Project

General

Profile

Download (34.7 KB) Statistics
| Branch: | Tag: | Revision:
1
(********************************************************************)
2
(*                                                                  *)
3
(*  The LustreC compiler toolset   /  The LustreC Development Team  *)
4
(*  Copyright 2012 -    --   ONERA - CNRS - INPT                    *)
5
(*                                                                  *)
6
(*  LustreC is free software, distributed WITHOUT ANY WARRANTY      *)
7
(*  under the terms of the GNU Lesser General Public License        *)
8
(*  version 2.1.                                                    *)
9
(*                                                                  *)
10
(********************************************************************)
11

    
12
open Format
13
open LustreSpec
14
open Dimension
15

    
16

    
17
exception Error of Location.t * error
18

    
19
module VDeclModule =
20
struct (* Node module *)
21
  type t = var_decl
22
  let compare v1 v2 = compare v1.var_id v2.var_id
23
end
24

    
25
module VMap = Map.Make(VDeclModule)
26

    
27
module VSet = Set.Make(VDeclModule)
28

    
29
let dummy_type_dec = {ty_dec_desc=Tydec_any; ty_dec_loc=Location.dummy_loc}
30

    
31
let dummy_clock_dec = {ck_dec_desc=Ckdec_any; ck_dec_loc=Location.dummy_loc}
32

    
33

    
34

    
35
(************************************************************)
36
(* *)
37

    
38
let mktyp loc d =
39
  { ty_dec_desc = d; ty_dec_loc = loc }
40

    
41
let mkclock loc d =
42
  { ck_dec_desc = d; ck_dec_loc = loc }
43

    
44
let mkvar_decl loc ?(orig=false) (id, ty_dec, ck_dec, is_const, value) =
45
  assert (value = None || is_const);
46
  { var_id = id;
47
    var_orig = orig;
48
    var_dec_type = ty_dec;
49
    var_dec_clock = ck_dec;
50
    var_dec_const = is_const;
51
    var_dec_value = value;
52
    var_type = Types.new_var ();
53
    var_clock = Clocks.new_var true;
54
    var_loc = loc }
55

    
56
let mkexpr loc d =
57
  { expr_tag = Utils.new_tag ();
58
    expr_desc = d;
59
    expr_type = Types.new_var ();
60
    expr_clock = Clocks.new_var true;
61
    expr_delay = Delay.new_var ();
62
    expr_annot = None;
63
    expr_loc = loc }
64

    
65
let var_decl_of_const c =
66
  { var_id = c.const_id;
67
    var_orig = true;
68
    var_dec_type = { ty_dec_loc = c.const_loc; ty_dec_desc = Tydec_any };
69
    var_dec_clock = { ck_dec_loc = c.const_loc; ck_dec_desc = Ckdec_any };
70
    var_dec_const = true;
71
    var_dec_value = None;
72
    var_type = c.const_type;
73
    var_clock = Clocks.new_var false;
74
    var_loc = c.const_loc }
75

    
76
let mk_new_name used id =
77
  let rec new_name name cpt =
78
    if used name
79
    then new_name (sprintf "_%s_%i" id cpt) (cpt+1)
80
    else name
81
  in new_name id 1
82

    
83
let mkeq loc (lhs, rhs) =
84
  { eq_lhs = lhs;
85
    eq_rhs = rhs;
86
    eq_loc = loc }
87

    
88
let mkassert loc expr =
89
  { assert_loc = loc;
90
    assert_expr = expr
91
  }
92

    
93
let mktop_decl loc own itf d =
94
  { top_decl_desc = d; top_decl_loc = loc; top_decl_owner = own; top_decl_itf = itf }
95

    
96
let mkpredef_call loc funname args =
97
  mkexpr loc (Expr_appl (funname, mkexpr loc (Expr_tuple args), None))
98

    
99
let is_clock_dec_type cty =
100
  match cty with
101
  | Tydec_clock _ -> true
102
  | _             -> false
103

    
104
let const_of_top top_decl =
105
  match top_decl.top_decl_desc with
106
  | Const c -> c
107
  | _ -> assert false
108

    
109
let node_of_top top_decl =
110
  match top_decl.top_decl_desc with
111
  | Node nd -> nd
112
  | _ -> assert false
113

    
114
let imported_node_of_top top_decl =
115
  match top_decl.top_decl_desc with
116
  | ImportedNode ind -> ind
117
  | _ -> assert false
118

    
119
let typedef_of_top top_decl =
120
  match top_decl.top_decl_desc with
121
  | TypeDef tdef -> tdef
122
  | _ -> assert false
123

    
124
let dependency_of_top top_decl =
125
  match top_decl.top_decl_desc with
126
  | Open (local, dep) -> (local, dep)
127
  | _ -> assert false
128

    
129
let consts_of_enum_type top_decl =
130
  match top_decl.top_decl_desc with
131
  | TypeDef tdef ->
132
    (match tdef.tydef_desc with
133
     | Tydec_enum tags -> List.map (fun tag -> let cdecl = { const_id = tag; const_loc = top_decl.top_decl_loc; const_value = Const_tag tag; const_type = Type_predef.type_const tdef.tydef_id } in { top_decl with top_decl_desc = Const cdecl }) tags
134
     | _               -> [])
135
  | _ -> assert false
136

    
137
(************************************************************)
138
(*   Eexpr functions *)
139
(************************************************************)
140

    
141
let merge_node_annot ann1 ann2 =
142
  { requires = ann1.requires @ ann2.requires;
143
    ensures = ann1.ensures @ ann2.ensures;
144
    behaviors = ann1.behaviors @ ann2.behaviors;
145
    spec_loc = ann1.spec_loc
146
  }
147

    
148
let mkeexpr loc expr =
149
  { eexpr_tag = Utils.new_tag ();
150
    eexpr_qfexpr = expr;
151
    eexpr_quantifiers = [];
152
    eexpr_type = Types.new_var ();
153
    eexpr_clock = Clocks.new_var true;
154
    eexpr_normalized = None;
155
    eexpr_loc = loc }
156

    
157
let extend_eexpr q e = { e with eexpr_quantifiers = q@e.eexpr_quantifiers }
158

