Project

General

Profile

Download (35.5 KB) Statistics
| Branch: | Tag: | Revision:
1
(********************************************************************)
2
(*                                                                  *)
3
(*  The LustreC compiler toolset   /  The LustreC Development Team  *)
4
(*  Copyright 2012 -    --   ONERA - CNRS - INPT                    *)
5
(*                                                                  *)
6
(*  LustreC is free software, distributed WITHOUT ANY WARRANTY      *)
7
(*  under the terms of the GNU Lesser General Public License        *)
8
(*  version 2.1.                                                    *)
9
(*                                                                  *)
10
(********************************************************************)
11

    
12
open Format
13
open LustreSpec
14
open Dimension
15

    
16

    
17
exception Error of Location.t * error
18

    
19
module VDeclModule =
20
struct (* Node module *)
21
  type t = var_decl
22
  let compare v1 v2 = compare v1.var_id v2.var_id
23
end
24

    
25
module VMap = Map.Make(VDeclModule)
26

    
27
module VSet = Set.Make(VDeclModule)
28

    
29
let dummy_type_dec = {ty_dec_desc=Tydec_any; ty_dec_loc=Location.dummy_loc}
30

    
31
let dummy_clock_dec = {ck_dec_desc=Ckdec_any; ck_dec_loc=Location.dummy_loc}
32

    
33

    
34

    
35
(************************************************************)
36
(* *)
37

    
38
let mktyp loc d =
39
  { ty_dec_desc = d; ty_dec_loc = loc }
40

    
41
let mkclock loc d =
42
  { ck_dec_desc = d; ck_dec_loc = loc }
43

    
44
let mkvar_decl loc ?(orig=false) (id, ty_dec, ck_dec, is_const, value) =
45
  assert (value = None || is_const);
46
  { var_id = id;
47
    var_orig = orig;
48
    var_dec_type = ty_dec;
49
    var_dec_clock = ck_dec;
50
    var_dec_const = is_const;
51
    var_dec_value = value;
52
    var_type = Types.new_var ();
53
    var_clock = Clocks.new_var true;
54
    var_loc = loc }
55

    
56
let mkexpr loc d =
57
  { expr_tag = Utils.new_tag ();
58
    expr_desc = d;
59
    expr_type = Types.new_var ();
60
    expr_clock = Clocks.new_var true;
61
    expr_delay = Delay.new_var ();
62
    expr_annot = None;
63
    expr_loc = loc }
64

    
65
let var_decl_of_const c =
66
  { var_id = c.const_id;
67
    var_orig = true;
68
    var_dec_type = { ty_dec_loc = c.const_loc; ty_dec_desc = Tydec_any };
69
    var_dec_clock = { ck_dec_loc = c.const_loc; ck_dec_desc = Ckdec_any };
70
    var_dec_const = true;
71
    var_dec_value = None;
72
    var_type = c.const_type;
73
    var_clock = Clocks.new_var false;
74
    var_loc = c.const_loc }
75

    
76
let mk_new_name used id =
77
  let rec new_name name cpt =
78
    if used name
79
    then new_name (sprintf "_%s_%i" id cpt) (cpt+1)
80
    else name
81
  in new_name id 1
82

    
83
let mkeq loc (lhs, rhs) =
84
  { eq_lhs = lhs;
85
    eq_rhs = rhs;
86
    eq_loc = loc }
87

    
88
let mkassert loc expr =
89
  { assert_loc = loc;
90
    assert_expr = expr
91
  }
92

    
93
let mktop_decl loc own itf d =
94
  { top_decl_desc = d; top_decl_loc = loc; top_decl_owner = own; top_decl_itf = itf }
95

    
96
let mkpredef_call loc funname args =
97
  mkexpr loc (Expr_appl (funname, mkexpr loc (Expr_tuple args), None))
98

    
99
let is_clock_dec_type cty =
100
  match cty with
101
  | Tydec_clock _ -> true
102
  | _             -> false
103

    
104
let const_of_top top_decl =
105
  match top_decl.top_decl_desc with
106
  | Const c -> c
107
  | _ -> assert false
108

    
109
let node_of_top top_decl =
110
  match top_decl.top_decl_desc with
111
  | Node nd -> nd
112
  | _ -> assert false
113

    
114
let imported_node_of_top top_decl =
115
  match top_decl.top_decl_desc with
116
  | ImportedNode ind -> ind
117
  | _ -> assert false
118

    
119
let typedef_of_top top_decl =
120
  match top_decl.top_decl_desc with
121
  | TypeDef tdef -> tdef
122
  | _ -> assert false
123

    
124
let dependency_of_top top_decl =
125
  match top_decl.top_decl_desc with
126
  | Open (local, dep) -> (local, dep)
127
  | _ -> assert false
128

    
129
let consts_of_enum_type top_decl =
130
  match top_decl.top_decl_desc with
131
  | TypeDef tdef ->
132
    (match tdef.tydef_desc with
133
     | Tydec_enum tags -> List.map (fun tag -> let cdecl = { const_id = tag; const_loc = top_decl.top_decl_loc; const_value = Const_tag tag; const_type = Type_predef.type_const tdef.tydef_id } in { top_decl with top_decl_desc = Const cdecl }) tags
134
     | _               -> [])
135
  | _ -> assert false
136

    
137
(************************************************************)
138
(*   Eexpr functions *)
139
(************************************************************)
140

    
141
let merge_node_annot ann1 ann2 =
142
  { requires = ann1.requires @ ann2.requires;
143
    ensures = ann1.ensures @ ann2.ensures;
144
    behaviors = ann1.behaviors @ ann2.behaviors;
145
    spec_loc = ann1.spec_loc
146
  }
147

    
148
let mkeexpr loc expr =
149
  { eexpr_tag = Utils.new_tag ();
150
    eexpr_qfexpr = expr;
151
    eexpr_quantifiers = [];
152
    eexpr_type = Types.new_var ();
153
    eexpr_clock = Clocks.new_var true;
154
    eexpr_normalized = None;
155
    eexpr_loc = loc }
156

    
157
let extend_eexpr q e = { e with eexpr_quantifiers = q@e.eexpr_quantifiers }
158

    
159
(*
160
let mkepredef_call loc funname args =
161
  mkeexpr loc (EExpr_appl (funname, mkeexpr loc (EExpr_tuple args), None))
162

