copyright 2012 -    --   ONERA - CNRS - INPT                    *)
5
(*                                                                  *)
6
(*  LustreC is free software, distributed WITHOUT ANY WARRANTY      *)
7
(*  under the terms of the GNU Lesser General Public License        *)
8
(*  version 2.1.                                                    *)
9
(*                                                                  *)
10
(********************************************************************)
11

    
12
open Format
13
open Lustre_types
14
open Machine_code_types
15
(*open Dimension*)
16

    
17

    
18
exception Error of Location.t * Error.error_kind
19

    
20
module VDeclModule =
21
struct (* Node module *)
22
  type t = var_decl
23
  let compare v1 v2 = compare v1.var_id v2.var_id
24
end
25

    
26
module VMap = Map.Make(VDeclModule)
27

    
28
module VSet: sig
29
  include Set.S
30
  val pp: Format.formatter -> t -> unit
31
  val get: ident -> t -> elt
32
end with type elt = var_decl =
33
  struct
34
    include Set.Make(VDeclModule)
35
    let pp fmt s =
36
      Format.fprintf fmt "{@[%a}@]" (Utils.fprintf_list ~sep:",@ " Printers.pp_var) (elements s)
37
    (* Strangley the find_first function of Set.Make is incorrect (at
38
       the current time of writting this comment. Had to switch to
39
       lists *)
40
    let get id s = List.find (fun v -> v.var_id = id) (elements s)
41
  end
42
let dummy_type_dec = {ty_dec_desc=Tydec_any; ty_dec_loc=Location.dummy_loc}
43

    
44
let dummy_clock_dec = {ck_dec_desc=Ckdec_any; ck_dec_loc=Location.dummy_loc}
45

    
46

    
47

    
48
(************************************************************)
49
(* *)
50

    
51
let mktyp loc d =
52
  { ty_dec_desc = d; ty_dec_loc = loc }
53

    
54
let mkclock loc d =
55
  { ck_dec_desc = d; ck_dec_loc = loc }
56

    
57
let mkvar_decl loc ?(orig=false) (id, ty_dec, ck_dec, is_const, value, parentid) =
58
  assert (value = None || is_const);
59
  { var_id = id;
60
    var_orig = orig;
61
    var_dec_type = ty_dec;
62
    var_dec_clock = ck_dec;
63
    var_dec_const = is_const;
64
    var_dec_value = value;
65
    var_parent_nodeid = parentid;
66
    var_type = Types.new_var ();
67
    var_clock = Clocks.new_var true;
68
    var_loc = loc }
69

    
70
let dummy_var_decl name typ =
71
  {
72
    var_id = name;
73
    var_orig = false;
74
    var_dec_type = dummy_type_dec;
75
    var_dec_clock = dummy_clock_dec;
76
    var_dec_const = false;
77
    var_dec_value = None;
78
    var_parent_nodeid = None;
79
    var_type =  typ;
80
    var_clock = Clocks.new_ck Clocks.Cvar true;
81
    var_loc = Location.dummy_loc
82
  }
83

    
84
let mkexpr loc d =
85
  { expr_tag = Utils.new_tag ();
86
    expr_desc = d;
87
    expr_type = Types.new_var ();
88
    expr_clock = Clocks.new_var true;
89
    expr_delay = Delay.new_var ();
90
    expr_annot = None;
91
    expr_loc = loc }
92

    
93
let var_decl_of_const ?(parentid=None) c =
94
  { var_id = c.const_id;
95
    var_orig = true;
96
    var_dec_type = { ty_dec_loc = c.const_loc; ty_dec_desc = Tydec_any };
97
    var_dec_clock = { ck_dec_loc = c.const_loc; ck_dec_desc = Ckdec_any };
98
    var_dec_const = true;
99
    var_dec_value = None;
100
    var_parent_nodeid = parentid;
101
    var_type = c.const_type;
102
    var_clock = Clocks.new_var false;
103
    var_loc = c.const_loc }
104

    
105
let mk_new_name used id =
106
  let rec new_name name cpt =
107
    if used name
108
    then new_name (sprintf "_%s_%i" id cpt) (cpt+1)
109
    else name
110
  in new_name id 1
111

    
112
let mkeq loc (lhs, rhs) =
113
  { eq_lhs = lhs;
114
    eq_rhs = rhs;
115
    eq_loc = loc }
116

    
117
let mkassert loc expr =
118
  { assert_loc = loc;
119
    assert_expr = expr
120
  }
121

    
122
let mktop_decl loc own itf d =
123
  { top_decl_desc = d; top_decl_loc = loc; top_decl_owner = own; top_decl_itf = itf }
124

    
125
let mkpredef_call loc funname args =
126
  mkexpr loc (Expr_appl (funname, mkexpr loc (Expr_tuple args), None))
127

    
128
let is_clock_dec_type cty =
129
  match cty with
130
  | Tydec_clock _ -> true
131
  | _             -> false
132

    
133
let const_of_top top_decl =
134
  match top_decl.top_decl_desc with
135
  | Const c -> c
136
  | _ -> assert false
137

    
138
let node_of_top top_decl =
139
  match top_decl.top_decl_desc with
140
  | Node nd -> nd
141
  | _ -> raise Not_found
142

    
143
let imported_node_of_top top_decl =
144
  match top_decl.top_decl_desc with
145
  | ImportedNode ind -> ind
146
  | _ -> assert false
147

    
148
let typedef_of_top top_decl =
149
  match top_decl.top_decl_desc with
150
  | TypeDef tdef -> tdef
151
  | _ -> assert false
152

    
153
let dependency_of_top top_decl =
154
  match top_decl.top_decl_desc with
155
  | Open (local, dep) -> (local, dep)
156
  | _ -> assert false
157

    
158
let consts_of_enum_type top_decl =
159
  match top_decl.top_decl_desc with
160
  | TypeDef tdef ->
161
    (match tdef.tydef_desc with
162
    | Tydec_enum tags ->
163
       List.map
164
	 (fun tag ->
165
	   let cdecl = {
166
	     const_id = tag;
167
	     const_loc = top_decl.top_decl_loc;
168
	     const_value = Const_tag tag;
169
	     const_type = Type_predef.type_const tdef.tydef_id
170
	   } in
171
	   { top_decl with top_decl_desc = Const cdecl })
172
	 tags
173
     | _               -> [])
174
  | _ -> assert false
175

    
176
(************************************************************)
177
(*   Eexpr functions *)
178
(************************************************************)
179

    
180

    
181
let empty_contract =
182
  {
183
    consts = []; locals = []; stmts = []; assume = []; guarantees = []; modes = []; imports = []; spec_loc = Location.dummy_loc;
184
  }
185

    
186
(* For const declaration we do as for regular lustre node.
187
But for local flows we registered the variable and the lustre flow definition *)
188
let mk_contract_var id is_const type_opt expr loc =
189
  let typ = match type_opt with None -> mktyp loc Tydec_any | Some t -> t in
190
  if is_const then
191
  let v = mkvar_decl loc (id, typ, mkclock loc Ckdec_any, is_const, Some expr, None) in
192
  { empty_contract with consts = [v]; spec_loc = loc; }
193
  else
194
    let v = mkvar_decl loc (id, typ, mkclock loc Ckdec_any, is_const, None, None) in
195
    let eq = mkeq loc ([id], expr) in 
196
    { empty_contract with locals = [v]; stmts = [Eq eq]; spec_loc = loc; }
197
let eexpr_add_name eexpr name =
198
  {eexpr with eexpr_name = match name with "" -> None | _ -> Some name}
199
let mk_contract_guarantees ?(name="") eexpr =
200
  { empty_contract with guarantees = [eexpr_add_name eexpr name]; spec_loc = eexpr.eexpr_loc }
201

    
202
let mk_contract_assume ?(name="") eexpr =
203
  { empty_contract with assume = [eexpr_add_name eexpr name]; spec_loc = eexpr.eexpr_loc }
204

    
205
let mk_contract_mode id rl el loc =
206
  { empty_contract with modes = [{ mode_id = id; require = rl; ensure = el; mode_loc = loc; }]; spec_loc = loc }
207

    
208
let mk_contract_import id ins outs loc =
209
  { empty_contract with imports = [{import_nodeid = id; inputs = ins; outputs = outs; import_loc = loc; }]; spec_loc = loc }
210