    
159
(*
160
let mkepredef_call loc funname args =
161
  mkeexpr loc (EExpr_appl (funname, mkeexpr loc (EExpr_tuple args), None))
162

    
163
let mkepredef_unary_call loc funname arg =
164
  mkeexpr loc (EExpr_appl (funname, arg, None))
165
*)
166

    
167
let merge_expr_annot ann1 ann2 =
168
  match ann1, ann2 with
169
    | None, None -> assert false
170
    | Some _, None -> ann1
171
    | None, Some _ -> ann2
172
    | Some ann1, Some ann2 -> Some {
173
      annots = ann1.annots @ ann2.annots;
174
      annot_loc = ann1.annot_loc
175
    }
176

    
177
let update_expr_annot node_id e annot =
178
  List.iter (fun (key, _) -> 
179
    Annotations.add_expr_ann node_id e.expr_tag key
180
  ) annot.annots;
181
  { e with expr_annot = merge_expr_annot e.expr_annot (Some annot) }
182

    
183

    
184
(***********************************************************)
185
(* Fast access to nodes, by name *)
186
let (node_table : (ident, top_decl) Hashtbl.t) = Hashtbl.create 30
187
let consts_table = Hashtbl.create 30
188

    
189
let print_node_table fmt () =
190
  begin
191
    Format.fprintf fmt "{ /* node table */@.";
192
    Hashtbl.iter (fun id nd ->
193
      Format.fprintf fmt "%s |-> %a"
194
	id
195
	Printers.pp_short_decl nd
196
    ) node_table;
197
    Format.fprintf fmt "}@."
198
  end
199

    
200
let print_consts_table fmt () =
201
  begin
202
    Format.fprintf fmt "{ /* consts table */@.";
203
    Hashtbl.iter (fun id const ->
204
      Format.fprintf fmt "%s |-> %a"
205
	id
206
	Printers.pp_const_decl (const_of_top const)
207
    ) consts_table;
208
    Format.fprintf fmt "}@."
209
  end
210

    
211
let node_name td =
212
    match td.top_decl_desc with 
213
    | Node nd         -> nd.node_id
214
    | ImportedNode nd -> nd.nodei_id
215
    | _ -> assert false
216

    
217
let is_generic_node td =
218
  match td.top_decl_desc with 
219
  | Node nd         -> List.exists (fun v -> v.var_dec_const) nd.node_inputs
220
  | ImportedNode nd -> List.exists (fun v -> v.var_dec_const) nd.nodei_inputs
221
  | _ -> assert false
222

    
223
let node_inputs td =
224
  match td.top_decl_desc with 
225
  | Node nd         -> nd.node_inputs
226
  | ImportedNode nd -> nd.nodei_inputs
227
  | _ -> assert false
228

    
229
let node_from_name id =
230
  try
231
    Hashtbl.find node_table id
232
  with Not_found -> (Format.eprintf "Unable to find any node named %s@ @?" id;
233
		     assert false)
234

    
235
let is_imported_node td =
236
  match td.top_decl_desc with 
237
  | Node nd         -> false
238
  | ImportedNode nd -> true
239
  | _ -> assert false
240

    
241

    
242
(* alias and type definition table *)
243

    
244
let mktop = mktop_decl Location.dummy_loc Version.include_path false 
245

    
246
let top_int_type = mktop (TypeDef {tydef_id = "int"; tydef_desc = Tydec_int})
247
let top_bool_type = mktop (TypeDef {tydef_id = "bool"; tydef_desc = Tydec_bool})
248
(* let top_float_type = mktop (TypeDef {tydef_id = "float"; tydef_desc = Tydec_float}) *)
249
let top_real_type = mktop (TypeDef {tydef_id = "real"; tydef_desc = Tydec_real})
250

    
251
let type_table =
252
  Utils.create_hashtable 20 [
253
    Tydec_int  , top_int_type;
254
    Tydec_bool , top_bool_type;
255
    (* Tydec_float, top_float_type; *)
256
    Tydec_real , top_real_type
257
  ]
258

    
259
let print_type_table fmt () =
260
  begin
261
    Format.fprintf fmt "{ /* type table */@.";
262
    Hashtbl.iter (fun tydec tdef ->
263
      Format.fprintf fmt "%a |-> %a"
264
	Printers.pp_var_type_dec_desc tydec
265
	Printers.pp_typedef (typedef_of_top tdef)
266
    ) type_table;
267
    Format.fprintf fmt "}@."
268
  end
269

    
270
let rec is_user_type typ =
271
  match typ with
272
  | Tydec_int | Tydec_bool | Tydec_real 
273
  (* | Tydec_float *) | Tydec_any | Tydec_const _ -> false
274
  | Tydec_clock typ' -> is_user_type typ'
275
  | _ -> true
276

    
277
let get_repr_type typ =
278
  let typ_def = (typedef_of_top (Hashtbl.find type_table typ)).tydef_desc in
279
  if is_user_type typ_def then typ else typ_def
280

    
281
let rec coretype_equal ty1 ty2 =
282
  let res =
283
  match ty1, ty2 with
284
  | Tydec_any           , _
285
  | _                   , Tydec_any             -> assert false
286
  | Tydec_const _       , Tydec_const _         -> get_repr_type ty1 = get_repr_type ty2
287
  | Tydec_const _       , _                     -> let ty1' = (typedef_of_top (Hashtbl.find type_table ty1)).tydef_desc
288
	       					   in (not (is_user_type ty1')) && coretype_equal ty1' ty2
289
  | _                   , Tydec_const _         -> coretype_equal ty2 ty1
290
  | Tydec_int           , Tydec_int
291
  | Tydec_real          , Tydec_real
292
  (* | Tydec_float         , Tydec_float *)
293
  | Tydec_bool          , Tydec_bool            -> true
294
  | Tydec_clock ty1     , Tydec_clock ty2       -> coretype_equal ty1 ty2
295
  | Tydec_array (d1,ty1), Tydec_array (d2, ty2) -> Dimension.is_eq_dimension d1 d2 && coretype_equal ty1 ty2
296
  | Tydec_enum tl1      , Tydec_enum tl2        -> List.sort compare tl1 = List.sort compare tl2
297
  | Tydec_struct fl1    , Tydec_struct fl2      ->
298
       List.length fl1 = List.length fl2
299
    && List.for_all2 (fun (f1, t1) (f2, t2) -> f1 = f2 && coretype_equal t1 t2)
300
      (List.sort (fun (f1,_) (f2,_) -> compare f1 f2) fl1)
301
      (List.sort (fun (f1,_) (f2,_) -> compare f1 f2) fl2)
302
  | _                                  -> false
303
  in ((*Format.eprintf "coretype_equal %a %a = %B@." Printers.pp_var_type_dec_desc ty1 Printers.pp_var_type_dec_desc ty2 res;*) res)
304