    
163
let mkepredef_unary_call loc funname arg =
164
  mkeexpr loc (EExpr_appl (funname, arg, None))
165
*)
166

    
167
let merge_expr_annot ann1 ann2 =
168
  match ann1, ann2 with
169
    | None, None -> assert false
170
    | Some _, None -> ann1
171
    | None, Some _ -> ann2
172
    | Some ann1, Some ann2 -> Some {
173
      annots = ann1.annots @ ann2.annots;
174
      annot_loc = ann1.annot_loc
175
    }
176

    
177
let update_expr_annot node_id e annot =
178
  List.iter (fun (key, _) -> 
179
    Annotations.add_expr_ann node_id e.expr_tag key
180
  ) annot.annots;
181
  { e with expr_annot = merge_expr_annot e.expr_annot (Some annot) }
182

    
183

    
184
(***********************************************************)
185
(* Fast access to nodes, by name *)
186
let (node_table : (ident, top_decl) Hashtbl.t) = Hashtbl.create 30
187
let consts_table = Hashtbl.create 30
188

    
189
let print_node_table fmt () =
190
  begin
191
    Format.fprintf fmt "{ /* node table */@.";
192
    Hashtbl.iter (fun id nd ->
193
      Format.fprintf fmt "%s |-> %a"
194
	id
195
	Printers.pp_short_decl nd
196
    ) node_table;
197
    Format.fprintf fmt "}@."
198
  end
199

    
200
let get_registered_nodes () =
201
  Hashtbl.fold (fun _ top l -> top::l) node_table []
202
    
203
let print_consts_table fmt () =
204
  begin
205
    Format.fprintf fmt "{ /* consts table */@.";
206
    Hashtbl.iter (fun id const ->
207
      Format.fprintf fmt "%s |-> %a"
208
	id
209
	Printers.pp_const_decl (const_of_top const)
210
    ) consts_table;
211
    Format.fprintf fmt "}@."
212
  end
213

    
214
let node_name td =
215
    match td.top_decl_desc with 
216
    | Node nd         -> nd.node_id
217
    | ImportedNode nd -> nd.nodei_id
218
    | _ -> assert false
219

    
220
let is_generic_node td =
221
  match td.top_decl_desc with 
222
  | Node nd         -> List.exists (fun v -> v.var_dec_const) nd.node_inputs
223
  | ImportedNode nd -> List.exists (fun v -> v.var_dec_const) nd.nodei_inputs
224
  | _ -> assert false
225

    
226
let node_inputs td =
227
  match td.top_decl_desc with 
228
  | Node nd         -> nd.node_inputs
229
  | ImportedNode nd -> nd.nodei_inputs
230
  | _ -> assert false
231

    
232
let node_from_name id =
233
  try
234
    Hashtbl.find node_table id
235
  with Not_found -> (Format.eprintf "Unable to find any node named %s@ @?" id;
236
		     assert false)
237

    
238
let is_imported_node td =
239
  match td.top_decl_desc with 
240
  | Node nd         -> false
241
  | ImportedNode nd -> true
242
  | _ -> assert false
243

    
244

    
245
(* alias and type definition table *)
246

    
247
let mktop = mktop_decl Location.dummy_loc !Options.include_dir false
248

    
249
let top_int_type = mktop (TypeDef {tydef_id = "int"; tydef_desc = Tydec_int})
250
let top_bool_type = mktop (TypeDef {tydef_id = "bool"; tydef_desc = Tydec_bool})
251
(* let top_float_type = mktop (TypeDef {tydef_id = "float"; tydef_desc = Tydec_float}) *)
252
let top_real_type = mktop (TypeDef {tydef_id = "real"; tydef_desc = Tydec_real})
253

    
254
let type_table =
255
  Utils.create_hashtable 20 [
256
    Tydec_int  , top_int_type;
257
    Tydec_bool , top_bool_type;
258
    (* Tydec_float, top_float_type; *)
259
    Tydec_real , top_real_type
260
  ]
261

    
262
let print_type_table fmt () =
263
  begin
264
    Format.fprintf fmt "{ /* type table */@.";
265
    Hashtbl.iter (fun tydec tdef ->
266
      Format.fprintf fmt "%a |-> %a"
267
	Printers.pp_var_type_dec_desc tydec
268
	Printers.pp_typedef (typedef_of_top tdef)
269
    ) type_table;
270
    Format.fprintf fmt "}@."
271
  end
272

    
273
let rec is_user_type typ =
274
  match typ with
275
  | Tydec_int | Tydec_bool | Tydec_real 
276
  (* | Tydec_float *) | Tydec_any | Tydec_const _ -> false
277
  | Tydec_clock typ' -> is_user_type typ'
278
  | _ -> true
279

    
280
let get_repr_type typ =
281
  let typ_def = (typedef_of_top (Hashtbl.find type_table typ)).tydef_desc in
282
  if is_user_type typ_def then typ else typ_def
283

    
284
let rec coretype_equal ty1 ty2 =
285
  let res =
286
  match ty1, ty2 with
287
  | Tydec_any           , _
288
  | _                   , Tydec_any             -> assert false
289
  | Tydec_const _       , Tydec_const _         -> get_repr_type ty1 = get_repr_type ty2
290
  | Tydec_const _       , _                     -> let ty1' = (typedef_of_top (Hashtbl.find type_table ty1)).tydef_desc
291
	       					   in (not (is_user_type ty1')) && coretype_equal ty1' ty2
292
  | _                   , Tydec_const _         -> coretype_equal ty2 ty1
293
  | Tydec_int           , Tydec_int
294
  | Tydec_real          , Tydec_real
295
  (* | Tydec_float         , Tydec_float *)
296
  | Tydec_bool          , Tydec_bool            -> true
297
  | Tydec_clock ty1     , Tydec_clock ty2       -> coretype_equal ty1 ty2
298
  | Tydec_array (d1,ty1), Tydec_array (d2, ty2) -> Dimension.is_eq_dimension d1 d2 && coretype_equal ty1 ty2
299
  | Tydec_enum tl1      , Tydec_enum tl2        -> List.sort compare tl1 = List.sort compare tl2
300
  | Tydec_struct fl1    , Tydec_struct fl2      ->
301
       List.length fl1 = List.length fl2
302
    && List.for_all2 (fun (f1, t1) (f2, t2) -> f1 = f2 && coretype_equal t1 t2)
303
      (List.sort (fun (f1,_) (f2,_) -> compare f1 f2) fl1)
304
      (List.sort (fun (f1,_) (f2,_) -> compare f1 f2) fl2)
305
  | _                                  -> false
306
  in ((*Format.eprintf "coretype_equal %a %a = %B@." Printers.pp_var_type_dec_desc ty1 Printers.pp_var_type_dec_desc ty2 res;*) res)
307