    
211
    
212
let merge_contracts ann1 ann2 = (* keeping the first item loc *)
213
  { consts = ann1.consts @ ann2.consts;
214
    locals = ann1.locals @ ann2.locals;
215
    stmts = ann1.stmts @ ann2.stmts;
216
    assume = ann1.assume @ ann2.assume;
217
    guarantees = ann1.guarantees @ ann2.guarantees;
218
    modes = ann1.modes @ ann2.modes;
219
    imports = ann1.imports @ ann2.imports;
220
    spec_loc = ann1.spec_loc
221
  }
222

    
223
let mkeexpr loc expr =
224
  { eexpr_tag = Utils.new_tag ();
225
    eexpr_qfexpr = expr;
226
    eexpr_quantifiers = [];
227
    eexpr_name = None;
228
    eexpr_type = Types.new_var ();
229
    eexpr_clock = Clocks.new_var true;
230
    eexpr_loc = loc }
231

    
232
let extend_eexpr q e = { e with eexpr_quantifiers = q@e.eexpr_quantifiers }
233

    
234
(*
235
let mkepredef_call loc funname args =
236
  mkeexpr loc (EExpr_appl (funname, mkeexpr loc (EExpr_tuple args), None))
237

    
238
let mkepredef_unary_call loc funname arg =
239
  mkeexpr loc (EExpr_appl (funname, arg, None))
240
*)
241

    
242
let merge_expr_annot ann1 ann2 =
243
  match ann1, ann2 with
244
    | None, None -> assert false
245
    | Some _, None -> ann1
246
    | None, Some _ -> ann2
247
    | Some ann1, Some ann2 -> Some {
248
      annots = ann1.annots @ ann2.annots;
249
      annot_loc = ann1.annot_loc
250
    }
251

    
252
let update_expr_annot node_id e annot =
253
  List.iter (fun (key, _) -> 
254
    Annotations.add_expr_ann node_id e.expr_tag key
255
  ) annot.annots;
256
  e.expr_annot <- merge_expr_annot e.expr_annot (Some annot);
257
  e
258

    
259

    
260
let mkinstr ?lustre_expr ?lustre_eq i =
261
  {
262
    instr_desc = i;
263
    (* lustre_expr = lustre_expr; *)
264
    lustre_eq = lustre_eq;
265
  }
266

    
267
let get_instr_desc i = i.instr_desc
268
let update_instr_desc i id = { i with instr_desc = id }
269

    
270
(***********************************************************)
271
(* Fast access to nodes, by name *)
272
let (node_table : (ident, top_decl) Hashtbl.t) = Hashtbl.create 30
273
let consts_table = Hashtbl.create 30
274

    
275
let print_node_table fmt () =
276
  begin
277
    Format.fprintf fmt "{ /* node table */@.";
278
    Hashtbl.iter (fun id nd ->
279
      Format.fprintf fmt "%s |-> %a"
280
	id
281
	Printers.pp_short_decl nd
282
    ) node_table;
283
    Format.fprintf fmt "}@."
284
  end
285

    
286
let print_consts_table fmt () =
287
  begin
288
    Format.fprintf fmt "{ /* consts table */@.";
289
    Hashtbl.iter (fun id const ->
290
      Format.fprintf fmt "%s |-> %a"
291
	id
292
	Printers.pp_const_decl (const_of_top const)
293
    ) consts_table;
294
    Format.fprintf fmt "}@."
295
  end
296

    
297
let node_name td =
298
    match td.top_decl_desc with 
299
    | Node nd         -> nd.node_id
300
    | ImportedNode nd -> nd.nodei_id
301
    | _ -> assert false
302

    
303
let is_generic_node td =
304
  match td.top_decl_desc with 
305
  | Node nd         -> List.exists (fun v -> v.var_dec_const) nd.node_inputs
306
  | ImportedNode nd -> List.exists (fun v -> v.var_dec_const) nd.nodei_inputs
307
  | _ -> assert false
308

    
309
let node_inputs td =
310
  match td.top_decl_desc with 
311
  | Node nd         -> nd.node_inputs
312
  | ImportedNode nd -> nd.nodei_inputs
313
  | _ -> assert false
314

    
315
let node_from_name id =
316
      Hashtbl.find node_table id
317
  (* with Not_found -> (Format.eprintf "Unable to find any node named %s@ @?" id;
318
   *       	     assert false) *)
319

    
320
let update_node id top =
321
  Hashtbl.replace node_table id top
322

    
323
let is_imported_node td =
324
  match td.top_decl_desc with 
325
  | Node nd         -> false
326
  | ImportedNode nd -> true
327
  | _ -> assert false
328

    
329
let is_node_contract nd =
330
  match nd.node_spec with
331
  | Some (Contract _) -> true
332
  | _ -> false
333
  
334
let get_node_contract nd =
335
  match nd.node_spec with
336
  | Some (Contract c) -> c
337
  | _ -> assert false
338
  
339
let is_contract td =
340
  match td.top_decl_desc with 
341
  | Node nd -> is_node_contract nd
342
  | _ -> false
343

    
344
(* alias and type definition table *)
345

    
346
let mktop = mktop_decl Location.dummy_loc !Options.dest_dir false
347

    
348
let top_int_type = mktop (TypeDef {tydef_id = "int"; tydef_desc = Tydec_int})
349
let top_bool_type = mktop (TypeDef {tydef_id = "bool"; tydef_desc = Tydec_bool})
350
(* let top_float_type = mktop (TypeDef {tydef_id = "float"; tydef_desc = Tydec_float}) *)
351
let top_real_type = mktop (TypeDef {tydef_id = "real"; tydef_desc = Tydec_real})
352

    
353
let type_table =
354
  Utils.create_hashtable 20 [
355
    Tydec_int  , top_int_type;
356
    Tydec_bool , top_bool_type;
357
    (* Tydec_float, top_float_type; *)
358
    Tydec_real , top_real_type
359
  ]
360

    
361
let print_type_table fmt () =
362
  begin
363
    Format.fprintf fmt "{ /* type table */@.";
364
    Hashtbl.iter (fun tydec tdef ->
365
      Format.fprintf fmt "%a |-> %a"
366
	Printers.pp_var_type_dec_desc tydec
367
	Printers.pp_typedef (typedef_of_top tdef)
368
    ) type_table;
369
    Format.fprintf fmt "}@."
370
  end
371

    
372
let rec is_user_type typ =
373
  match typ with
374
  | Tydec_int | Tydec_bool | Tydec_real 
375
  (* | Tydec_float *) | Tydec_any | Tydec_const _ -> false
376
  | Tydec_clock typ' -> is_user_type typ'
377
  | _ -> true
378

    
379
let get_repr_type typ =
380
  let typ_def = (typedef_of_top (Hashtbl.find type_table typ)).tydef_desc in
381
  if is_user_type typ_def then typ else typ_def
382

    
383
let rec coretype_equal ty1 ty2 =
384
  let res =
385
  match ty1, ty2 with
386
  | Tydec_any           , _
387
  | _                   , Tydec_any             -> assert false
388
  | Tydec_const _       , Tydec_const _         -> get_repr_type ty1 = get_repr_type ty2
389
  | Tydec_const _       , _                     -> let ty1' = (typedef_of_top (Hashtbl.find type_table ty1)).tydef_desc
390
	       					   in (not (is_user_type ty1')) && coretype_equal ty1' ty2
391
  | _                   , Tydec_const _         -> coretype_equal ty2 ty1
392
  | Tydec_int           , Tydec_int
393
  | Tydec_real          , Tydec_real
394
  (* | Tydec_float         , Tydec_float *)
395
  | Tydec_bool          , Tydec_bool            -> true
396
  | Tydec_clock ty1     , Tydec_clock ty2       -> coretype_equal ty1 ty2
397
  | Tydec_array (d1,ty1), Tydec_array (d2, ty2) -> Dimension.is_eq_dimension d1 d2 && coretype_equal ty1 ty2
398
  | Tydec_enum tl1      , Tydec_enum tl2        -> List.sort compare tl1 = List.sort compare tl2
399
  | Tydec_struct fl1    , Tydec_struct fl2      ->
400
       List.length fl1 = List.length fl2
401
    && List.for_all2 (fun (f1, t1) (f2, t2) -> f1 = f2 && coretype_equal t1 t2)
402
      (List.sort (fun (f1,_) (f2,_) -> compare f1 f2) fl1)
403
      (List.sort (fun (f1,_) (f2,_) -> compare f1 f2) fl2)
404
  | _                                  -> false
405
  in ((*Format.eprintf "coretype_equal %a %a = %B@." Printers.pp_var_type_dec_desc ty1 Printers.pp_var_type_dec_desc ty2 res;*) res)
406