    
305
let tag_true = "true"
306
let tag_false = "false"
307
let tag_default = "default"
308

    
309
let const_is_bool c =
310
 match c with
311
 | Const_tag t -> t = tag_true || t = tag_false
312
 | _           -> false
313

    
314
(* Computes the negation of a boolean constant *)
315
let const_negation c =
316
  assert (const_is_bool c);
317
  match c with
318
  | Const_tag t when t = tag_true  -> Const_tag tag_false
319
  | _                              -> Const_tag tag_true
320

    
321
let const_or c1 c2 =
322
  assert (const_is_bool c1 && const_is_bool c2);
323
  match c1, c2 with
324
  | Const_tag t1, _            when t1 = tag_true -> c1
325
  | _           , Const_tag t2 when t2 = tag_true -> c2
326
  | _                                             -> Const_tag tag_false
327

    
328
let const_and c1 c2 =
329
  assert (const_is_bool c1 && const_is_bool c2);
330
  match c1, c2 with
331
  | Const_tag t1, _            when t1 = tag_false -> c1
332
  | _           , Const_tag t2 when t2 = tag_false -> c2
333
  | _                                              -> Const_tag tag_true
334

    
335
let const_xor c1 c2 =
336
  assert (const_is_bool c1 && const_is_bool c2);
337
   match c1, c2 with
338
  | Const_tag t1, Const_tag t2 when t1 <> t2  -> Const_tag tag_true
339
  | _                                         -> Const_tag tag_false
340

    
341
let const_impl c1 c2 =
342
  assert (const_is_bool c1 && const_is_bool c2);
343
  match c1, c2 with
344
  | Const_tag t1, _ when t1 = tag_false           -> Const_tag tag_true
345
  | _           , Const_tag t2 when t2 = tag_true -> Const_tag tag_true
346
  | _                                             -> Const_tag tag_false
347

    
348
(* To guarantee uniqueness of tags in enum types *)
349
let tag_table =
350
  Utils.create_hashtable 20 [
351
   tag_true, top_bool_type;
352
   tag_false, top_bool_type
353
  ]
354

    
355
(* To guarantee uniqueness of fields in struct types *)
356
let field_table =
357
  Utils.create_hashtable 20 [
358
  ]
359

    
360
let get_enum_type_tags cty =
361
(*Format.eprintf "get_enum_type_tags %a@." Printers.pp_var_type_dec_desc cty;*)
362
 match cty with
363
 | Tydec_bool    -> [tag_true; tag_false]
364
 | Tydec_const _ -> (match (typedef_of_top (Hashtbl.find type_table cty)).tydef_desc with
365
                     | Tydec_enum tl -> tl
366
                     | _             -> assert false)
367
 | _            -> assert false
368

    
369
let get_struct_type_fields cty =
370
 match cty with
371
 | Tydec_const _ -> (match (typedef_of_top (Hashtbl.find type_table cty)).tydef_desc with
372
                     | Tydec_struct fl -> fl
373
                     | _               -> assert false)
374
 | _            -> assert false
375

    
376
let const_of_bool b =
377
 Const_tag (if b then tag_true else tag_false)
378

    
379
(* let get_const c = snd (Hashtbl.find consts_table c) *)
380

    
381
let ident_of_expr expr =
382
 match expr.expr_desc with
383
 | Expr_ident id -> id
384
 | _             -> assert false
385

    
386
(* Generate a new ident expression from a declared variable *)
387
let expr_of_vdecl v =
388
  { expr_tag = Utils.new_tag ();
389
    expr_desc = Expr_ident v.var_id;
390
    expr_type = v.var_type;
391
    expr_clock = v.var_clock;
392
    expr_delay = Delay.new_var ();
393
    expr_annot = None;
394
    expr_loc = v.var_loc }
395

    
396
(* Caution, returns an untyped and unclocked expression *)
397
let expr_of_ident id loc =
398
  {expr_tag = Utils.new_tag ();
399
   expr_desc = Expr_ident id;
400
   expr_type = Types.new_var ();
401
   expr_clock = Clocks.new_var true;
402
   expr_delay = Delay.new_var ();
403
   expr_loc = loc;
404
   expr_annot = None}
405

    
406
let is_tuple_expr expr =
407
 match expr.expr_desc with
408
  | Expr_tuple _ -> true
409
  | _            -> false
410

    
411
let expr_list_of_expr expr =
412
  match expr.expr_desc with
413
  | Expr_tuple elist -> elist
414
  | _                -> [expr]
415

    
416
let expr_of_expr_list loc elist =
417
 match elist with
418
 | [t]  -> { t with expr_loc = loc }
419
 | t::_ ->
420
    let tlist = List.map (fun e -> e.expr_type) elist in
421
    let clist = List.map (fun e -> e.expr_clock) elist in
422
    { t with expr_desc = Expr_tuple elist;
423
	     expr_type = Type_predef.type_tuple tlist;
424
	     expr_clock = Clock_predef.ck_tuple clist;
425
	     expr_tag = Utils.new_tag ();
426
	     expr_loc = loc }
427
 | _    -> assert false
428

    
429
let call_of_expr expr =
430
 match expr.expr_desc with
431
 | Expr_appl (f, args, r) -> (f, expr_list_of_expr args, r)
432
 | _                      -> assert false
433