    
308
let tag_true = "true"
309
let tag_false = "false"
310
let tag_default = "default"
311

    
312
let const_is_bool c =
313
 match c with
314
 | Const_tag t -> t = tag_true || t = tag_false
315
 | _           -> false
316

    
317
(* Computes the negation of a boolean constant *)
318
let const_negation c =
319
  assert (const_is_bool c);
320
  match c with
321
  | Const_tag t when t = tag_true  -> Const_tag tag_false
322
  | _                              -> Const_tag tag_true
323

    
324
let const_or c1 c2 =
325
  assert (const_is_bool c1 && const_is_bool c2);
326
  match c1, c2 with
327
  | Const_tag t1, _            when t1 = tag_true -> c1
328
  | _           , Const_tag t2 when t2 = tag_true -> c2
329
  | _                                             -> Const_tag tag_false
330

    
331
let const_and c1 c2 =
332
  assert (const_is_bool c1 && const_is_bool c2);
333
  match c1, c2 with
334
  | Const_tag t1, _            when t1 = tag_false -> c1
335
  | _           , Const_tag t2 when t2 = tag_false -> c2
336
  | _                                              -> Const_tag tag_true
337

    
338
let const_xor c1 c2 =
339
  assert (const_is_bool c1 && const_is_bool c2);
340
   match c1, c2 with
341
  | Const_tag t1, Const_tag t2 when t1 <> t2  -> Const_tag tag_true
342
  | _                                         -> Const_tag tag_false
343

    
344
let const_impl c1 c2 =
345
  assert (const_is_bool c1 && const_is_bool c2);
346
  match c1, c2 with
347
  | Const_tag t1, _ when t1 = tag_false           -> Const_tag tag_true
348
  | _           , Const_tag t2 when t2 = tag_true -> Const_tag tag_true
349
  | _                                             -> Const_tag tag_false
350

    
351
(* To guarantee uniqueness of tags in enum types *)
352
let tag_table =
353
  Utils.create_hashtable 20 [
354
   tag_true, top_bool_type;
355
   tag_false, top_bool_type
356
  ]
357

    
358
(* To guarantee uniqueness of fields in struct types *)
359
let field_table =
360
  Utils.create_hashtable 20 [
361
  ]
362

    
363
let get_enum_type_tags cty =
364
(*Format.eprintf "get_enum_type_tags %a@." Printers.pp_var_type_dec_desc cty;*)
365
 match cty with
366
 | Tydec_bool    -> [tag_true; tag_false]
367
 | Tydec_const _ -> (match (typedef_of_top (Hashtbl.find type_table cty)).tydef_desc with
368
                     | Tydec_enum tl -> tl
369
                     | _             -> assert false)
370
 | _            -> assert false
371

    
372
let get_struct_type_fields cty =
373
 match cty with
374
 | Tydec_const _ -> (match (typedef_of_top (Hashtbl.find type_table cty)).tydef_desc with
375
                     | Tydec_struct fl -> fl
376
                     | _               -> assert false)
377
 | _            -> assert false
378

    
379
let const_of_bool b =
380
 Const_tag (if b then tag_true else tag_false)
381

    
382
(* let get_const c = snd (Hashtbl.find consts_table c) *)
383

    
384
let ident_of_expr expr =
385
 match expr.expr_desc with
386
 | Expr_ident id -> id
387
 | _             -> assert false
388

    
389
(* Generate a new ident expression from a declared variable *)
390
let expr_of_vdecl v =
391
  { expr_tag = Utils.new_tag ();
392
    expr_desc = Expr_ident v.var_id;
393
    expr_type = v.var_type;
394
    expr_clock = v.var_clock;
395
    expr_delay = Delay.new_var ();
396
    expr_annot = None;
397
    expr_loc = v.var_loc }
398

    
399
(* Caution, returns an untyped and unclocked expression *)
400
let expr_of_ident id loc =
401
  {expr_tag = Utils.new_tag ();
402
   expr_desc = Expr_ident id;
403
   expr_type = Types.new_var ();
404
   expr_clock = Clocks.new_var true;
405
   expr_delay = Delay.new_var ();
406
   expr_loc = loc;
407
   expr_annot = None}
408

    
409
let is_tuple_expr expr =
410
 match expr.expr_desc with
411
  | Expr_tuple _ -> true
412
  | _            -> false
413

    
414
let expr_list_of_expr expr =
415
  match expr.expr_desc with
416
  | Expr_tuple elist -> elist
417
  | _                -> [expr]
418

    
419
let expr_of_expr_list loc elist =
420
 match elist with
421
 | [t]  -> { t with expr_loc = loc }
422
 | t::_ ->
423
    let tlist = List.map (fun e -> e.expr_type) elist in
424
    let clist = List.map (fun e -> e.expr_clock) elist in
425
    { t with expr_desc = Expr_tuple elist;
426
	     expr_type = Type_predef.type_tuple tlist;
427
	     expr_clock = Clock_predef.ck_tuple clist;
428
	     expr_tag = Utils.new_tag ();
429
	     expr_loc = loc }
430
 | _    -> assert false
431

    
432
let call_of_expr expr =
433
 match expr.expr_desc with
434
 | Expr_appl (f, args, r) -> (f, expr_list_of_expr args, r)
435
 | _                      -> assert false
436

