Project

General

Profile

Download (10.5 KB) Statistics
| Branch: | Tag: | Revision:
1
(********************************************************************)
2
(*                                                                  *)
3
(*  The LustreC compiler toolset   /  The LustreC Development Team  *)
4
(*  Copyright 2012 -    --   ONERA - CNRS - INPT                    *)
5
(*                                                                  *)
6
(*  LustreC is free software, distributed WITHOUT ANY WARRANTY      *)
7
(*  under the terms of the GNU Lesser General Public License        *)
8
(*  version 2.1.                                                    *)
9
(*                                                                  *)
10
(********************************************************************)
11

    
12
open Utils
13
open Lustre_types
14
open Machine_code_types
15
open Corelang
16
open Normalization
17
open Machine_code_common
18

    
19
let mpfr_module = mktop (Open(false, "mpfr_lustre"))
20
let cpt_fresh = ref 0
21
  
22
let mpfr_rnd () = "MPFR_RNDN"
23

    
24
let mpfr_prec () = !Options.mpfr_prec
25

    
26
let inject_id = "MPFRId"
27

    
28
let inject_copy_id = "mpfr_set"
29

    
30
let inject_real_id = "mpfr_set_flt"
31

    
32
let inject_init_id = "mpfr_init2"
33

    
34
let inject_clear_id = "mpfr_clear"
35

    
36
let mpfr_t = "mpfr_t"
37

    
38
let unfoldable_value value =
39
  not (Types.is_real_type value.value_type && is_const_value value)
40

    
41
let inject_id_id expr =
42
  let e = mkpredef_call expr.expr_loc inject_id [expr] in
43
  { e with
44
    expr_type = Type_predef.type_real;
45
    expr_clock = expr.expr_clock;
46
  }
47

    
48
let pp_inject_real pp_var pp_val fmt var value =
49
  Format.fprintf fmt "%s(%a, %a, %s);"
50
    inject_real_id
51
    pp_var var
52
    pp_val value
53
    (mpfr_rnd ())
54

    
55
let inject_assign expr =
56
  let e = mkpredef_call expr.expr_loc inject_copy_id [expr] in
57
  { e with
58
    expr_type = Type_predef.type_real;
59
    expr_clock = expr.expr_clock;
60
  }
61

    
62
let pp_inject_copy pp_var fmt var value =
63
  Format.fprintf fmt "%s(%a, %a, %s);"
64
    inject_copy_id
65
    pp_var var
66
    pp_var value
67
    (mpfr_rnd ())
68

    
69
let rec pp_inject_assign pp_var fmt var value =
70
  if is_const_value value
71
  then
72
    pp_inject_real pp_var pp_var fmt var value
73
  else
74
    pp_inject_copy pp_var fmt var value
75

    
76
let pp_inject_init pp_var fmt var =
77
  Format.fprintf fmt "%s(%a, %i);"
78
    inject_init_id
79
    pp_var var
80
    (mpfr_prec ())
81

    
82
let pp_inject_clear pp_var fmt var =
83
  Format.fprintf fmt "%s(%a);"
84
    inject_clear_id
85
    pp_var var
86

    
87
let base_inject_op id =
88
  match id with
89
  | "+"      -> "MPFRPlus"
90
  | "-"      -> "MPFRMinus"
91
  | "*"      -> "MPFRTimes"
92
  | "/"      -> "MPFRDiv"
93
  | "uminus" -> "MPFRUminus"
94
  | "<="     -> "MPFRLe"
95
  | "<"      -> "MPFRLt"
96
  | ">="     -> "MPFRGe"
97
  | ">"      -> "MPFRGt"
98
  | "="      -> "MPFREq"
99
  | "!="     -> "MPFRNeq"
100
  (* Math library functions *)
101
  | "acos" -> "MPFRacos"
102
  | "acosh" -> "MPFRacosh"
103
  | "asin" -> "MPFRasin"
104
  | "asinh" -> "MPFRasinh"
105
  | "atan" -> "MPFRatan"
106
  | "atan2" -> "MPFRatan2"
107
  | "atanh" -> "MPFRatanh"
108
  | "cbrt" -> "MPFRcbrt"
109
  | "cos" -> "MPFRcos"
110
  | "cosh" -> "MPFRcosh"
111
  | "ceil" -> "MPFRceil"
112
  | "erf" -> "MPFRerf"
113
  | "exp" -> "MPFRexp"
114
  | "fabs" -> "MPFRfabs"
115
  | "floor" -> "MPFRfloor"
116
  | "fmod" -> "MPFRfmod"
117
  | "log" -> "MPFRlog"
118
  | "log10" -> "MPFRlog10"
119
  | "pow" -> "MPFRpow"
120
  | "round" -> "MPFRround"
121
  | "sin" -> "MPFRsin"
122
  | "sinh" -> "MPFRsinh"
123
  | "sqrt" -> "MPFRsqrt"
124
  | "trunc" -> "MPFRtrunc"
125
  | "tan" -> "MPFRtan"
126
  | _        -> raise Not_found
127