    
434
(* Conversion from dimension expr to standard expr, for the purpose of printing, typing, etc... *)
435
let rec expr_of_dimension dim =
436
 match dim.dim_desc with
437
 | Dbool b        ->
438
     mkexpr dim.dim_loc (Expr_const (const_of_bool b))
439
 | Dint i         ->
440
     mkexpr dim.dim_loc (Expr_const (Const_int i))
441
 | Dident id      ->
442
     mkexpr dim.dim_loc (Expr_ident id)
443
 | Dite (c, t, e) ->
444
     mkexpr dim.dim_loc (Expr_ite (expr_of_dimension c, expr_of_dimension t, expr_of_dimension e))
445
 | Dappl (id, args) ->
446
     mkexpr dim.dim_loc (Expr_appl (id, expr_of_expr_list dim.dim_loc (List.map expr_of_dimension args), None))
447
 | Dlink dim'       -> expr_of_dimension dim'
448
 | Dvar
449
 | Dunivar          -> (Format.eprintf "internal error: Corelang.expr_of_dimension %a@." Dimension.pp_dimension dim;
450
			assert false)
451

    
452
let dimension_of_const loc const =
453
 match const with
454
 | Const_int i                                    -> mkdim_int loc i
455
 | Const_tag t when t = tag_true || t = tag_false -> mkdim_bool loc (t = tag_true)
456
 | _                                              -> raise InvalidDimension
457

    
458
(* Conversion from standard expr to dimension expr, for the purpose of injecting static call arguments 
459
   into dimension expressions *)
460
let rec dimension_of_expr expr =
461
  match expr.expr_desc with
462
  | Expr_const c  -> dimension_of_const expr.expr_loc c
463
  | Expr_ident id -> mkdim_ident expr.expr_loc id
464
  | Expr_appl (f, args, None) when Basic_library.is_expr_internal_fun expr ->
465
      let k = Types.get_static_value (Env.lookup_value Basic_library.type_env f) in
466
      if k = None then raise InvalidDimension;
467
      mkdim_appl expr.expr_loc f (List.map dimension_of_expr (expr_list_of_expr args))
468
  | Expr_ite (i, t, e)        ->
469
      mkdim_ite expr.expr_loc (dimension_of_expr i) (dimension_of_expr t) (dimension_of_expr e)
470
  | _ -> raise InvalidDimension (* not a simple dimension expression *)
471

    
472

    
473
let sort_handlers hl =
474
 List.sort (fun (t, _) (t', _) -> compare t t') hl
475

    
476
let rec is_eq_expr e1 e2 = match e1.expr_desc, e2.expr_desc with
477
  | Expr_const c1, Expr_const c2 -> c1 = c2
478
  | Expr_ident i1, Expr_ident i2 -> i1 = i2
479
  | Expr_array el1, Expr_array el2 
480
  | Expr_tuple el1, Expr_tuple el2 -> 
481
    List.length el1 = List.length el2 && List.for_all2 is_eq_expr el1 el2 
482
  | Expr_arrow (e1, e2), Expr_arrow (e1', e2') -> is_eq_expr e1 e1' && is_eq_expr e2 e2'
483
  | Expr_fby (e1,e2), Expr_fby (e1',e2') -> is_eq_expr e1 e1' && is_eq_expr e2 e2'
484
  | Expr_ite (i1, t1, e1), Expr_ite (i2, t2, e2) -> is_eq_expr i1 i2 && is_eq_expr t1 t2 && is_eq_expr e1 e2
485
  (* | Expr_concat (e1,e2), Expr_concat (e1',e2') -> is_eq_expr e1 e1' && is_eq_expr e2 e2' *)
486
  (* | Expr_tail e, Expr_tail e' -> is_eq_expr e e' *)
487
  | Expr_pre e, Expr_pre e' -> is_eq_expr e e'
488
  | Expr_when (e, i, l), Expr_when (e', i', l') -> l=l' && i=i' && is_eq_expr e e'
489
  | Expr_merge(i, hl), Expr_merge(i', hl') -> i=i' && List.for_all2 (fun (t, h) (t', h') -> t=t' && is_eq_expr h h') (sort_handlers hl) (sort_handlers hl')
490
  | Expr_appl (i, e, r), Expr_appl (i', e', r') -> i=i' && r=r' && is_eq_expr e e'
491
  | Expr_power (e1, i1), Expr_power (e2, i2)
492
  | Expr_access (e1, i1), Expr_access (e2, i2) -> is_eq_expr e1 e2 && is_eq_expr (expr_of_dimension i1) (expr_of_dimension i2)
493
  | _ -> false
494

    
495
let get_node_vars nd =
496
  nd.node_inputs @ nd.node_locals @ nd.node_outputs
497

    
498
let mk_new_node_name nd id =
499
  let used_vars = get_node_vars nd in
500
  let used v = List.exists (fun vdecl -> vdecl.var_id = v) used_vars in
501
  mk_new_name used id
502

    
503
let get_var id var_list =
504
  List.find (fun v -> v.var_id = id) var_list
505

    
506
let get_node_var id node =
507
  get_var id (get_node_vars node)
508

    
509
let get_node_eqs =
510
  let get_eqs stmts =
511
    List.fold_right
512
      (fun stmt res ->
513
	match stmt with
514
	| Eq eq -> eq :: res
515
	| Aut _ -> assert false)
516
      stmts
517
      [] in
518
  let table_eqs = Hashtbl.create 23 in
519
  (fun nd ->
520
    try
521
      let (old, res) = Hashtbl.find table_eqs nd.node_id
522
      in if old == nd.node_stmts then res else raise Not_found
523
    with Not_found -> 
524
      let res = get_eqs nd.node_stmts in
525
      begin
526
	Hashtbl.replace table_eqs nd.node_id (nd.node_stmts, res);
527
	res
528
      end)
529

    
530
let get_node_eq id node =
531
 List.find (fun eq -> List.mem id eq.eq_lhs) (get_node_eqs node)
532

    
533
let get_nodes prog = 
534
  List.fold_left (
535
    fun nodes decl ->
536
      match decl.top_decl_desc with
537
	| Node _ -> decl::nodes
538
	| Const _ | ImportedNode _ | Open _ | TypeDef _ -> nodes  
539
  ) [] prog
540