    
407
let tag_true = "true"
408
let tag_false = "false"
409
let tag_default = "default"
410

    
411
let const_is_bool c =
412
 match c with
413
 | Const_tag t -> t = tag_true || t = tag_false
414
 | _           -> false
415

    
416
(* Computes the negation of a boolean constant *)
417
let const_negation c =
418
  assert (const_is_bool c);
419
  match c with
420
  | Const_tag t when t = tag_true  -> Const_tag tag_false
421
  | _                              -> Const_tag tag_true
422

    
423
let const_or c1 c2 =
424
  assert (const_is_bool c1 && const_is_bool c2);
425
  match c1, c2 with
426
  | Const_tag t1, _            when t1 = tag_true -> c1
427
  | _           , Const_tag t2 when t2 = tag_true -> c2
428
  | _                                             -> Const_tag tag_false
429

    
430
let const_and c1 c2 =
431
  assert (const_is_bool c1 && const_is_bool c2);
432
  match c1, c2 with
433
  | Const_tag t1, _            when t1 = tag_false -> c1
434
  | _           , Const_tag t2 when t2 = tag_false -> c2
435
  | _                                              -> Const_tag tag_true
436

    
437
let const_xor c1 c2 =
438
  assert (const_is_bool c1 && const_is_bool c2);
439
   match c1, c2 with
440
  | Const_tag t1, Const_tag t2 when t1 <> t2  -> Const_tag tag_true
441
  | _                                         -> Const_tag tag_false
442

    
443
let const_impl c1 c2 =
444
  assert (const_is_bool c1 && const_is_bool c2);
445
  match c1, c2 with
446
  | Const_tag t1, _ when t1 = tag_false           -> Const_tag tag_true
447
  | _           , Const_tag t2 when t2 = tag_true -> Const_tag tag_true
448
  | _                                             -> Const_tag tag_false
449

    
450
(* To guarantee uniqueness of tags in enum types *)
451
let tag_table =
452
  Utils.create_hashtable 20 [
453
   tag_true, top_bool_type;
454
   tag_false, top_bool_type
455
  ]
456

    
457
(* To guarantee uniqueness of fields in struct types *)
458
let field_table =
459
  Utils.create_hashtable 20 [
460
  ]
461

    
462
let get_enum_type_tags cty =
463
(*Format.eprintf "get_enum_type_tags %a@." Printers.pp_var_type_dec_desc cty;*)
464
 match cty with
465
 | Tydec_bool    -> [tag_true; tag_false]
466
 | Tydec_const _ -> (match (typedef_of_top (Hashtbl.find type_table cty)).tydef_desc with
467
                     | Tydec_enum tl -> tl
468
                     | _             -> assert false)
469
 | _            -> assert false
470

    
471
let get_struct_type_fields cty =
472
 match cty with
473
 | Tydec_const _ -> (match (typedef_of_top (Hashtbl.find type_table cty)).tydef_desc with
474
                     | Tydec_struct fl -> fl
475
                     | _               -> assert false)
476
 | _            -> assert false
477

    
478
let const_of_bool b =
479
 Const_tag (if b then tag_true else tag_false)
480

    
481
(* let get_const c = snd (Hashtbl.find consts_table c) *)
482

    
483
let ident_of_expr expr =
484
 match expr.expr_desc with
485
 | Expr_ident id -> id
486
 | _             -> assert false
487

    
488
(* Generate a new ident expression from a declared variable *)
489
let expr_of_vdecl v =
490
  { expr_tag = Utils.new_tag ();
491
    expr_desc = Expr_ident v.var_id;
492
    expr_type = v.var_type;
493
    expr_clock = v.var_clock;
494
    expr_delay = Delay.new_var ();
495
    expr_annot = None;
496
    expr_loc = v.var_loc }
497

    
498
(* Caution, returns an untyped and unclocked expression *)
499
let expr_of_ident id loc =
500
  {expr_tag = Utils.new_tag ();
501
   expr_desc = Expr_ident id;
502
   expr_type = Types.new_var ();
503
   expr_clock = Clocks.new_var true;
504
   expr_delay = Delay.new_var ();
505
   expr_loc = loc;
506
   expr_annot = None}
507

    
508
let is_tuple_expr expr =
509
 match expr.expr_desc with
510
  | Expr_tuple _ -> true
511
  | _            -> false
512

    
513
let expr_list_of_expr expr =
514
  match expr.expr_desc with
515
  | Expr_tuple elist -> elist
516
  | _                -> [expr]
517

    
518
let expr_of_expr_list loc elist =
519
 match elist with
520
 | [t]  -> { t with expr_loc = loc }
521
 | t::_ ->
522
    let tlist = List.map (fun e -> e.expr_type) elist in
523
    let clist = List.map (fun e -> e.expr_clock) elist in
524
    { t with expr_desc = Expr_tuple elist;
525
	     expr_type = Type_predef.type_tuple tlist;
526
	     expr_clock = Clock_predef.ck_tuple clist;
527
	     expr_tag = Utils.new_tag ();
528
	     expr_loc = loc }
529
 | _    -> assert false
530

    
531
let call_of_expr expr =
532
 match expr.expr_desc with
533
 | Expr_appl (f, args, r) -> (f, expr_list_of_expr args, r)
534
 | _                      -> assert false
535

    
536
    
537
(* Conversion from dimension expr to standard expr, for the purpose of printing, typing, etc... *)
538
let rec expr_of_dimension dim =
539
  let open Dimension in
540
  match dim.dim_desc with
541
 | Dbool b        ->
542
     mkexpr dim.dim_loc (Expr_const (const_of_bool b))
543
 | Dint i         ->
544
     mkexpr dim.dim_loc (Expr_const (Const_int i))
545
 | Dident id      ->
546
     mkexpr dim.dim_loc (Expr_ident id)
547
 | Dite (c, t, e) ->
548
     mkexpr dim.dim_loc (Expr_ite (expr_of_dimension c, expr_of_dimension t, expr_of_dimension e))
549
 | Dappl (id, args) ->
550
     mkexpr dim.dim_loc (Expr_appl (id, expr_of_expr_list dim.dim_loc (List.map expr_of_dimension args), None))
551
 | Dlink dim'       -> expr_of_dimension dim'
552
 | Dvar
553
 | Dunivar          -> (Format.eprintf "internal error: Corelang.expr_of_dimension %a@." Dimension.pp_dimension dim;
554
			assert false)
555

    
556
let dimension_of_const loc const =
557
  let open Dimension in
558
 match const with
559
 | Const_int i                                    -> mkdim_int loc i
560
 | Const_tag t when t = tag_true || t = tag_false -> mkdim_bool loc (t = tag_true)
561
 | _                                              -> raise InvalidDimension
562

    
563
(* Conversion from standard expr to dimension expr, for the purpose of injecting static call arguments 
564
   into dimension expressions *)
565
let rec dimension_of_expr expr =
566
  let open Dimension in
567
  match expr.expr_desc with
568
  | Expr_const c  -> dimension_of_const expr.expr_loc c
569
  | Expr_ident id -> mkdim_ident expr.expr_loc id
570
  | Expr_appl (f, args, None) when Basic_library.is_expr_internal_fun expr ->
571
      let k = Types.get_static_value (Env.lookup_value Basic_library.type_env f) in
572
      if k = None then raise InvalidDimension;
573
      mkdim_appl expr.expr_loc f (List.map dimension_of_expr (expr_list_of_expr args))
574
  | Expr_ite (i, t, e)        ->
575
      mkdim_ite expr.expr_loc (dimension_of_expr i) (dimension_of_expr t) (dimension_of_expr e)
576
  | _ -> raise InvalidDimension (* not a simple dimension expression *)
577

    
578

    
579
let sort_handlers hl =
580
 List.sort (fun (t, _) (t', _) -> compare t t') hl
581