    
437
(* Conversion from dimension expr to standard expr, for the purpose of printing, typing, etc... *)
438
let rec expr_of_dimension dim =
439
 match dim.dim_desc with
440
 | Dbool b        ->
441
     mkexpr dim.dim_loc (Expr_const (const_of_bool b))
442
 | Dint i         ->
443
     mkexpr dim.dim_loc (Expr_const (Const_int i))
444
 | Dident id      ->
445
     mkexpr dim.dim_loc (Expr_ident id)
446
 | Dite (c, t, e) ->
447
     mkexpr dim.dim_loc (Expr_ite (expr_of_dimension c, expr_of_dimension t, expr_of_dimension e))
448
 | Dappl (id, args) ->
449
     mkexpr dim.dim_loc (Expr_appl (id, expr_of_expr_list dim.dim_loc (List.map expr_of_dimension args), None))
450
 | Dlink dim'       -> expr_of_dimension dim'
451
 | Dvar
452
 | Dunivar          -> (Format.eprintf "internal error: Corelang.expr_of_dimension %a@." Dimension.pp_dimension dim;
453
			assert false)
454

    
455
let dimension_of_const loc const =
456
 match const with
457
 | Const_int i                                    -> mkdim_int loc i
458
 | Const_tag t when t = tag_true || t = tag_false -> mkdim_bool loc (t = tag_true)
459
 | _                                              -> raise InvalidDimension
460

    
461
(* Conversion from standard expr to dimension expr, for the purpose of injecting static call arguments 
462
   into dimension expressions *)
463
let rec dimension_of_expr expr =
464
  match expr.expr_desc with
465
  | Expr_const c  -> dimension_of_const expr.expr_loc c
466
  | Expr_ident id -> mkdim_ident expr.expr_loc id
467
  | Expr_appl (f, args, None) when Basic_library.is_expr_internal_fun expr ->
468
      let k = Types.get_static_value (Env.lookup_value Basic_library.type_env f) in
469
      if k = None then raise InvalidDimension;
470
      mkdim_appl expr.expr_loc f (List.map dimension_of_expr (expr_list_of_expr args))
471
  | Expr_ite (i, t, e)        ->
472
      mkdim_ite expr.expr_loc (dimension_of_expr i) (dimension_of_expr t) (dimension_of_expr e)
473
  | _ -> raise InvalidDimension (* not a simple dimension expression *)
474

    
475

    
476
let sort_handlers hl =
477
 List.sort (fun (t, _) (t', _) -> compare t t') hl
478

    
479
let num_10 = Num.num_of_int 10
480
  
481
let rec is_eq_const c1 c2 =
482
  match c1, c2 with
483
  | Const_real (n1, i1, _), Const_real (n2, i2, _)
484
    -> Num.(let n1 = n1 // (num_10 **/ (num_of_int i1)) in
485
	    let n2 = n2 // (num_10 **/ (num_of_int i2)) in
486
	    eq_num n1 n2)
487
  | Const_struct lcl1, Const_struct lcl2
488
    -> List.length lcl1 = List.length lcl2
489
    && List.for_all2 (fun (l1, c1) (l2, c2) -> l1 = l2 && is_eq_const c1 c2) lcl1 lcl2
490
  | _  -> c1 = c2
491

    
492
let rec is_eq_expr e1 e2 = match e1.expr_desc, e2.expr_desc with
493
  | Expr_const c1, Expr_const c2 -> is_eq_const c1 c2
494
  | Expr_ident i1, Expr_ident i2 -> i1 = i2
495
  | Expr_array el1, Expr_array el2 
496
  | Expr_tuple el1, Expr_tuple el2 -> 
497
    List.length el1 = List.length el2 && List.for_all2 is_eq_expr el1 el2 
498
  | Expr_arrow (e1, e2), Expr_arrow (e1', e2') -> is_eq_expr e1 e1' && is_eq_expr e2 e2'
499
  | Expr_fby (e1,e2), Expr_fby (e1',e2') -> is_eq_expr e1 e1' && is_eq_expr e2 e2'
500
  | Expr_ite (i1, t1, e1), Expr_ite (i2, t2, e2) -> is_eq_expr i1 i2 && is_eq_expr t1 t2 && is_eq_expr e1 e2
501
  (* | Expr_concat (e1,e2), Expr_concat (e1',e2') -> is_eq_expr e1 e1' && is_eq_expr e2 e2' *)
502
  (* | Expr_tail e, Expr_tail e' -> is_eq_expr e e' *)
503
  | Expr_pre e, Expr_pre e' -> is_eq_expr e e'
504
  | Expr_when (e, i, l), Expr_when (e', i', l') -> l=l' && i=i' && is_eq_expr e e'
505
  | Expr_merge(i, hl), Expr_merge(i', hl') -> i=i' && List.for_all2 (fun (t, h) (t', h') -> t=t' && is_eq_expr h h') (sort_handlers hl) (sort_handlers hl')
506
  | Expr_appl (i, e, r), Expr_appl (i', e', r') -> i=i' && r=r' && is_eq_expr e e'
507
  | Expr_power (e1, i1), Expr_power (e2, i2)
508
  | Expr_access (e1, i1), Expr_access (e2, i2) -> is_eq_expr e1 e2 && is_eq_expr (expr_of_dimension i1) (expr_of_dimension i2)
509
  | _ -> false
510

    
511
let get_node_vars nd =
512
  nd.node_inputs @ nd.node_locals @ nd.node_outputs
513

    
514
let mk_new_node_name nd id =
515
  let used_vars = get_node_vars nd in
516
  let used v = List.exists (fun vdecl -> vdecl.var_id = v) used_vars in
517
  mk_new_name used id
518

    
519
let get_var id var_list =
520
  List.find (fun v -> v.var_id = id) var_list
521

    
522
let get_node_var id node =
523
  try
524
    get_var id (get_node_vars node)
525
  with Not_found -> begin
526
    Format.eprintf "Unable to find variable %s in node %s@.@?" id node.node_id;
527
    raise Not_found
528
  end
529
    
530
let get_node_eqs =
531
  let get_eqs stmts =
532
    List.fold_right
533
      (fun stmt res ->
534
	match stmt with
535
	| Eq eq -> eq :: res
536
	| Aut _ -> assert false)
537
      stmts
538
      [] in
539
  let table_eqs = Hashtbl.create 23 in
540
  (fun nd ->
541
    try
542
      let (old, res) = Hashtbl.find table_eqs nd.node_id
543
      in if old == nd.node_stmts then res else raise Not_found
544
    with Not_found -> 
545
      let res = get_eqs nd.node_stmts in
546
      begin
547
	Hashtbl.replace table_eqs nd.node_id (nd.node_stmts, res);
548
	res
549
      end)
550

    
551
let get_node_eq id node =
552
 List.find (fun eq -> List.mem id eq.eq_lhs) (get_node_eqs node)
553