    
541
let get_imported_nodes prog = 
542
  List.fold_left (
543
    fun nodes decl ->
544
      match decl.top_decl_desc with
545
	| ImportedNode _ -> decl::nodes
546
	| Const _ | Node _ | Open _ | TypeDef _-> nodes  
547
  ) [] prog
548

    
549
let get_consts prog = 
550
  List.fold_right (
551
    fun decl consts ->
552
      match decl.top_decl_desc with
553
	| Const _ -> decl::consts
554
	| Node _ | ImportedNode _ | Open _ | TypeDef _ -> consts  
555
  ) prog []
556

    
557
let get_typedefs prog = 
558
  List.fold_right (
559
    fun decl types ->
560
      match decl.top_decl_desc with
561
	| TypeDef _ -> decl::types
562
	| Node _ | ImportedNode _ | Open _ | Const _ -> types  
563
  ) prog []
564

    
565
let get_dependencies prog =
566
  List.fold_right (
567
    fun decl deps ->
568
      match decl.top_decl_desc with
569
	| Open _ -> decl::deps
570
	| Node _ | ImportedNode _ | TypeDef _ | Const _ -> deps  
571
  ) prog []
572

    
573
let get_node_interface nd =
574
 {nodei_id = nd.node_id;
575
  nodei_type = nd.node_type;
576
  nodei_clock = nd.node_clock;
577
  nodei_inputs = nd.node_inputs;
578
  nodei_outputs = nd.node_outputs;
579
  nodei_stateless = nd.node_dec_stateless;
580
  nodei_spec = nd.node_spec;
581
  nodei_prototype = None;
582
  nodei_in_lib = [];
583
 }
584

    
585
(************************************************************************)
586
(*        Renaming                                                      *)
587

    
588
let rec rename_static rename cty =
589
 match cty with
590
 | Tydec_array (d, cty') -> Tydec_array (Dimension.expr_replace_expr rename d, rename_static rename cty')
591
 | Tydec_clock cty       -> Tydec_clock (rename_static rename cty)
592
 | Tydec_struct fl       -> Tydec_struct (List.map (fun (f, cty) -> f, rename_static rename cty) fl)
593
 | _                      -> cty
594

    
595
let rec rename_carrier rename cck =
596
 match cck with
597
 | Ckdec_bool cl -> Ckdec_bool (List.map (fun (c, l) -> rename c, l) cl)
598
 | _             -> cck
599

    
600
(*Format.eprintf "Types.rename_static %a = %a@." print_ty ty print_ty res; res*)
601

    
602
(* applies the renaming function [fvar] to all variables of expression [expr] *)
603
 let rec expr_replace_var fvar expr =
604
  { expr with expr_desc = expr_desc_replace_var fvar expr.expr_desc }
605

    
606
 and expr_desc_replace_var fvar expr_desc =
607
   match expr_desc with
608
   | Expr_const _ -> expr_desc
609
   | Expr_ident i -> Expr_ident (fvar i)
610
   | Expr_array el -> Expr_array (List.map (expr_replace_var fvar) el)
611
   | Expr_access (e1, d) -> Expr_access (expr_replace_var fvar e1, d)
612
   | Expr_power (e1, d) -> Expr_power (expr_replace_var fvar e1, d)
613
   | Expr_tuple el -> Expr_tuple (List.map (expr_replace_var fvar) el)
614
   | Expr_ite (c, t, e) -> Expr_ite (expr_replace_var fvar c, expr_replace_var fvar t, expr_replace_var fvar e)
615
   | Expr_arrow (e1, e2)-> Expr_arrow (expr_replace_var fvar e1, expr_replace_var fvar e2) 
616
   | Expr_fby (e1, e2) -> Expr_fby (expr_replace_var fvar e1, expr_replace_var fvar e2)
617
   | Expr_pre e' -> Expr_pre (expr_replace_var fvar e')
618
   | Expr_when (e', i, l)-> Expr_when (expr_replace_var fvar e', fvar i, l)
619
   | Expr_merge (i, hl) -> Expr_merge (fvar i, List.map (fun (t, h) -> (t, expr_replace_var fvar h)) hl)
620
   | Expr_appl (i, e', i') -> Expr_appl (i, expr_replace_var fvar e', Utils.option_map (expr_replace_var fvar) i')
621

    
622
(* Applies the renaming function [fvar] to every rhs
623
   only when the corresponding lhs satisfies predicate [pvar] *)
624
 let eq_replace_rhs_var pvar fvar eq =
625
   let pvar l = List.exists pvar l in
626
   let rec replace lhs rhs =
627
     { rhs with expr_desc =
628
     match lhs with
629
     | []  -> assert false
630
     | [_] -> if pvar lhs then expr_desc_replace_var fvar rhs.expr_desc else rhs.expr_desc
631
     | _   ->
632
       (match rhs.expr_desc with
633
       | Expr_tuple tl ->
634
	 Expr_tuple (List.map2 (fun v e -> replace [v] e) lhs tl)
635
       | Expr_appl (f, arg, None) when Basic_library.is_expr_internal_fun rhs ->
636
	 let args = expr_list_of_expr arg in
637
	 Expr_appl (f, expr_of_expr_list arg.expr_loc (List.map (replace lhs) args), None)
638
       | Expr_array _
639
       | Expr_access _
640
       | Expr_power _
641
       | Expr_const _
642
       | Expr_ident _
643
       | Expr_appl _   ->
644
	 if pvar lhs
645
	 then expr_desc_replace_var fvar rhs.expr_desc
646
	 else rhs.expr_desc
647
       | Expr_ite (c, t, e)   -> Expr_ite (replace lhs c, replace lhs t, replace lhs e)
648
       | Expr_arrow (e1, e2)  -> Expr_arrow (replace lhs e1, replace lhs e2) 
649
       | Expr_fby (e1, e2)    -> Expr_fby (replace lhs e1, replace lhs e2)
650
       | Expr_pre e'          -> Expr_pre (replace lhs e')
651
       | Expr_when (e', i, l) -> let i' = if pvar lhs then fvar i else i
652
				 in Expr_when (replace lhs e', i', l)
653
       | Expr_merge (i, hl)   -> let i' = if pvar lhs then fvar i else i
654
				 in Expr_merge (i', List.map (fun (t, h) -> (t, replace lhs h)) hl)
655
       )
656
     }
657
   in { eq with eq_rhs = replace eq.eq_lhs eq.eq_rhs }
658