    
582
let num_10 = Num.num_of_int 10
583

    
584
let cst_real_to_num n i =
585
  Num.(n // (num_10 **/ (num_of_int i)))
586

    
587
let rec is_eq_const c1 c2 =
588
  match c1, c2 with
589
  | Const_real (n1, i1, _), Const_real (n2, i2, _)
590
    -> let n1 = cst_real_to_num n1 i1 in
591
       let n2 = cst_real_to_num n2 i2 in
592
	    Num.eq_num n1 n2
593
  | Const_struct lcl1, Const_struct lcl2
594
    -> List.length lcl1 = List.length lcl2
595
    && List.for_all2 (fun (l1, c1) (l2, c2) -> l1 = l2 && is_eq_const c1 c2) lcl1 lcl2
596
  | _  -> c1 = c2
597

    
598
let rec is_eq_expr e1 e2 = match e1.expr_desc, e2.expr_desc with
599
  | Expr_const c1, Expr_const c2 -> is_eq_const c1 c2
600
  | Expr_ident i1, Expr_ident i2 -> i1 = i2
601
  | Expr_array el1, Expr_array el2 
602
  | Expr_tuple el1, Expr_tuple el2 -> 
603
    List.length el1 = List.length el2 && List.for_all2 is_eq_expr el1 el2 
604
  | Expr_arrow (e1, e2), Expr_arrow (e1', e2') -> is_eq_expr e1 e1' && is_eq_expr e2 e2'
605
  | Expr_fby (e1,e2), Expr_fby (e1',e2') -> is_eq_expr e1 e1' && is_eq_expr e2 e2'
606
  | Expr_ite (i1, t1, e1), Expr_ite (i2, t2, e2) -> is_eq_expr i1 i2 && is_eq_expr t1 t2 && is_eq_expr e1 e2
607
  (* | Expr_concat (e1,e2), Expr_concat (e1',e2') -> is_eq_expr e1 e1' && is_eq_expr e2 e2' *)
608
  (* | Expr_tail e, Expr_tail e' -> is_eq_expr e e' *)
609
  | Expr_pre e, Expr_pre e' -> is_eq_expr e e'
610
  | Expr_when (e, i, l), Expr_when (e', i', l') -> l=l' && i=i' && is_eq_expr e e'
611
  | Expr_merge(i, hl), Expr_merge(i', hl') -> i=i' && List.for_all2 (fun (t, h) (t', h') -> t=t' && is_eq_expr h h') (sort_handlers hl) (sort_handlers hl')
612
  | Expr_appl (i, e, r), Expr_appl (i', e', r') -> i=i' && r=r' && is_eq_expr e e'
613
  | Expr_power (e1, i1), Expr_power (e2, i2)
614
  | Expr_access (e1, i1), Expr_access (e2, i2) -> is_eq_expr e1 e2 && is_eq_expr (expr_of_dimension i1) (expr_of_dimension i2)
615
  | _ -> false
616

    
617
let get_node_vars nd =
618
  nd.node_inputs @ nd.node_locals @ nd.node_outputs
619

    
620
let mk_new_node_name nd id =
621
  let used_vars = get_node_vars nd in
622
  let used v = List.exists (fun vdecl -> vdecl.var_id = v) used_vars in
623
  mk_new_name used id
624

    
625
let get_var id var_list =
626
  List.find (fun v -> v.var_id = id) var_list
627

    
628
let get_node_var id node =
629
  try
630
    get_var id (get_node_vars node)
631
  with Not_found -> begin
632
    (* Format.eprintf "Unable to find variable %s in node %s@.@?" id node.node_id; *)
633
    raise Not_found
634
  end
635

    
636

    
637
let get_node_eqs =
638
  let get_eqs stmts =
639
    List.fold_right
640
      (fun stmt (res_eq, res_aut) ->
641
	match stmt with
642
	| Eq eq -> eq :: res_eq, res_aut
643
	| Aut aut -> res_eq, aut::res_aut)
644
      stmts
645
      ([], []) in
646
  let table_eqs = Hashtbl.create 23 in
647
  (fun nd ->
648
    try
649
      let (old, res) = Hashtbl.find table_eqs nd.node_id
650
      in if old == nd.node_stmts then res else raise Not_found
651
    with Not_found -> 
652
      let res = get_eqs nd.node_stmts in
653
      begin
654
	Hashtbl.replace table_eqs nd.node_id (nd.node_stmts, res);
655
	res
656
      end)
657

    
658
let get_node_eq id node =
659
  let eqs, auts = get_node_eqs node in
660
  try
661
    List.find (fun eq -> List.mem id eq.eq_lhs) eqs
662
  with
663
    Not_found -> (* Shall be defined in automata auts *) raise Not_found
664
      
665
let get_nodes prog = 
666
  List.fold_left (
667
    fun nodes decl ->
668
      match decl.top_decl_desc with
669
	| Node _ -> decl::nodes
670
	| Const _ | ImportedNode _ | Include _ | Open _ | TypeDef _ -> nodes  
671
  ) [] prog
672

    
673
let get_imported_nodes prog = 
674
  List.fold_left (
675
    fun nodes decl ->
676
      match decl.top_decl_desc with
677
	| ImportedNode _ -> decl::nodes
678
	| Const _ | Node _ | Include _ | Open _ | TypeDef _-> nodes  
679
  ) [] prog
680

    
681
let get_consts prog = 
682
  List.fold_right (
683
    fun decl consts ->
684
      match decl.top_decl_desc with
685
	| Const _ -> decl::consts
686
	| Node _ | ImportedNode _ | Include _ | Open _ | TypeDef _ -> consts  
687
  ) prog []
688

    
689
let get_typedefs prog = 
690
  List.fold_right (
691
    fun decl types ->
692
      match decl.top_decl_desc with
693
	| TypeDef _ -> decl::types
694
	| Node _ | ImportedNode _ | Include _ | Open _ | Const _ -> types  
695
  ) prog []
696

    
697
let get_dependencies prog =
698
  List.fold_right (
699
    fun decl deps ->
700
      match decl.top_decl_desc with
701
	| Open _ -> decl::deps
702
	| Node _ | ImportedNode _ | TypeDef _ | Include _ | Const _ -> deps  
703
  ) prog []
704

    
705
let get_node_interface nd =
706
 {nodei_id = nd.node_id;
707
  nodei_type = nd.node_type;
708
  nodei_clock = nd.node_clock;
709
  nodei_inputs = nd.node_inputs;
710
  nodei_outputs = nd.node_outputs;
711
  nodei_stateless = nd.node_dec_stateless;
712
  nodei_spec = nd.node_spec;
713
  (* nodei_annot = nd.node_annot; *)
714
  nodei_prototype = None;
715
  nodei_in_lib = [];
716
 }
717

    
718
(************************************************************************)
719
(*        Renaming / Copying                                                      *)
720

    
721
let copy_var_decl vdecl =
722
  mkvar_decl
723
    vdecl.var_loc
724
    ~orig:vdecl.var_orig
725
    (
726
      vdecl.var_id,
727
      vdecl.var_dec_type,
728
      vdecl.var_dec_clock,
729
      vdecl.var_dec_const,
730
      vdecl.var_dec_value,
731
      vdecl.var_parent_nodeid
732
    )
733

    
734
let copy_const cdecl =
735
  { cdecl with const_type = Types.new_var () }
736

    
737
let copy_node nd =
738
  { nd with
739
    node_type     = Types.new_var ();
740
    node_clock    = Clocks.new_var true;
741
    node_inputs   = List.map copy_var_decl nd.node_inputs;
742
    node_outputs  = List.map copy_var_decl nd.node_outputs;
743
    node_locals   = List.map copy_var_decl nd.node_locals;
744
    node_gencalls = [];
745
    node_checks   = [];
746
    node_stateless = None;
747
  }
748

    
749
let copy_top top =
750
  match top.top_decl_desc with
751
  | Node nd -> { top with top_decl_desc = Node (copy_node nd)  }
752
  | Const c -> { top with top_decl_desc = Const (copy_const c) }
753
  | _       -> top
754

    
755
let copy_prog top_list =
756
  List.map copy_top top_list
757

    
758
  
759
let rec rename_static rename cty =
760
 match cty with
761
 | Tydec_array (d, cty') -> Tydec_array (Dimension.expr_replace_expr rename d, rename_static rename cty')
762
 | Tydec_clock cty       -> Tydec_clock (rename_static rename cty)
763
 | Tydec_struct fl       -> Tydec_struct (List.map (fun (f, cty) -> f, rename_static rename cty) fl)
764
 | _                      -> cty
765