    
554
let get_nodes prog = 
555
  List.fold_left (
556
    fun nodes decl ->
557
      match decl.top_decl_desc with
558
	| Node _ -> decl::nodes
559
	| Const _ | ImportedNode _ | Open _ | TypeDef _ -> nodes  
560
  ) [] prog
561

    
562
let get_imported_nodes prog = 
563
  List.fold_left (
564
    fun nodes decl ->
565
      match decl.top_decl_desc with
566
	| ImportedNode _ -> decl::nodes
567
	| Const _ | Node _ | Open _ | TypeDef _-> nodes  
568
  ) [] prog
569

    
570
let get_consts prog = 
571
  List.fold_right (
572
    fun decl consts ->
573
      match decl.top_decl_desc with
574
	| Const _ -> decl::consts
575
	| Node _ | ImportedNode _ | Open _ | TypeDef _ -> consts  
576
  ) prog []
577

    
578
let get_typedefs prog = 
579
  List.fold_right (
580
    fun decl types ->
581
      match decl.top_decl_desc with
582
	| TypeDef _ -> decl::types
583
	| Node _ | ImportedNode _ | Open _ | Const _ -> types  
584
  ) prog []
585

    
586
let get_dependencies prog =
587
  List.fold_right (
588
    fun decl deps ->
589
      match decl.top_decl_desc with
590
	| Open _ -> decl::deps
591
	| Node _ | ImportedNode _ | TypeDef _ | Const _ -> deps  
592
  ) prog []
593

    
594
let get_node_interface nd =
595
 {nodei_id = nd.node_id;
596
  nodei_type = nd.node_type;
597
  nodei_clock = nd.node_clock;
598
  nodei_inputs = nd.node_inputs;
599
  nodei_outputs = nd.node_outputs;
600
  nodei_stateless = nd.node_dec_stateless;
601
  nodei_spec = nd.node_spec;
602
  nodei_prototype = None;
603
  nodei_in_lib = [];
604
 }
605

    
606
(************************************************************************)
607
(*        Renaming                                                      *)
608

    
609
let rec rename_static rename cty =
610
 match cty with
611
 | Tydec_array (d, cty') -> Tydec_array (Dimension.expr_replace_expr rename d, rename_static rename cty')
612
 | Tydec_clock cty       -> Tydec_clock (rename_static rename cty)
613
 | Tydec_struct fl       -> Tydec_struct (List.map (fun (f, cty) -> f, rename_static rename cty) fl)
614
 | _                      -> cty
615

    
616
let rec rename_carrier rename cck =
617
 match cck with
618
 | Ckdec_bool cl -> Ckdec_bool (List.map (fun (c, l) -> rename c, l) cl)
619
 | _             -> cck
620

    
621
(*Format.eprintf "Types.rename_static %a = %a@." print_ty ty print_ty res; res*)
622

    
623
(* applies the renaming function [fvar] to all variables of expression [expr] *)
624
 let rec expr_replace_var fvar expr =
625
  { expr with expr_desc = expr_desc_replace_var fvar expr.expr_desc }
626

    
627
 and expr_desc_replace_var fvar expr_desc =
628
   match expr_desc with
629
   | Expr_const _ -> expr_desc
630
   | Expr_ident i -> Expr_ident (fvar i)
631
   | Expr_array el -> Expr_array (List.map (expr_replace_var fvar) el)
632
   | Expr_access (e1, d) -> Expr_access (expr_replace_var fvar e1, d)
633
   | Expr_power (e1, d) -> Expr_power (expr_replace_var fvar e1, d)
634
   | Expr_tuple el -> Expr_tuple (List.map (expr_replace_var fvar) el)
635
   | Expr_ite (c, t, e) -> Expr_ite (expr_replace_var fvar c, expr_replace_var fvar t, expr_replace_var fvar e)
636
   | Expr_arrow (e1, e2)-> Expr_arrow (expr_replace_var fvar e1, expr_replace_var fvar e2) 
637
   | Expr_fby (e1, e2) -> Expr_fby (expr_replace_var fvar e1, expr_replace_var fvar e2)
638
   | Expr_pre e' -> Expr_pre (expr_replace_var fvar e')
639
   | Expr_when (e', i, l)-> Expr_when (expr_replace_var fvar e', fvar i, l)
640
   | Expr_merge (i, hl) -> Expr_merge (fvar i, List.map (fun (t, h) -> (t, expr_replace_var fvar h)) hl)
641
   | Expr_appl (i, e', i') -> Expr_appl (i, expr_replace_var fvar e', Utils.option_map (expr_replace_var fvar) i')
642

    
643
(* Applies the renaming function [fvar] to every rhs
644
   only when the corresponding lhs satisfies predicate [pvar] *)
645
 let eq_replace_rhs_var pvar fvar eq =
646
   let pvar l = List.exists pvar l in
647
   let rec replace lhs rhs =
648
     { rhs with expr_desc =
649
     match lhs with
650
     | []  -> assert false
651
     | [_] -> if pvar lhs then expr_desc_replace_var fvar rhs.expr_desc else rhs.expr_desc
652
     | _   ->
653
       (match rhs.expr_desc with
654
       | Expr_tuple tl ->
655
	 Expr_tuple (List.map2 (fun v e -> replace [v] e) lhs tl)
656
       | Expr_appl (f, arg, None) when Basic_library.is_expr_internal_fun rhs ->
657
	 let args = expr_list_of_expr arg in
658
	 Expr_appl (f, expr_of_expr_list arg.expr_loc (List.map (replace lhs) args), None)
659
       | Expr_array _
660
       | Expr_access _
661
       | Expr_power _
662
       | Expr_const _
663
       | Expr_ident _
664
       | Expr_appl _   ->
665
	 if pvar lhs
666
	 then expr_desc_replace_var fvar rhs.expr_desc
667
	 else rhs.expr_desc
668
       | Expr_ite (c, t, e)   -> Expr_ite (replace lhs c, replace lhs t, replace lhs e)
669
       | Expr_arrow (e1, e2)  -> Expr_arrow (replace lhs e1, replace lhs e2) 
670
       | Expr_fby (e1, e2)    -> Expr_fby (replace lhs e1, replace lhs e2)
671
       | Expr_pre e'          -> Expr_pre (replace lhs e')
672
       | Expr_when (e', i, l) -> let i' = if pvar lhs then fvar i else i
673
				 in Expr_when (replace lhs e', i', l)
674
       | Expr_merge (i, hl)   -> let i' = if pvar lhs then fvar i else i
675
				 in Expr_merge (i', List.map (fun (t, h) -> (t, replace lhs h)) hl)
676
       )
677
     }
678
   in { eq with eq_rhs = replace eq.eq_lhs eq.eq_rhs }
679