    
659

    
660
 let rec rename_expr  f_node f_var f_const expr =
661
   { expr with expr_desc = rename_expr_desc f_node f_var f_const expr.expr_desc }
662
 and rename_expr_desc f_node f_var f_const expr_desc =
663
   let re = rename_expr  f_node f_var f_const in
664
   match expr_desc with
665
   | Expr_const _ -> expr_desc
666
   | Expr_ident i -> Expr_ident (f_var i)
667
   | Expr_array el -> Expr_array (List.map re el)
668
   | Expr_access (e1, d) -> Expr_access (re e1, d)
669
   | Expr_power (e1, d) -> Expr_power (re e1, d)
670
   | Expr_tuple el -> Expr_tuple (List.map re el)
671
   | Expr_ite (c, t, e) -> Expr_ite (re c, re t, re e)
672
   | Expr_arrow (e1, e2)-> Expr_arrow (re e1, re e2) 
673
   | Expr_fby (e1, e2) -> Expr_fby (re e1, re e2)
674
   | Expr_pre e' -> Expr_pre (re e')
675
   | Expr_when (e', i, l)-> Expr_when (re e', f_var i, l)
676
   | Expr_merge (i, hl) -> 
677
     Expr_merge (f_var i, List.map (fun (t, h) -> (t, re h)) hl)
678
   | Expr_appl (i, e', i') -> 
679
     Expr_appl (f_node i, re e', Utils.option_map re i')
680
  
681
 let rename_node_annot f_node f_var f_const expr  =
682
   expr
683
 (* TODO assert false *)
684

    
685
 let rename_expr_annot f_node f_var f_const annot =
686
   annot
687
 (* TODO assert false *)
688

    
689
let rename_node f_node f_var f_const nd =
690
  let rename_var v = { v with var_id = f_var v.var_id } in
691
  let rename_eq eq = { eq with
692
      eq_lhs = List.map f_var eq.eq_lhs; 
693
      eq_rhs = rename_expr f_node f_var f_const eq.eq_rhs
694
    } 
695
  in
696
  let inputs = List.map rename_var nd.node_inputs in
697
  let outputs = List.map rename_var nd.node_outputs in
698
  let locals = List.map rename_var nd.node_locals in
699
  let gen_calls = List.map (rename_expr f_node f_var f_const) nd.node_gencalls in
700
  let node_checks = List.map (Dimension.expr_replace_var f_var)  nd.node_checks in
701
  let node_asserts = List.map 
702
    (fun a -> 
703
      {a with assert_expr = 
704
	  let expr = a.assert_expr in
705
	  rename_expr f_node f_var f_const expr})
706
    nd.node_asserts
707
  in
708
  let node_stmts = List.map (fun eq -> Eq (rename_eq eq)) (get_node_eqs nd) in
709
  let spec = 
710
    Utils.option_map 
711
      (fun s -> rename_node_annot f_node f_var f_const s) 
712
      nd.node_spec 
713
  in
714
  let annot =
715
    List.map 
716
      (fun s -> rename_expr_annot f_node f_var f_const s) 
717
      nd.node_annot
718
  in
719
  {
720
    node_id = f_node nd.node_id;
721
    node_type = nd.node_type;
722
    node_clock = nd.node_clock;
723
    node_inputs = inputs;
724
    node_outputs = outputs;
725
    node_locals = locals;
726
    node_gencalls = gen_calls;
727
    node_checks = node_checks;
728
    node_asserts = node_asserts;
729
    node_stmts = node_stmts;
730
    node_dec_stateless = nd.node_dec_stateless;
731
    node_stateless = nd.node_stateless;
732
    node_spec = spec;
733
    node_annot = annot;
734
  }
735

    
736

    
737
let rename_const f_const c =
738
  { c with const_id = f_const c.const_id }
739

    
740
let rename_typedef f_var t =
741
  match t.tydef_desc with
742
  | Tydec_enum tags -> { t with tydef_desc = Tydec_enum (List.map f_var tags) }
743
  | _               -> t
744

    
745
let rename_prog f_node f_var f_const prog =
746
  List.rev (
747
    List.fold_left (fun accu top ->
748
      (match top.top_decl_desc with
749
      | Node nd -> 
750
	 { top with top_decl_desc = Node (rename_node f_node f_var f_const nd) }
751
      | Const c -> 
752
	 { top with top_decl_desc = Const (rename_const f_const c) }
753
      | TypeDef tdef ->
754
	 { top with top_decl_desc = TypeDef (rename_typedef f_var tdef) }
755
      | ImportedNode _
756
      | Open _       -> top)
757
      ::accu
758
) [] prog
759
		   )
760

    
761
(**********************************************************************)
762
(* Pretty printers *)
763

    
764
let pp_decl_type fmt tdecl =
765
  match tdecl.top_decl_desc with
766
  | Node nd ->
767
    fprintf fmt "%s: " nd.node_id;
768
    Utils.reset_names ();
769
    fprintf fmt "%a@ " Types.print_ty nd.node_type
770
  | ImportedNode ind ->
771
    fprintf fmt "%s: " ind.nodei_id;
772
    Utils.reset_names ();
773
    fprintf fmt "%a@ " Types.print_ty ind.nodei_type
774
  | Const _ | Open _ | TypeDef _ -> ()
775

    
776
let pp_prog_type fmt tdecl_list =
777
  Utils.fprintf_list ~sep:"" pp_decl_type fmt tdecl_list
778

    
779
let pp_decl_clock fmt cdecl =
780
  match cdecl.top_decl_desc with
781
  | Node nd ->
782
    fprintf fmt "%s: " nd.node_id;
783
    Utils.reset_names ();
784
    fprintf fmt "%a@ " Clocks.print_ck nd.node_clock
785
  | ImportedNode ind ->
786
    fprintf fmt "%s: " ind.nodei_id;
787
    Utils.reset_names ();
788
    fprintf fmt "%a@ " Clocks.print_ck ind.nodei_clock
789
  | Const _ | Open _ | TypeDef _ -> ()
790