    
766
let rec rename_carrier rename cck =
767
 match cck with
768
 | Ckdec_bool cl -> Ckdec_bool (List.map (fun (c, l) -> rename c, l) cl)
769
 | _             -> cck
770

    
771
 (*Format.eprintf "Types.rename_static %a = %a@." print_ty ty print_ty res; res*)
772

    
773
(* applies the renaming function [fvar] to all variables of expression [expr] *)
774
 (* let rec expr_replace_var fvar expr = *)
775
 (*  { expr with expr_desc = expr_desc_replace_var fvar expr.expr_desc } *)
776

    
777
 (* and expr_desc_replace_var fvar expr_desc = *)
778
 (*   match expr_desc with *)
779
 (*   | Expr_const _ -> expr_desc *)
780
 (*   | Expr_ident i -> Expr_ident (fvar i) *)
781
 (*   | Expr_array el -> Expr_array (List.map (expr_replace_var fvar) el) *)
782
 (*   | Expr_access (e1, d) -> Expr_access (expr_replace_var fvar e1, d) *)
783
 (*   | Expr_power (e1, d) -> Expr_power (expr_replace_var fvar e1, d) *)
784
 (*   | Expr_tuple el -> Expr_tuple (List.map (expr_replace_var fvar) el) *)
785
 (*   | Expr_ite (c, t, e) -> Expr_ite (expr_replace_var fvar c, expr_replace_var fvar t, expr_replace_var fvar e) *)
786
 (*   | Expr_arrow (e1, e2)-> Expr_arrow (expr_replace_var fvar e1, expr_replace_var fvar e2)  *)
787
 (*   | Expr_fby (e1, e2) -> Expr_fby (expr_replace_var fvar e1, expr_replace_var fvar e2) *)
788
 (*   | Expr_pre e' -> Expr_pre (expr_replace_var fvar e') *)
789
 (*   | Expr_when (e', i, l)-> Expr_when (expr_replace_var fvar e', fvar i, l) *)
790
 (*   | Expr_merge (i, hl) -> Expr_merge (fvar i, List.map (fun (t, h) -> (t, expr_replace_var fvar h)) hl) *)
791
 (*   | Expr_appl (i, e', i') -> Expr_appl (i, expr_replace_var fvar e', Utils.option_map (expr_replace_var fvar) i') *)
792

    
793

    
794

    
795
 let rec rename_expr  f_node f_var expr =
796
   { expr with expr_desc = rename_expr_desc f_node f_var expr.expr_desc }
797
 and rename_expr_desc f_node f_var expr_desc =
798
   let re = rename_expr  f_node f_var in
799
   match expr_desc with
800
   | Expr_const _ -> expr_desc
801
   | Expr_ident i -> Expr_ident (f_var i)
802
   | Expr_array el -> Expr_array (List.map re el)
803
   | Expr_access (e1, d) -> Expr_access (re e1, d)
804
   | Expr_power (e1, d) -> Expr_power (re e1, d)
805
   | Expr_tuple el -> Expr_tuple (List.map re el)
806
   | Expr_ite (c, t, e) -> Expr_ite (re c, re t, re e)
807
   | Expr_arrow (e1, e2)-> Expr_arrow (re e1, re e2) 
808
   | Expr_fby (e1, e2) -> Expr_fby (re e1, re e2)
809
   | Expr_pre e' -> Expr_pre (re e')
810
   | Expr_when (e', i, l)-> Expr_when (re e', f_var i, l)
811
   | Expr_merge (i, hl) -> 
812
     Expr_merge (f_var i, List.map (fun (t, h) -> (t, re h)) hl)
813
   | Expr_appl (i, e', i') -> 
814
     Expr_appl (f_node i, re e', Utils.option_map re i')
815
   
816
 let rename_var f_node f_var v = {
817
     (copy_var_decl v) with
818
     var_id = f_var v.var_id;
819
     var_type = v.var_type;
820
     var_clock = v.var_clock;
821
 } 
822

    
823
 let rename_vars f_node f_var = List.map (rename_var f_node f_var) 
824

    
825
 let rec rename_eq f_node f_var eq = { eq with
826
   eq_lhs = List.map f_var eq.eq_lhs; 
827
   eq_rhs = rename_expr f_node f_var eq.eq_rhs
828
 } 
829
 and rename_handler f_node f_var  h = {h with
830
   hand_state = f_var h.hand_state;
831
   hand_unless = List.map (
832
     fun (l,e,b,id) -> l, rename_expr f_node f_var e, b, f_var id
833
   ) h.hand_unless;
834
   hand_until = List.map (
835
     fun (l,e,b,id) -> l, rename_expr f_node f_var e, b, f_var id
836
   ) h.hand_until;
837
   hand_locals = rename_vars f_node f_var h.hand_locals;
838
   hand_stmts = rename_stmts f_node f_var h.hand_stmts;
839
   hand_annots = rename_annots f_node f_var h.hand_annots;
840
   
841
 } 
842
 and rename_aut f_node f_var  aut = { aut with
843
   aut_id = f_var aut.aut_id;
844
   aut_handlers = List.map (rename_handler f_node f_var) aut.aut_handlers;
845
 }
846
 and rename_stmts f_node f_var stmts = List.map (fun stmt -> match stmt with
847
   | Eq eq -> Eq (rename_eq f_node f_var eq)
848
   | Aut at -> Aut (rename_aut f_node f_var at))
849
   stmts
850
 and rename_annotl f_node f_var  annots = 
851
   List.map 
852
     (fun (key, value) -> key, rename_eexpr f_node f_var value) 
853
     annots
854
 and rename_annot f_node f_var annot =
855
   { annot with annots = rename_annotl f_node f_var annot.annots }
856
 and rename_annots f_node f_var annots =
857
   List.map (rename_annot f_node f_var) annots
858
and rename_eexpr f_node f_var ee =
859
   { ee with
860
     eexpr_tag = Utils.new_tag ();
861
     eexpr_qfexpr = rename_expr f_node f_var ee.eexpr_qfexpr;
862
     eexpr_quantifiers = List.map (fun (typ,vdecls) -> typ, rename_vars f_node f_var vdecls) ee.eexpr_quantifiers;
863
   }
864
and rename_mode f_node f_var m =
865
  let rename_ee = rename_eexpr f_node f_var in
866
  {
867
    m with
868
    require = List.map rename_ee m.require;
869
    ensure = List.map rename_ee m.ensure
870
  }
871
     
872
 let rename_import f_node f_var imp =
873
   let rename_expr = rename_expr f_node f_var in
874
   {
875
     imp with
876
     import_nodeid = f_node imp.import_nodeid;
877
     inputs = rename_expr imp.inputs;
878
     outputs =  rename_expr imp.outputs;
879
   }
880
   
881
 let rename_node f_node f_var nd =
882
   let f_var x = (* checking that this is actually a local variable *)
883
     if List.exists (fun v -> v.var_id = x) (get_node_vars nd) then
884
       f_var x
885
     else
886
       x
887
   in
888
   let rename_var = rename_var f_node f_var in
889
   let rename_vars = List.map rename_var in
890
   let rename_expr = rename_expr f_node f_var in
891
   let rename_eexpr = rename_eexpr f_node f_var in
892
   let rename_stmts = rename_stmts f_node f_var in
893
   let inputs = rename_vars nd.node_inputs in
894
   let outputs = rename_vars nd.node_outputs in
895
   let locals = rename_vars nd.node_locals in
896
   let gen_calls = List.map rename_expr nd.node_gencalls in
897
   let node_checks = List.map (Dimension.rename f_node f_var)  nd.node_checks in
898
   let node_asserts = List.map 
899
     (fun a -> 
900
       {a with assert_expr = 
901
	   let expr = a.assert_expr in
902
	   rename_expr expr})
903
     nd.node_asserts
904
   in
905
   let node_stmts = rename_stmts nd.node_stmts
906