    
680

    
681
 let rec rename_expr  f_node f_var f_const expr =
682
   { expr with expr_desc = rename_expr_desc f_node f_var f_const expr.expr_desc }
683
 and rename_expr_desc f_node f_var f_const expr_desc =
684
   let re = rename_expr  f_node f_var f_const in
685
   match expr_desc with
686
   | Expr_const _ -> expr_desc
687
   | Expr_ident i -> Expr_ident (f_var i)
688
   | Expr_array el -> Expr_array (List.map re el)
689
   | Expr_access (e1, d) -> Expr_access (re e1, d)
690
   | Expr_power (e1, d) -> Expr_power (re e1, d)
691
   | Expr_tuple el -> Expr_tuple (List.map re el)
692
   | Expr_ite (c, t, e) -> Expr_ite (re c, re t, re e)
693
   | Expr_arrow (e1, e2)-> Expr_arrow (re e1, re e2) 
694
   | Expr_fby (e1, e2) -> Expr_fby (re e1, re e2)
695
   | Expr_pre e' -> Expr_pre (re e')
696
   | Expr_when (e', i, l)-> Expr_when (re e', f_var i, l)
697
   | Expr_merge (i, hl) -> 
698
     Expr_merge (f_var i, List.map (fun (t, h) -> (t, re h)) hl)
699
   | Expr_appl (i, e', i') -> 
700
     Expr_appl (f_node i, re e', Utils.option_map re i')
701
  
702
 let rename_node_annot f_node f_var f_const expr  =
703
   expr
704
 (* TODO assert false *)
705

    
706
 let rename_expr_annot f_node f_var f_const annot =
707
   annot
708
 (* TODO assert false *)
709

    
710
let rename_node f_node f_var f_const nd =
711
  let rename_var v = { v with var_id = f_var v.var_id } in
712
  let rename_eq eq = { eq with
713
      eq_lhs = List.map f_var eq.eq_lhs; 
714
      eq_rhs = rename_expr f_node f_var f_const eq.eq_rhs
715
    } 
716
  in
717
  let inputs = List.map rename_var nd.node_inputs in
718
  let outputs = List.map rename_var nd.node_outputs in
719
  let locals = List.map rename_var nd.node_locals in
720
  let gen_calls = List.map (rename_expr f_node f_var f_const) nd.node_gencalls in
721
  let node_checks = List.map (Dimension.expr_replace_var f_var)  nd.node_checks in
722
  let node_asserts = List.map 
723
    (fun a -> 
724
      {a with assert_expr = 
725
	  let expr = a.assert_expr in
726
	  rename_expr f_node f_var f_const expr})
727
    nd.node_asserts
728
  in
729
  let node_stmts = List.map (fun eq -> Eq (rename_eq eq)) (get_node_eqs nd) in
730
  let spec = 
731
    Utils.option_map 
732
      (fun s -> rename_node_annot f_node f_var f_const s) 
733
      nd.node_spec 
734
  in
735
  let annot =
736
    List.map 
737
      (fun s -> rename_expr_annot f_node f_var f_const s) 
738
      nd.node_annot
739
  in
740
  {
741
    node_id = f_node nd.node_id;
742
    node_type = nd.node_type;
743
    node_clock = nd.node_clock;
744
    node_inputs = inputs;
745
    node_outputs = outputs;
746
    node_locals = locals;
747
    node_gencalls = gen_calls;
748
    node_checks = node_checks;
749
    node_asserts = node_asserts;
750
    node_stmts = node_stmts;
751
    node_dec_stateless = nd.node_dec_stateless;
752
    node_stateless = nd.node_stateless;
753
    node_spec = spec;
754
    node_annot = annot;
755
  }
756

    
757

    
758
let rename_const f_const c =
759
  { c with const_id = f_const c.const_id }
760

    
761
let rename_typedef f_var t =
762
  match t.tydef_desc with
763
  | Tydec_enum tags -> { t with tydef_desc = Tydec_enum (List.map f_var tags) }
764
  | _               -> t
765

    
766
let rename_prog f_node f_var f_const prog =
767
  List.rev (
768
    List.fold_left (fun accu top ->
769
      (match top.top_decl_desc with
770
      | Node nd -> 
771
	 { top with top_decl_desc = Node (rename_node f_node f_var f_const nd) }
772
      | Const c -> 
773
	 { top with top_decl_desc = Const (rename_const f_const c) }
774
      | TypeDef tdef ->
775
	 { top with top_decl_desc = TypeDef (rename_typedef f_var tdef) }
776
      | ImportedNode _
777
      | Open _       -> top)
778
      ::accu
779
) [] prog
780
		   )
781

    
782
(**********************************************************************)
783
(* Pretty printers *)
784

    
785
let pp_decl_type fmt tdecl =
786
  match tdecl.top_decl_desc with
787
  | Node nd ->
788
    fprintf fmt "%s: " nd.node_id;
789
    Utils.reset_names ();
790
    fprintf fmt "%a@ " Types.print_ty nd.node_type
791
  | ImportedNode ind ->
792
    fprintf fmt "%s: " ind.nodei_id;
793
    Utils.reset_names ();
794
    fprintf fmt "%a@ " Types.print_ty ind.nodei_type
795
  | Const _ | Open _ | TypeDef _ -> ()
796

    
797
let pp_prog_type fmt tdecl_list =
798
  Utils.fprintf_list ~sep:"" pp_decl_type fmt tdecl_list
799

    
800
let pp_decl_clock fmt cdecl =
801
  match cdecl.top_decl_desc with
802
  | Node nd ->
803
    fprintf fmt "%s: " nd.node_id;
804
    Utils.reset_names ();
805
    fprintf fmt "%a@ " Clocks.print_ck nd.node_clock
806
  | ImportedNode ind ->
807
    fprintf fmt "%s: " ind.nodei_id;
808
    Utils.reset_names ();
809
    fprintf fmt "%a@ " Clocks.print_ck ind.nodei_clock
810
  | Const _ | Open _ | TypeDef _ -> ()
811