    
791
let pp_prog_clock fmt prog =
792
  Utils.fprintf_list ~sep:"" pp_decl_clock fmt prog
793

    
794
let pp_error fmt = function
795
    Main_not_found ->
796
      fprintf fmt "Could not find the definition of main node %s.@."
797
	!Global.main_node
798
  | Main_wrong_kind ->
799
    fprintf fmt
800
      "Node %s does not correspond to a valid main node definition.@." 
801
      !Global.main_node 
802
  | No_main_specified ->
803
    fprintf fmt "No main node specified (use -node option)@."
804
  | Unbound_symbol sym ->
805
    fprintf fmt
806
      "%s is undefined.@."
807
      sym
808
  | Already_bound_symbol sym -> 
809
    fprintf fmt
810
      "%s is already defined.@."
811
      sym
812
  | Unknown_library sym ->
813
    fprintf fmt
814
      "impossible to load library %s.lusic.@.Please compile the corresponding interface or source file.@."
815
      sym
816
  | Wrong_number sym ->
817
    fprintf fmt
818
      "library %s.lusic has a different version number and may crash compiler.@.Please recompile the corresponding interface or source file.@."
819
      sym
820

    
821
(* filling node table with internal functions *)
822
let vdecls_of_typ_ck cpt ty =
823
  let loc = Location.dummy_loc in
824
  List.map
825
    (fun _ -> incr cpt;
826
              let name = sprintf "_var_%d" !cpt in
827
              mkvar_decl loc (name, mktyp loc Tydec_any, mkclock loc Ckdec_any, false, None))
828
    (Types.type_list_of_type ty)
829

    
830
let mk_internal_node id =
831
  let spec = None in
832
  let ty = Env.lookup_value Basic_library.type_env id in
833
  let ck = Env.lookup_value Basic_library.clock_env id in
834
  let (tin, tout) = Types.split_arrow ty in
835
  (*eprintf "internal fun %s: %d -> %d@." id (List.length (Types.type_list_of_type tin)) (List.length (Types.type_list_of_type tout));*)
836
  let cpt = ref (-1) in
837
  mktop
838
    (ImportedNode
839
       {nodei_id = id;
840
	nodei_type = ty;
841
	nodei_clock = ck;
842
	nodei_inputs = vdecls_of_typ_ck cpt tin;
843
	nodei_outputs = vdecls_of_typ_ck cpt tout;
844
	nodei_stateless = Types.get_static_value ty <> None;
845
	nodei_spec = spec;
846
	nodei_prototype = None;
847
       	nodei_in_lib = [];
848
       })
849

    
850
let add_internal_funs () =
851
  List.iter
852
    (fun id -> let nd = mk_internal_node id in Hashtbl.add node_table id nd)
853
    Basic_library.internal_funs
854

    
855

    
856

    
857
(* Replace any occurence of a var in vars_to_replace by its associated
858
   expression in defs until e does not contain any such variables *)
859
let rec substitute_expr vars_to_replace defs e =
860
  let se = substitute_expr vars_to_replace defs in
861
  { e with expr_desc = 
862
      let ed = e.expr_desc in
863
      match ed with
864
      | Expr_const _ -> ed
865
      | Expr_array el -> Expr_array (List.map se el)
866
      | Expr_access (e1, d) -> Expr_access (se e1, d)
867
      | Expr_power (e1, d) -> Expr_power (se e1, d)
868
      | Expr_tuple el -> Expr_tuple (List.map se el)
869
      | Expr_ite (c, t, e) -> Expr_ite (se c, se t, se e)
870
      | Expr_arrow (e1, e2)-> Expr_arrow (se e1, se e2) 
871
      | Expr_fby (e1, e2) -> Expr_fby (se e1, se e2)
872
      | Expr_pre e' -> Expr_pre (se e')
873
      | Expr_when (e', i, l)-> Expr_when (se e', i, l)
874
      | Expr_merge (i, hl) -> Expr_merge (i, List.map (fun (t, h) -> (t, se h)) hl)
875
      | Expr_appl (i, e', i') -> Expr_appl (i, se e', i')
876
      | Expr_ident i -> 
877
	if List.exists (fun v -> v.var_id = i) vars_to_replace then (
878
	  let eq_i eq = eq.eq_lhs = [i] in
879
	  if List.exists eq_i defs then
880
	    let sub = List.find eq_i defs in
881
	    let sub' = se sub.eq_rhs in
882
	    sub'.expr_desc
883
	  else 
884
	    assert false
885
	)
886
	else
887
	  ed
888

    
889
  }
890
(* FAUT IL RETIRER ?
891
  
892
 let rec expr_to_eexpr  expr =
893
   { eexpr_tag = expr.expr_tag;
894
     eexpr_desc = expr_desc_to_eexpr_desc expr.expr_desc;
895
     eexpr_type = expr.expr_type;
896
     eexpr_clock = expr.expr_clock;
897
     eexpr_loc = expr.expr_loc
898
   }
899
 and expr_desc_to_eexpr_desc expr_desc =
900
   let conv = expr_to_eexpr in
901
   match expr_desc with
902
   | Expr_const c -> EExpr_const (match c with
903
     | Const_int x -> EConst_int x 
904
     | Const_real x -> EConst_real x 
905
     | Const_float x -> EConst_float x 
906
     | Const_tag x -> EConst_tag x 
907
     | _ -> assert false
908

    
909
   )
910
   | Expr_ident i -> EExpr_ident i
911
   | Expr_tuple el -> EExpr_tuple (List.map conv el)
912

    
913
   | Expr_arrow (e1, e2)-> EExpr_arrow (conv e1, conv e2) 
914
   | Expr_fby (e1, e2) -> EExpr_fby (conv e1, conv e2)
915
   | Expr_pre e' -> EExpr_pre (conv e')
916
   | Expr_appl (i, e', i') -> 
917
     EExpr_appl 
918
       (i, conv e', match i' with None -> None | Some(id, _) -> Some id)
919