    
907
     
908
   in
909
   let spec = 
910
     Utils.option_map 
911
       (fun s -> match s with
912
                   NodeSpec id -> NodeSpec (f_node id)
913
                 | Contract c -> Contract {
914
                     c with
915
                     consts = rename_vars c.consts;
916
                     locals = rename_vars c.locals;
917
                     stmts = rename_stmts c.stmts;
918
                     assume = List.map rename_eexpr c.assume;
919
                     guarantees = List.map rename_eexpr c.guarantees;
920
                     modes = List.map (rename_mode f_node f_var) c.modes;
921
                     imports = List.map (rename_import f_node f_var) c.imports;
922
                   }
923
       )
924
       nd.node_spec 
925
   in
926
   let annot = rename_annots f_node f_var nd.node_annot in
927
   {
928
     node_id = f_node nd.node_id;
929
     node_type = nd.node_type;
930
     node_clock = nd.node_clock;
931
     node_inputs = inputs;
932
     node_outputs = outputs;
933
     node_locals = locals;
934
     node_gencalls = gen_calls;
935
     node_checks = node_checks;
936
     node_asserts = node_asserts;
937
     node_stmts = node_stmts;
938
     node_dec_stateless = nd.node_dec_stateless;
939
     node_stateless = nd.node_stateless;
940
     node_spec = spec;
941
     node_annot = annot;
942
     node_iscontract = nd.node_iscontract;
943
   }
944

    
945

    
946
let rename_const f_const c =
947
  { c with const_id = f_const c.const_id }
948

    
949
let rename_typedef f_var t =
950
  match t.tydef_desc with
951
  | Tydec_enum tags -> { t with tydef_desc = Tydec_enum (List.map f_var tags) }
952
  | _               -> t
953

    
954
let rename_prog f_node f_var f_const prog =
955
  List.rev (
956
    List.fold_left (fun accu top ->
957
      (match top.top_decl_desc with
958
      | Node nd -> 
959
	 { top with top_decl_desc = Node (rename_node f_node f_var nd) }
960
      | Const c -> 
961
	 { top with top_decl_desc = Const (rename_const f_const c) }
962
      | TypeDef tdef ->
963
	 { top with top_decl_desc = TypeDef (rename_typedef f_var tdef) }
964
      | ImportedNode _
965
        | Include _ | Open _       -> top)
966
      ::accu
967
) [] prog
968
		   )
969

    
970
(* Applies the renaming function [fvar] to every rhs
971
   only when the corresponding lhs satisfies predicate [pvar] *)
972
 let eq_replace_rhs_var pvar fvar eq =
973
   let pvar l = List.exists pvar l in
974
   let rec replace lhs rhs =
975
     { rhs with expr_desc =
976
     match lhs with
977
     | []  -> assert false
978
     | [_] -> if pvar lhs then rename_expr_desc (fun x -> x) fvar rhs.expr_desc else rhs.expr_desc
979
     | _   ->
980
       (match rhs.expr_desc with
981
       | Expr_tuple tl ->
982
	 Expr_tuple (List.map2 (fun v e -> replace [v] e) lhs tl)
983
       | Expr_appl (f, arg, None) when Basic_library.is_expr_internal_fun rhs ->
984
	 let args = expr_list_of_expr arg in
985
	 Expr_appl (f, expr_of_expr_list arg.expr_loc (List.map (replace lhs) args), None)
986
       | Expr_array _
987
       | Expr_access _
988
       | Expr_power _
989
       | Expr_const _
990
       | Expr_ident _
991
       | Expr_appl _   ->
992
	 if pvar lhs
993
	 then rename_expr_desc (fun x -> x) fvar rhs.expr_desc
994
	 else rhs.expr_desc
995
       | Expr_ite (c, t, e)   -> Expr_ite (replace lhs c, replace lhs t, replace lhs e)
996
       | Expr_arrow (e1, e2)  -> Expr_arrow (replace lhs e1, replace lhs e2) 
997
       | Expr_fby (e1, e2)    -> Expr_fby (replace lhs e1, replace lhs e2)
998
       | Expr_pre e'          -> Expr_pre (replace lhs e')
999
       | Expr_when (e', i, l) -> let i' = if pvar lhs then fvar i else i
1000
				 in Expr_when (replace lhs e', i', l)
1001
       | Expr_merge (i, hl)   -> let i' = if pvar lhs then fvar i else i
1002
				 in Expr_merge (i', List.map (fun (t, h) -> (t, replace lhs h)) hl)
1003
       )
1004
     }
1005
   in { eq with eq_rhs = replace eq.eq_lhs eq.eq_rhs }
1006

    
1007
    
1008
(**********************************************************************)
1009
(* Pretty printers *)
1010

    
1011
let pp_decl_type fmt tdecl =
1012
  match tdecl.top_decl_desc with
1013
  | Node nd ->
1014
    fprintf fmt "%s: " nd.node_id;
1015
    Utils.reset_names ();
1016
    fprintf fmt "%a@ " Types.print_ty nd.node_type
1017
  | ImportedNode ind ->
1018
    fprintf fmt "%s: " ind.nodei_id;
1019
    Utils.reset_names ();
1020
    fprintf fmt "%a@ " Types.print_ty ind.nodei_type
1021
  | Const _ | Include _ | Open _ | TypeDef _ -> ()
1022

    
1023
let pp_prog_type fmt tdecl_list =
1024
  Utils.fprintf_list ~sep:"" pp_decl_type fmt tdecl_list
1025

    
1026
let pp_decl_clock fmt cdecl =
1027
  match cdecl.top_decl_desc with
1028
  | Node nd ->
1029
    fprintf fmt "%s: " nd.node_id;
1030
    Utils.reset_names ();
1031
    fprintf fmt "%a@ " Clocks.print_ck nd.node_clock
1032
  | ImportedNode ind ->
1033
    fprintf fmt "%s: " ind.nodei_id;
1034
    Utils.reset_names ();
1035
    fprintf fmt "%a@ " Clocks.print_ck ind.nodei_clock
1036
  | Const _ | Include _ | Open _ | TypeDef _ -> ()
1037

    
1038
let pp_prog_clock fmt prog =
1039
  Utils.fprintf_list ~sep:"" pp_decl_clock fmt prog
1040

    
1041

    
1042
(* filling node table with internal functions *)
1043
let vdecls_of_typ_ck cpt ty =
1044
  let loc = Location.dummy_loc in
1045
  List.map
1046
    (fun _ -> incr cpt;
1047
              let name = sprintf "_var_%d" !cpt in
1048
              mkvar_decl loc (name, mktyp loc Tydec_any, mkclock loc Ckdec_any, false, None, None))
1049
    (Types.type_list_of_type ty)
1050

    
1051
let mk_internal_node id =
1052
  let spec = None in
1053
  let ty = Env.lookup_value Basic_library.type_env id in
1054
  let ck = Env.lookup_value Basic_library.clock_env id in
1055
  let (tin, tout) = Types.split_arrow ty in
1056
  (*eprintf "internal fun %s: %d -> %d@." id (List.length (Types.type_list_of_type tin)) (List.length (Types.type_list_of_type tout));*)
1057
  let cpt = ref (-1) in
1058
  mktop
1059
    (ImportedNode
1060
       {nodei_id = id;
1061
	nodei_type = ty;
1062
	nodei_clock = ck;
1063
	nodei_inputs = vdecls_of_typ_ck cpt tin;
1064
	nodei_outputs = vdecls_of_typ_ck cpt tout;
1065
	nodei_stateless = Types.get_static_value ty <> None;
1066
	nodei_spec = spec;
1067
	(* nodei_annot = []; *)
1068
	nodei_prototype = None;
1069
       	nodei_in_lib = [];
1070
       })
1071

    
1072
let add_internal_funs () =
1073
  List.iter
1074
    (fun id -> let nd = mk_internal_node id in Hashtbl.add node_table id nd)
1075
    Basic_library.internal_funs
1076