    
812
let pp_prog_clock fmt prog =
813
  Utils.fprintf_list ~sep:"" pp_decl_clock fmt prog
814

    
815
let pp_error fmt = function
816
    Main_not_found ->
817
      fprintf fmt "Could not find the definition of main node %s.@."
818
	!Global.main_node
819
  | Main_wrong_kind ->
820
    fprintf fmt
821
      "Node %s does not correspond to a valid main node definition.@." 
822
      !Global.main_node 
823
  | No_main_specified ->
824
    fprintf fmt "No main node specified (use -node option)@."
825
  | Unbound_symbol sym ->
826
    fprintf fmt
827
      "%s is undefined.@."
828
      sym
829
  | Already_bound_symbol sym -> 
830
    fprintf fmt
831
      "%s is already defined.@."
832
      sym
833
  | Unknown_library sym ->
834
    fprintf fmt
835
      "impossible to load library %s.lusic.@.Please compile the corresponding interface or source file.@."
836
      sym
837
  | Wrong_number sym ->
838
    fprintf fmt
839
      "library %s.lusic has a different version number and may crash compiler.@.Please recompile the corresponding interface or source file.@."
840
      sym
841

    
842
(* filling node table with internal functions *)
843
let vdecls_of_typ_ck cpt ty =
844
  let loc = Location.dummy_loc in
845
  List.map
846
    (fun _ -> incr cpt;
847
              let name = sprintf "_var_%d" !cpt in
848
              mkvar_decl loc (name, mktyp loc Tydec_any, mkclock loc Ckdec_any, false, None))
849
    (Types.type_list_of_type ty)
850

    
851
let mk_internal_node id =
852
  let spec = None in
853
  let ty = Env.lookup_value Basic_library.type_env id in
854
  let ck = Env.lookup_value Basic_library.clock_env id in
855
  let (tin, tout) = Types.split_arrow ty in
856
  (*eprintf "internal fun %s: %d -> %d@." id (List.length (Types.type_list_of_type tin)) (List.length (Types.type_list_of_type tout));*)
857
  let cpt = ref (-1) in
858
  mktop
859
    (ImportedNode
860
       {nodei_id = id;
861
	nodei_type = ty;
862
	nodei_clock = ck;
863
	nodei_inputs = vdecls_of_typ_ck cpt tin;
864
	nodei_outputs = vdecls_of_typ_ck cpt tout;
865
	nodei_stateless = Types.get_static_value ty <> None;
866
	nodei_spec = spec;
867
	nodei_prototype = None;
868
       	nodei_in_lib = [];
869
       })
870

    
871
let add_internal_funs () =
872
  List.iter
873
    (fun id -> let nd = mk_internal_node id in Hashtbl.add node_table id nd)
874
    Basic_library.internal_funs
875

    
876

    
877

    
878
(* Replace any occurence of a var in vars_to_replace by its associated
879
   expression in defs until e does not contain any such variables *)
880
let rec substitute_expr vars_to_replace defs e =
881
  let se = substitute_expr vars_to_replace defs in
882
  { e with expr_desc = 
883
      let ed = e.expr_desc in
884
      match ed with
885
      | Expr_const _ -> ed
886
      | Expr_array el -> Expr_array (List.map se el)
887
      | Expr_access (e1, d) -> Expr_access (se e1, d)
888
      | Expr_power (e1, d) -> Expr_power (se e1, d)
889
      | Expr_tuple el -> Expr_tuple (List.map se el)
890
      | Expr_ite (c, t, e) -> Expr_ite (se c, se t, se e)
891
      | Expr_arrow (e1, e2)-> Expr_arrow (se e1, se e2) 
892
      | Expr_fby (e1, e2) -> Expr_fby (se e1, se e2)
893
      | Expr_pre e' -> Expr_pre (se e')
894
      | Expr_when (e', i, l)-> Expr_when (se e', i, l)
895
      | Expr_merge (i, hl) -> Expr_merge (i, List.map (fun (t, h) -> (t, se h)) hl)
896
      | Expr_appl (i, e', i') -> Expr_appl (i, se e', i')
897
      | Expr_ident i -> 
898
	if List.exists (fun v -> v.var_id = i) vars_to_replace then (
899
	  let eq_i eq = eq.eq_lhs = [i] in
900
	  if List.exists eq_i defs then
901
	    let sub = List.find eq_i defs in
902
	    let sub' = se sub.eq_rhs in
903
	    sub'.expr_desc
904
	  else 
905
	    assert false
906
	)
907
	else
908
	  ed
909

    
910
  }
911
(* FAUT IL RETIRER ?
912
  
913
 let rec expr_to_eexpr  expr =
914
   { eexpr_tag = expr.expr_tag;
915
     eexpr_desc = expr_desc_to_eexpr_desc expr.expr_desc;
916
     eexpr_type = expr.expr_type;
917
     eexpr_clock = expr.expr_clock;
918
     eexpr_loc = expr.expr_loc
919
   }
920
 and expr_desc_to_eexpr_desc expr_desc =
921
   let conv = expr_to_eexpr in
922
   match expr_desc with
923
   | Expr_const c -> EExpr_const (match c with
924
     | Const_int x -> EConst_int x 
925
     | Const_real x -> EConst_real x 
926
     | Const_float x -> EConst_float x 
927
     | Const_tag x -> EConst_tag x 
928
     | _ -> assert false
929

    
930
   )
931
   | Expr_ident i -> EExpr_ident i
932
   | Expr_tuple el -> EExpr_tuple (List.map conv el)
933

    
934
   | Expr_arrow (e1, e2)-> EExpr_arrow (conv e1, conv e2) 
935
   | Expr_fby (e1, e2) -> EExpr_fby (conv e1, conv e2)
936
   | Expr_pre e' -> EExpr_pre (conv e')
937
   | Expr_appl (i, e', i') -> 
938
     EExpr_appl 
939
       (i, conv e', match i' with None -> None | Some(id, _) -> Some id)
940

    
941
   | Expr_when _
942
   | Expr_merge _ -> assert false
943
   | Expr_array _ 
944
   | Expr_access _ 
945
   | Expr_power _  -> assert false
946
   | Expr_ite (c, t, e) -> assert false 
947
   | _ -> assert false
948