    
920
   | Expr_when _
921
   | Expr_merge _ -> assert false
922
   | Expr_array _ 
923
   | Expr_access _ 
924
   | Expr_power _  -> assert false
925
   | Expr_ite (c, t, e) -> assert false 
926
   | _ -> assert false
927

    
928
     *)
929
let rec get_expr_calls nodes e =
930
  let get_calls = get_expr_calls nodes in
931
  match e.expr_desc with
932
  | Expr_const _ 
933
   | Expr_ident _ -> Utils.ISet.empty
934
   | Expr_tuple el
935
   | Expr_array el -> List.fold_left (fun accu e -> Utils.ISet.union accu (get_calls e)) Utils.ISet.empty el
936
   | Expr_pre e1 
937
   | Expr_when (e1, _, _) 
938
   | Expr_access (e1, _) 
939
   | Expr_power (e1, _) -> get_calls e1
940
   | Expr_ite (c, t, e) -> Utils.ISet.union (Utils.ISet.union (get_calls c) (get_calls t)) (get_calls e) 
941
   | Expr_arrow (e1, e2) 
942
   | Expr_fby (e1, e2) -> Utils.ISet.union (get_calls e1) (get_calls e2)
943
   | Expr_merge (_, hl) -> List.fold_left (fun accu (_, h) -> Utils.ISet.union accu (get_calls h)) Utils.ISet.empty  hl
944
   | Expr_appl (i, e', i') -> 
945
     if Basic_library.is_expr_internal_fun e then 
946
       (get_calls e') 
947
     else
948
       let calls =  Utils.ISet.add i (get_calls e') in
949
       let test = (fun n -> match n.top_decl_desc with Node nd -> nd.node_id = i | _ -> false) in
950
       if List.exists test nodes then
951
	 match (List.find test nodes).top_decl_desc with
952
	 | Node nd -> Utils.ISet.union (get_node_calls nodes nd) calls
953
	 | _ -> assert false
954
       else 
955
	 calls
956

    
957
and get_eq_calls nodes eq =
958
  get_expr_calls nodes eq.eq_rhs
959
and get_node_calls nodes node =
960
  List.fold_left (fun accu eq -> Utils.ISet.union (get_eq_calls nodes eq) accu) Utils.ISet.empty (get_node_eqs node)
961

    
962
let rec get_expr_vars vars e =
963
  get_expr_desc_vars vars e.expr_desc
964
and get_expr_desc_vars vars expr_desc =
965
  match expr_desc with
966
  | Expr_const _ -> vars
967
  | Expr_ident x -> Utils.ISet.add x vars
968
  | Expr_tuple el
969
  | Expr_array el -> List.fold_left get_expr_vars vars el
970
  | Expr_pre e1 -> get_expr_vars vars e1
971
  | Expr_when (e1, c, _) -> get_expr_vars (Utils.ISet.add c vars) e1 
972
  | Expr_access (e1, d) 
973
  | Expr_power (e1, d)   -> List.fold_left get_expr_vars vars [e1; expr_of_dimension d]
974
  | Expr_ite (c, t, e) -> List.fold_left get_expr_vars vars [c; t; e]
975
  | Expr_arrow (e1, e2) 
976
  | Expr_fby (e1, e2) -> List.fold_left get_expr_vars vars [e1; e2]
977
  | Expr_merge (c, hl) -> List.fold_left (fun vars (_, h) -> get_expr_vars vars h) (Utils.ISet.add c vars) hl
978
  | Expr_appl (_, arg, None)   -> get_expr_vars vars arg
979
  | Expr_appl (_, arg, Some r) -> List.fold_left get_expr_vars vars [arg; r]
980

    
981

    
982
let rec expr_has_arrows e =
983
  expr_desc_has_arrows e.expr_desc
984
and expr_desc_has_arrows expr_desc =
985
  match expr_desc with
986
  | Expr_const _ 
987
  | Expr_ident _ -> false
988
  | Expr_tuple el
989
  | Expr_array el -> List.exists expr_has_arrows el
990
  | Expr_pre e1 
991
  | Expr_when (e1, _, _) 
992
  | Expr_access (e1, _) 
993
  | Expr_power (e1, _) -> expr_has_arrows e1
994
  | Expr_ite (c, t, e) -> List.exists expr_has_arrows [c; t; e]
995
  | Expr_arrow (e1, e2) 
996
  | Expr_fby (e1, e2) -> true
997
  | Expr_merge (_, hl) -> List.exists (fun (_, h) -> expr_has_arrows h) hl
998
  | Expr_appl (i, e', i') -> expr_has_arrows e'
999

    
1000
and eq_has_arrows eq =
1001
  expr_has_arrows eq.eq_rhs
1002
and node_has_arrows node =
1003
  List.exists (fun eq -> eq_has_arrows eq) (get_node_eqs node)
1004

    
1005

    
1006
let copy_var_decl vdecl =
1007
  mkvar_decl vdecl.var_loc ~orig:vdecl.var_orig (vdecl.var_id, vdecl.var_dec_type, vdecl.var_dec_clock, vdecl.var_dec_const, vdecl.var_dec_value)
1008

    
1009
let copy_const cdecl =
1010
  { cdecl with const_type = Types.new_var () }
1011

    
1012
let copy_node nd =
1013
  { nd with
1014
    node_type     = Types.new_var ();
1015
    node_clock    = Clocks.new_var true;
1016
    node_inputs   = List.map copy_var_decl nd.node_inputs;
1017
    node_outputs  = List.map copy_var_decl nd.node_outputs;
1018
    node_locals   = List.map copy_var_decl nd.node_locals;
1019
    node_gencalls = [];
1020
    node_checks   = [];
1021
    node_stateless = None;
1022
  }
1023

    
1024
let copy_top top =
1025
  match top.top_decl_desc with
1026
  | Node nd -> { top with top_decl_desc = Node (copy_node nd)  }
1027
  | Const c -> { top with top_decl_desc = Const (copy_const c) }
1028
  | _       -> top
1029

    
1030
let copy_prog top_list =
1031
  List.map copy_top top_list
1032

    
1033
(* Local Variables: *)
1034
(* compile-command:"make -C .." *)
1035
(* End: *)
(13-13/51)