    
128
let inject_op id =
129
  Format.eprintf "trying to inject mpfr into function %s@." id;
130
  try
131
    base_inject_op id
132
  with Not_found -> id
133

    
134
let homomorphic_funs =
135
  List.fold_right (fun id res -> try base_inject_op id :: res with Not_found -> res) Basic_library.internal_funs []
136

    
137
let is_homomorphic_fun id =
138
  List.mem id homomorphic_funs
139

    
140
let inject_call expr =
141
  match expr.expr_desc with
142
  | Expr_appl (id, args, None) when not (Basic_library.is_expr_internal_fun expr) ->
143
    { expr with expr_desc = Expr_appl (inject_op id, args, None) }
144
  | _ -> expr
145

    
146
let expr_of_const_array expr =
147
  match expr.expr_desc with
148
  | Expr_const (Const_array cl) ->
149
    let typ = Types.array_element_type expr.expr_type in
150
    let expr_of_const c =
151
      { expr_desc = Expr_const c;
152
	expr_type = typ;
153
	expr_clock = expr.expr_clock;
154
	expr_loc = expr.expr_loc;
155
	expr_delay = Delay.new_var ();
156
	expr_annot = None;
157
	expr_tag = new_tag ();
158
      }
159
    in { expr with expr_desc = Expr_array (List.map expr_of_const cl) }
160
  | _                           -> assert false
161

    
162
(* inject_<foo> : defs * used vars -> <foo> -> (updated defs * updated vars) * normalized <foo> *)
163
let rec inject_list alias node inject_element defvars elist =
164
  List.fold_right
165
    (fun t (defvars, qlist) ->
166
      let defvars, norm_t = inject_element alias node defvars t in
167
      (defvars, norm_t :: qlist)
168
    ) elist (defvars, [])
169

    
170
let rec inject_expr ?(alias=true) node defvars expr =
171
let res =
172
  match expr.expr_desc with
173
  | Expr_const (Const_real _)  -> mk_expr_alias_opt alias node defvars expr
174
  | Expr_const (Const_array _) -> inject_expr ~alias:alias node defvars (expr_of_const_array expr)
175
  | Expr_const (Const_struct _) -> assert false
176
  | Expr_ident _
177
  | Expr_const _  -> defvars, expr
178
  | Expr_array elist ->
179
    let defvars, norm_elist = inject_list alias node (fun _ -> inject_expr ~alias:true) defvars elist in
180
    let norm_expr = { expr with expr_desc = Expr_array norm_elist } in
181
    defvars, norm_expr
182
  | Expr_power (e1, d) ->
183
    let defvars, norm_e1 = inject_expr node defvars e1 in
184
    let norm_expr = { expr with expr_desc = Expr_power (norm_e1, d) } in
185
    defvars, norm_expr
186
  | Expr_access (e1, d) ->
187
    let defvars, norm_e1 = inject_expr node defvars e1 in
188
    let norm_expr = { expr with expr_desc = Expr_access (norm_e1, d) } in
189
    defvars, norm_expr
190
  | Expr_tuple elist -> 
191
    let defvars, norm_elist =
192
      inject_list alias node (fun alias -> inject_expr ~alias:alias) defvars elist in
193
    let norm_expr = { expr with expr_desc = Expr_tuple norm_elist } in
194
    defvars, norm_expr
195
  | Expr_appl (id, args, r) ->
196
    let defvars, norm_args = inject_expr node defvars args in
197
    let norm_expr = { expr with expr_desc = Expr_appl (id, norm_args, r) } in
198
    mk_expr_alias_opt alias node defvars (inject_call norm_expr)
199
  | Expr_arrow _ -> defvars, expr
200
  | Expr_pre e ->
201
    let defvars, norm_e = inject_expr node defvars e in
202
    let norm_expr = { expr with expr_desc = Expr_pre norm_e } in
203
    defvars, norm_expr
204
  | Expr_fby (e1, e2) ->
205
    let defvars, norm_e1 = inject_expr node defvars e1 in
206
    let defvars, norm_e2 = inject_expr node defvars e2 in
207
    let norm_expr = { expr with expr_desc = Expr_fby (norm_e1, norm_e2) } in
208
    defvars, norm_expr
209
  | Expr_when (e, c, l) ->
210
    let defvars, norm_e = inject_expr node defvars e in
211
    let norm_expr = { expr with expr_desc = Expr_when (norm_e, c, l) } in
212
    defvars, norm_expr
213
  | Expr_ite (c, t, e) ->
214
    let defvars, norm_c = inject_expr node defvars c in
215
    let defvars, norm_t = inject_expr node defvars t in
216
    let defvars, norm_e = inject_expr node defvars e in
217
    let norm_expr = { expr with expr_desc = Expr_ite (norm_c, norm_t, norm_e) } in
218
    defvars, norm_expr
219
  | Expr_merge (c, hl) ->
220
    let defvars, norm_hl = inject_branches node defvars hl in
221
    let norm_expr = { expr with expr_desc = Expr_merge (c, norm_hl) } in
222
    defvars, norm_expr
223
in
224
(*Format.eprintf "inject_expr %B %a = %a@." alias Printers.pp_expr expr Printers.pp_expr (snd res);*)
225
res
226