    
949
     *)
950
let rec get_expr_calls nodes e =
951
  let get_calls = get_expr_calls nodes in
952
  match e.expr_desc with
953
  | Expr_const _ 
954
   | Expr_ident _ -> Utils.ISet.empty
955
   | Expr_tuple el
956
   | Expr_array el -> List.fold_left (fun accu e -> Utils.ISet.union accu (get_calls e)) Utils.ISet.empty el
957
   | Expr_pre e1 
958
   | Expr_when (e1, _, _) 
959
   | Expr_access (e1, _) 
960
   | Expr_power (e1, _) -> get_calls e1
961
   | Expr_ite (c, t, e) -> Utils.ISet.union (Utils.ISet.union (get_calls c) (get_calls t)) (get_calls e) 
962
   | Expr_arrow (e1, e2) 
963
   | Expr_fby (e1, e2) -> Utils.ISet.union (get_calls e1) (get_calls e2)
964
   | Expr_merge (_, hl) -> List.fold_left (fun accu (_, h) -> Utils.ISet.union accu (get_calls h)) Utils.ISet.empty  hl
965
   | Expr_appl (i, e', i') -> 
966
     if Basic_library.is_expr_internal_fun e then 
967
       (get_calls e') 
968
     else
969
       let calls =  Utils.ISet.add i (get_calls e') in
970
       let test = (fun n -> match n.top_decl_desc with Node nd -> nd.node_id = i | _ -> false) in
971
       if List.exists test nodes then
972
	 match (List.find test nodes).top_decl_desc with
973
	 | Node nd -> Utils.ISet.union (get_node_calls nodes nd) calls
974
	 | _ -> assert false
975
       else 
976
	 calls
977

    
978
and get_eq_calls nodes eq =
979
  get_expr_calls nodes eq.eq_rhs
980
and get_node_calls nodes node =
981
  List.fold_left (fun accu eq -> Utils.ISet.union (get_eq_calls nodes eq) accu) Utils.ISet.empty (get_node_eqs node)
982

    
983
let get_expr_vars e =
984
  let rec get_expr_vars vars e =
985
    get_expr_desc_vars vars e.expr_desc
986
  and get_expr_desc_vars vars expr_desc =
987
  match expr_desc with
988
  | Expr_const _ -> vars
989
  | Expr_ident x -> Utils.ISet.add x vars
990
  | Expr_tuple el
991
  | Expr_array el -> List.fold_left get_expr_vars vars el
992
  | Expr_pre e1 -> get_expr_vars vars e1
993
  | Expr_when (e1, c, _) -> get_expr_vars (Utils.ISet.add c vars) e1 
994
  | Expr_access (e1, d) 
995
  | Expr_power (e1, d)   -> List.fold_left get_expr_vars vars [e1; expr_of_dimension d]
996
  | Expr_ite (c, t, e) -> List.fold_left get_expr_vars vars [c; t; e]
997
  | Expr_arrow (e1, e2) 
998
  | Expr_fby (e1, e2) -> List.fold_left get_expr_vars vars [e1; e2]
999
  | Expr_merge (c, hl) -> List.fold_left (fun vars (_, h) -> get_expr_vars vars h) (Utils.ISet.add c vars) hl
1000
  | Expr_appl (_, arg, None)   -> get_expr_vars vars arg
1001
  | Expr_appl (_, arg, Some r) -> List.fold_left get_expr_vars vars [arg; r]
1002
  in
1003
  get_expr_vars Utils.ISet.empty e 
1004

    
1005
let rec expr_has_arrows e =
1006
  expr_desc_has_arrows e.expr_desc
1007
and expr_desc_has_arrows expr_desc =
1008
  match expr_desc with
1009
  | Expr_const _ 
1010
  | Expr_ident _ -> false
1011
  | Expr_tuple el
1012
  | Expr_array el -> List.exists expr_has_arrows el
1013
  | Expr_pre e1 
1014
  | Expr_when (e1, _, _) 
1015
  | Expr_access (e1, _) 
1016
  | Expr_power (e1, _) -> expr_has_arrows e1
1017
  | Expr_ite (c, t, e) -> List.exists expr_has_arrows [c; t; e]
1018
  | Expr_arrow (e1, e2) 
1019
  | Expr_fby (e1, e2) -> true
1020
  | Expr_merge (_, hl) -> List.exists (fun (_, h) -> expr_has_arrows h) hl
1021
  | Expr_appl (i, e', i') -> expr_has_arrows e'
1022

    
1023
and eq_has_arrows eq =
1024
  expr_has_arrows eq.eq_rhs
1025
and node_has_arrows node =
1026
  List.exists (fun eq -> eq_has_arrows eq) (get_node_eqs node)
1027

    
1028

    
1029
let copy_var_decl vdecl =
1030
  mkvar_decl vdecl.var_loc ~orig:vdecl.var_orig (vdecl.var_id, vdecl.var_dec_type, vdecl.var_dec_clock, vdecl.var_dec_const, vdecl.var_dec_value)
1031

    
1032
let copy_const cdecl =
1033
  { cdecl with const_type = Types.new_var () }
1034

    
1035
let copy_node nd =
1036
  { nd with
1037
    node_type     = Types.new_var ();
1038
    node_clock    = Clocks.new_var true;
1039
    node_inputs   = List.map copy_var_decl nd.node_inputs;
1040
    node_outputs  = List.map copy_var_decl nd.node_outputs;
1041
    node_locals   = List.map copy_var_decl nd.node_locals;
1042
    node_gencalls = [];
1043
    node_checks   = [];
1044
    node_stateless = None;
1045
  }
1046

    
1047
let copy_top top =
1048
  match top.top_decl_desc with
1049
  | Node nd -> { top with top_decl_desc = Node (copy_node nd)  }
1050
  | Const c -> { top with top_decl_desc = Const (copy_const c) }
1051
  | _       -> top
1052

    
1053
let copy_prog top_list =
1054
  List.map copy_top top_list
1055

    
1056
let functional_backend () = 
1057
  match !Options.output with
1058
  | "horn" | "lustre" | "acsl" -> true
1059
  | _ -> false
1060

    
1061
(* Local Variables: *)
1062
(* compile-command:"make -C .." *)
1063
(* End: *)
(12-12/62)