    
1077

    
1078

    
1079
(* Replace any occurence of a var in vars_to_replace by its associated
1080
   expression in defs until e does not contain any such variables *)
1081
let rec substitute_expr vars_to_replace defs e =
1082
  let se = substitute_expr vars_to_replace defs in
1083
  { e with expr_desc = 
1084
      let ed = e.expr_desc in
1085
      match ed with
1086
      | Expr_const _ -> ed
1087
      | Expr_array el -> Expr_array (List.map se el)
1088
      | Expr_access (e1, d) -> Expr_access (se e1, d)
1089
      | Expr_power (e1, d) -> Expr_power (se e1, d)
1090
      | Expr_tuple el -> Expr_tuple (List.map se el)
1091
      | Expr_ite (c, t, e) -> Expr_ite (se c, se t, se e)
1092
      | Expr_arrow (e1, e2)-> Expr_arrow (se e1, se e2) 
1093
      | Expr_fby (e1, e2) -> Expr_fby (se e1, se e2)
1094
      | Expr_pre e' -> Expr_pre (se e')
1095
      | Expr_when (e', i, l)-> Expr_when (se e', i, l)
1096
      | Expr_merge (i, hl) -> Expr_merge (i, List.map (fun (t, h) -> (t, se h)) hl)
1097
      | Expr_appl (i, e', i') -> Expr_appl (i, se e', i')
1098
      | Expr_ident i -> 
1099
	if List.exists (fun v -> v.var_id = i) vars_to_replace then (
1100
	  let eq_i eq = eq.eq_lhs = [i] in
1101
	  if List.exists eq_i defs then
1102
	    let sub = List.find eq_i defs in
1103
	    let sub' = se sub.eq_rhs in
1104
	    sub'.expr_desc
1105
	  else 
1106
	    assert false
1107
	)
1108
	else
1109
	  ed
1110

    
1111
  }
1112
  
1113
 let rec expr_to_eexpr  expr =
1114
   { eexpr_tag = expr.expr_tag;
1115
     eexpr_qfexpr = expr;
1116
     eexpr_quantifiers = [];
1117
     eexpr_name = None;
1118
     eexpr_type = expr.expr_type;
1119
     eexpr_clock = expr.expr_clock;
1120
     eexpr_loc = expr.expr_loc;
1121
     (*eexpr_normalized = None*)
1122
   }
1123
 (* and expr_desc_to_eexpr_desc expr_desc = *)
1124
 (*   let conv = expr_to_eexpr in *)
1125
 (*   match expr_desc with *)
1126
 (*   | Expr_const c -> EExpr_const (match c with *)
1127
 (*     | Const_int x -> EConst_int x  *)
1128
 (*     | Const_real x -> EConst_real x  *)
1129
 (*     | Const_float x -> EConst_float x  *)
1130
 (*     | Const_tag x -> EConst_tag x  *)
1131
 (*     | _ -> assert false *)
1132

    
1133
 (*   ) *)
1134
 (*   | Expr_ident i -> EExpr_ident i *)
1135
 (*   | Expr_tuple el -> EExpr_tuple (List.map conv el) *)
1136

    
1137
 (*   | Expr_arrow (e1, e2)-> EExpr_arrow (conv e1, conv e2)  *)
1138
 (*   | Expr_fby (e1, e2) -> EExpr_fby (conv e1, conv e2) *)
1139
 (*   | Expr_pre e' -> EExpr_pre (conv e') *)
1140
 (*   | Expr_appl (i, e', i') ->  *)
1141
 (*     EExpr_appl  *)
1142
 (*       (i, conv e', match i' with None -> None | Some(id, _) -> Some id) *)
1143

    
1144
 (*   | Expr_when _ *)
1145
 (*   | Expr_merge _ -> assert false *)
1146
 (*   | Expr_array _  *)
1147
 (*   | Expr_access _  *)
1148
 (*   | Expr_power _  -> assert false *)
1149
 (*   | Expr_ite (c, t, e) -> assert false  *)
1150
 (*   | _ -> assert false *)
1151
      
1152
     
1153
let rec get_expr_calls nodes e =
1154
  let get_calls = get_expr_calls nodes in
1155
  match e.expr_desc with
1156
  | Expr_const _ 
1157
   | Expr_ident _ -> Utils.ISet.empty
1158
   | Expr_tuple el
1159
   | Expr_array el -> List.fold_left (fun accu e -> Utils.ISet.union accu (get_calls e)) Utils.ISet.empty el
1160
   | Expr_pre e1 
1161
   | Expr_when (e1, _, _) 
1162
   | Expr_access (e1, _) 
1163
   | Expr_power (e1, _) -> get_calls e1
1164
   | Expr_ite (c, t, e) -> Utils.ISet.union (Utils.ISet.union (get_calls c) (get_calls t)) (get_calls e) 
1165
   | Expr_arrow (e1, e2) 
1166
   | Expr_fby (e1, e2) -> Utils.ISet.union (get_calls e1) (get_calls e2)
1167
   | Expr_merge (_, hl) -> List.fold_left (fun accu (_, h) -> Utils.ISet.union accu (get_calls h)) Utils.ISet.empty  hl
1168
   | Expr_appl (i, e', i') -> 
1169
     if Basic_library.is_expr_internal_fun e then 
1170
       (get_calls e') 
1171
     else
1172
       let calls =  Utils.ISet.add i (get_calls e') in
1173
       let test = (fun n -> match n.top_decl_desc with Node nd -> nd.node_id = i | _ -> false) in
1174
       if List.exists test nodes then
1175
	 match (List.find test nodes).top_decl_desc with
1176
	 | Node nd -> Utils.ISet.union (get_node_calls nodes nd) calls
1177
	 | _ -> assert false
1178
       else 
1179
	 calls
1180

    
1181
and get_eq_calls nodes eq =
1182
  get_expr_calls nodes eq.eq_rhs
1183
and get_aut_handler_calls nodes h =
1184
  List.fold_left (fun accu stmt -> match stmt with
1185
  | Eq eq -> Utils.ISet.union (get_eq_calls nodes eq) accu
1186
  | Aut aut' ->  Utils.ISet.union (get_aut_calls nodes aut') accu
1187
  ) Utils.ISet.empty h.hand_stmts 
1188
and get_aut_calls nodes aut =
1189
  List.fold_left (fun accu h -> Utils.ISet.union (get_aut_handler_calls nodes h) accu)
1190
    Utils.ISet.empty aut.aut_handlers
1191
and get_node_calls nodes node =
1192
  let eqs, auts = get_node_eqs node in
1193
  let aut_calls =
1194
    List.fold_left
1195
      (fun accu aut -> Utils.ISet.union (get_aut_calls nodes aut) accu)
1196
      Utils.ISet.empty auts
1197
  in
1198
  List.fold_left
1199
    (fun accu eq -> Utils.ISet.union (get_eq_calls nodes eq) accu)
1200
    aut_calls eqs
1201

    
1202
let get_expr_vars e =
1203
  let rec get_expr_vars vars e =
1204
    get_expr_desc_vars vars e.expr_desc
1205
  and get_expr_desc_vars vars expr_desc =
1206
    (*Format.eprintf "get_expr_desc_vars expr=%a@." Printers.pp_expr (mkexpr Location.dummy_loc expr_desc);*)
1207
  match expr_desc with
1208
  | Expr_const _ -> vars
1209
  | Expr_ident x -> Utils.ISet.add x vars
1210
  | Expr_tuple el
1211
  | Expr_array el -> List.fold_left get_expr_vars vars el
1212
  | Expr_pre e1 -> get_expr_vars vars e1
1213
  | Expr_when (e1, c, _) -> get_expr_vars (Utils.ISet.add c vars) e1 
1214
  | Expr_access (e1, d) 
1215
  | Expr_power (e1, d)   -> List.fold_left get_expr_vars vars [e1; expr_of_dimension d]
1216
  | Expr_ite (c, t, e) -> List.fold_left get_expr_vars vars [c; t; e]
1217
  | Expr_arrow (e1, e2) 
1218
  | Expr_fby (e1, e2) -> List.fold_left get_expr_vars vars [e1; e2]
1219
  | Expr_merge (c, hl) -> List.fold_left (fun vars (_, h) -> get_expr_vars vars h) (Utils.ISet.add c vars) hl
1220
  | Expr_appl (_, arg, None)   -> get_expr_vars vars arg
1221
  | Expr_appl (_, arg, Some r) -> List.fold_left get_expr_vars vars [arg; r]
1222
  in
1223
  get_expr_vars Utils.ISet.empty e 
1224

    
1225
let rec expr_has_arrows e =
1226
  expr_desc_has_arrows e.expr_desc
1227
and expr_desc_has_arrows expr_desc =
1228
  match expr_desc with
1229
  | Expr_const _ 
1230
  | Expr_ident _ -> false
1231
  | Expr_tuple el
1232
  | Expr_array el -> List.exists expr_has_arrows el
1233
  | Expr_pre e1 
1234
  | Expr_when (e1, _, _) 
1235
  | Expr_access (e1, _) 
1236
  | Expr_power (e1, _) -> expr_has_arrows e1
1237
  | Expr_ite (c, t, e) -> List.exists expr_has_arrows [c; t; e]
1238
  | Expr_arrow (e1, e2) 
1239
  | Expr_fby (e1, e2) -> true
1240
  | Expr_merge (_, hl) -> List.exists (fun (_, h) -> expr_has_arrows h) hl
1241
  | Expr_appl (i, e', i') -> expr_has_arrows e'
1242