    
227
and inject_branches node defvars hl =
228
 List.fold_right
229
   (fun (t, h) (defvars, norm_q) ->
230
     let (defvars, norm_h) = inject_expr node defvars h in
231
     defvars, (t, norm_h) :: norm_q
232
   )
233
   hl (defvars, [])
234

    
235

    
236
let rec inject_eq node defvars eq =
237
  let (defs', vars'), norm_rhs = inject_expr ~alias:false node defvars eq.eq_rhs in
238
  let norm_eq = { eq with eq_rhs = norm_rhs } in
239
  norm_eq::defs', vars'
240

    
241
(* let inject_eexpr ee =
242
 *   { ee with eexpr_qfexpr = inject_expr ee.eexpr_qfexpr }
243
 *   
244
 * let inject_spec s =
245
 *   { s with
246
 *     assume = List.map inject_eexpr s.assume;
247
 *     guarantees = List.map inject_eexpr s.guarantees;
248
 *     modes = List.map (fun m ->
249
 *                 { m with
250
 *                   require = List.map inject_eexpr m.require;
251
 *                   ensure = List.map inject_eexpr m.ensure
252
 *                 }
253
 *               ) s.modes
254
 *   } *)
255
  
256
(** normalize_node node returns a normalized node, 
257
    ie. 
258
    - updated locals
259
    - new equations
260
    - 
261
*)
262
let inject_node node = 
263
  cpt_fresh := 0;
264
  let inputs_outputs = node.node_inputs@node.node_outputs in
265
  let norm_ctx = (node.node_id, get_node_vars node) in
266
  let is_local v =
267
    List.for_all ((!=) v) inputs_outputs in
268
  let orig_vars = inputs_outputs@node.node_locals in
269
  let defs, vars =
270
    let eqs, auts = get_node_eqs node in
271
    if auts != [] then assert false; (* Automata should be expanded by now. *)
272
    List.fold_left (inject_eq norm_ctx) ([], orig_vars) eqs in
273
  (* Normalize the asserts *)
274
  let vars, assert_defs, asserts = 
275
    List.fold_left (
276
    fun (vars, def_accu, assert_accu) assert_ ->
277
      let assert_expr = assert_.assert_expr in
278
      let (defs, vars'), expr = 
279
	inject_expr 
280
	  ~alias:false 
281
	  norm_ctx 
282
	  ([], vars) (* defvar only contains vars *)
283
	  assert_expr
284
      in
285
      vars', defs@def_accu, {assert_ with assert_expr = expr}::assert_accu
286
    ) (vars, [], []) node.node_asserts in
287
  let new_locals = List.filter is_local vars in
288
  (* Compute traceability info: 
289
     - gather newly bound variables
290
     - compute the associated expression without aliases     
291
  *)
292
  (* let diff_vars = List.filter (fun v -> not (List.mem v node.node_locals)) new_locals in *)
293
  (* See comment below
294
   *  let spec = match node.node_spec with
295
   *   | None -> None
296
   *   | Some spec -> Some (inject_spec spec)
297
   * in *)
298
  let node =
299
  { node with 
300
    node_locals = new_locals; 
301
    node_stmts = List.map (fun eq -> Eq eq) (defs @ assert_defs);
302
    (* Incomplete work: TODO. Do we have to inject MPFR code here?
303
       Does it make sense for annotations? For me, only if we produce
304
       C code for annotations. Otherwise the various verification
305
       backend should have their own understanding, but would not
306
       necessarily require this additional normalization. *)
307
    (* 
308
       node_spec = spec;
309
       node_annot = List.map (fun ann -> {ann with
310
           annots = List.map (fun (ids, ee) -> ids, inject_eexpr ee) ann.annots}
311
         ) node.node_annot *)
312
  }
313
  in ((*Printers.pp_node Format.err_formatter node;*) node)
314

    
315
let inject_decl decl =
316
  match decl.top_decl_desc with
317
  | Node nd ->
318
    {decl with top_decl_desc = Node (inject_node nd)}
319
  | Include _ | Open _ | ImportedNode _ | Const _ | TypeDef _ -> decl
320
  
321
let inject_prog decls = 
322
  List.map inject_decl decls
323

    
324

    
325
(* Local Variables: *)
326
(* compile-command:"make -C .." *)
327
(* End: *)
(2-2/2)