    
1243
and eq_has_arrows eq =
1244
  expr_has_arrows eq.eq_rhs
1245
and aut_has_arrows aut = List.exists (fun h -> List.exists (fun stmt -> match stmt with Eq eq -> eq_has_arrows eq | Aut aut' -> aut_has_arrows aut') h.hand_stmts ) aut.aut_handlers 
1246
and node_has_arrows node =
1247
  let eqs, auts = get_node_eqs node in
1248
  List.exists (fun eq -> eq_has_arrows eq) eqs || List.exists (fun aut -> aut_has_arrows aut) auts
1249

    
1250

    
1251

    
1252

    
1253

    
1254
let rec expr_contains_expr expr_tag expr  =
1255
  let search = expr_contains_expr expr_tag in
1256
  expr.expr_tag = expr_tag ||
1257
      (
1258
	match expr.expr_desc with
1259
	| Expr_const _ -> false
1260
	| Expr_array el -> List.exists search el
1261
	| Expr_access (e1, _) 
1262
	| Expr_power (e1, _) -> search e1
1263
	| Expr_tuple el -> List.exists search el
1264
	| Expr_ite (c, t, e) -> List.exists search [c;t;e]
1265
	| Expr_arrow (e1, e2)
1266
	| Expr_fby (e1, e2) -> List.exists search [e1; e2]
1267
	| Expr_pre e' 
1268
	| Expr_when (e', _, _) -> search e'
1269
	| Expr_merge (_, hl) -> List.exists (fun (_, h) -> search h) hl
1270
	| Expr_appl (_, e', None) -> search e' 
1271
	| Expr_appl (_, e', Some e'') -> List.exists search [e'; e''] 
1272
	| Expr_ident _ -> false
1273
      )
1274

    
1275

    
1276

    
1277
(* Generate a new local [node] variable *)
1278
let cpt_fresh = ref 0
1279

    
1280
let reset_cpt_fresh () =
1281
    cpt_fresh := 0
1282
    
1283
let mk_fresh_var (parentid, ctx_env) loc ty ck =
1284
  let rec aux () =
1285
  incr cpt_fresh;
1286
  let s = Printf.sprintf "__%s_%d" parentid !cpt_fresh in
1287
  if List.exists (fun v -> v.var_id = s) ctx_env then aux () else
1288
  {
1289
    var_id = s;
1290
    var_orig = false;
1291
    var_dec_type = dummy_type_dec;
1292
    var_dec_clock = dummy_clock_dec;
1293
    var_dec_const = false;
1294
    var_dec_value = None;
1295
    var_parent_nodeid = Some parentid;
1296
    var_type = ty;
1297
    var_clock = ck;
1298
    var_loc = loc
1299
  }
1300
  in aux ()
1301

    
1302

    
1303
let find_eq xl eqs =
1304
  let rec aux accu eqs =
1305
    match eqs with
1306
	| [] ->
1307
	  begin
1308
	    Format.eprintf "Looking for variables %a in the following equations@.%a@."
1309
	      (Utils.fprintf_list ~sep:" , " (fun fmt v -> Format.fprintf fmt "%s" v)) xl
1310
	      Printers.pp_node_eqs eqs;
1311
	    assert false
1312
	  end
1313
	| hd::tl ->
1314
	  if List.exists (fun x -> List.mem x hd.eq_lhs) xl then hd, accu@tl else aux (hd::accu) tl
1315
    in
1316
    aux [] eqs
1317

    
1318
       
1319
let get_node name prog =
1320
  let node_opt = List.fold_left
1321
    (fun res top -> 
1322
      match res, top.top_decl_desc with
1323
      | Some _, _ -> res
1324
      | None, Node nd -> 
1325
	(* Format.eprintf "Checking node %s = %s: %b@." nd.node_id name (nd.node_id = name); *)
1326
	if nd.node_id = name then Some nd else res
1327
      | _ -> None) 
1328
    None prog 
1329
  in
1330
  try 
1331
    Utils.desome node_opt
1332
  with Utils.DeSome -> raise Not_found
1333

    
1334
(* Pushing negations in expression. Subtitute operators whenever possible *)
1335
let rec push_negations ?(neg=false) e =
1336
  let res =
1337
    let pn = push_negations in
1338
    let map desc = mkexpr e.expr_loc desc in
1339
    match e.expr_desc with
1340
    | Expr_ite (g,t,e) ->
1341
       if neg then
1342
         map (Expr_ite(pn g, pn e, pn t))
1343
       else
1344
         map (Expr_ite(pn g, pn t, pn e)) 
1345
    | Expr_tuple t ->
1346
       map (Expr_tuple (List.map (pn ~neg) t))
1347
    | Expr_arrow (e1, e2) ->
1348
       map (Expr_arrow (pn ~neg e1, pn ~neg e2)) 
1349
    | Expr_fby (e1, e2) ->
1350
       map (Expr_fby (pn ~neg e1, pn ~neg e2))
1351
    | Expr_pre e ->
1352
       map (Expr_pre (pn ~neg e))
1353
    | Expr_appl (op, e', None) when op = "not" ->
1354
       if neg then
1355
         push_negations ~neg:false e'
1356
       else
1357
         push_negations ~neg:true e'
1358
    | Expr_appl (op, e', None) when List.mem op (Basic_library.bool_funs @ Basic_library.rel_funs) -> (
1359
      match op with
1360
      | "&&" -> map (Expr_appl((if neg then "||" else op), pn ~neg e', None))
1361
      | "||" -> map (Expr_appl((if neg then "&&" else op), pn ~neg e', None))
1362
      (* TODO xor/equi/impl *)
1363
      | "<" -> map (Expr_appl((if neg then ">=" else op), pn e', None))
1364
      | ">" -> map (Expr_appl((if neg then "<=" else op), pn e', None))
1365
      | "<=" -> map (Expr_appl((if neg then ">" else op), pn e', None))
1366
      | ">=" -> map (Expr_appl((if neg then "<" else op), pn e', None))
1367
      | "!=" -> map (Expr_appl((if neg then "=" else op), pn e', None))
1368
      | "=" -> map (Expr_appl((if neg then "!=" else op), pn e', None))
1369
             
1370
      | _ -> assert false                     
1371
    )
1372
    | Expr_const _
1373
      | Expr_ident _ -> if neg then
1374
                         mkpredef_call e.expr_loc "not" [e]
1375
                       else
1376
                         e
1377
    | Expr_appl (op,_,_) -> 
1378
       if neg then
1379
         mkpredef_call e.expr_loc "not" [e]
1380
       else
1381
         e
1382
    | _ -> assert false (* no array, array access, power or merge/when *)
1383
  in
1384
  res
1385

    
1386
let rec add_pre_expr vars e =
1387
  let ap = add_pre_expr vars in
1388
  let desc =
1389
    match e.expr_desc with
1390
    | Expr_ite (g,t,e) ->
1391
       Expr_ite (ap g, ap t,ap e)
1392
    | Expr_tuple t ->
1393
       Expr_tuple (List.map ap t)
1394
    | Expr_arrow (e1, e2) ->
1395
       Expr_arrow (ap e1, ap e2) 
1396
    | Expr_fby (e1, e2) ->
1397
       Expr_fby (ap e1, ap e2)
1398
    | Expr_pre e ->
1399
       Expr_pre (ap e)
1400
    | Expr_appl (op, e, opt) ->
1401
       Expr_appl (op, ap e, opt)
1402
    | Expr_const _ -> e.expr_desc 
1403
    | Expr_ident id ->
1404
       if List.mem id vars then
1405
         Expr_pre e
1406
       else
1407
         e.expr_desc
1408
    | _ -> assert false (* no array, array access, power or merge/when yet *)
1409
  in
1410
  mkexpr e.expr_loc desc
1411

    
1412

    
1413
        
1414
let mk_eq l e1 e2 =
1415
  mkpredef_call l "=" [e1; e2]
1416
      
1417
    (* Local Variables: *)
1418
    (* compile-command:"make -C .." *)
1419
    (* End: *)
(16-16/67)