1
|
(********************************************************************)
|
2
|
(* *)
|
3
|
(* The LustreC compiler toolset / The LustreC Development Team *)
|
4
|
(* Copyright 2012 - -- ONERA - CNRS - INPT *)
|
5
|
(* *)
|
6
|
(* LustreC is free software, distributed WITHOUT ANY WARRANTY *)
|
7
|
(* under the terms of the GNU Lesser General Public License *)
|
8
|
(* version 2.1. *)
|
9
|
(* *)
|
10
|
(********************************************************************)
|
11
|
|
12
|
open Utils
|
13
|
open Lustre_types
|
14
|
open Machine_code_types
|
15
|
open Corelang
|
16
|
open Causality
|
17
|
open Machine_code_common
|
18
|
open Dimension
|
19
|
module Mpfr = Lustrec_mpfr
|
20
|
|
21
|
|
22
|
let pp_elim m fmt elim =
|
23
|
pp_imap ~comment:"/* elim table: */" (pp_val m) fmt elim
|
24
|
(* Format.fprintf fmt "@[<hv 0>@[<hv 2>{ /* elim table: */";
|
25
|
* IMap.iter (fun v expr -> Format.fprintf fmt "@ %s |-> %a," v (pp_val m) expr) elim;
|
26
|
* Format.fprintf fmt "@]@ }@]" *)
|
27
|
|
28
|
let rec eliminate m elim instr =
|
29
|
let e_expr = eliminate_expr m elim in
|
30
|
match get_instr_desc instr with
|
31
|
| MSpec _ | MComment _ -> instr
|
32
|
| MLocalAssign (i,v) -> update_instr_desc instr (MLocalAssign (i, e_expr v))
|
33
|
| MStateAssign (i,v) -> update_instr_desc instr (MStateAssign (i, e_expr v))
|
34
|
| MReset _ -> instr
|
35
|
| MNoReset _ -> instr
|
36
|
| MStep (il, i, vl) -> update_instr_desc instr (MStep(il, i, List.map e_expr vl))
|
37
|
| MBranch (g,hl) ->
|
38
|
update_instr_desc instr (
|
39
|
MBranch
|
40
|
(e_expr g,
|
41
|
(List.map
|
42
|
(fun (l, il) -> l, List.map (eliminate m elim) il)
|
43
|
hl
|
44
|
)
|
45
|
)
|
46
|
)
|
47
|
|
48
|
and eliminate_expr m elim expr =
|
49
|
let eliminate_expr = eliminate_expr m in
|
50
|
match expr.value_desc with
|
51
|
| Var v -> if is_memory m v then
|
52
|
expr
|
53
|
else
|
54
|
(try IMap.find v.var_id elim with Not_found -> expr)
|
55
|
| Fun (id, vl) -> {expr with value_desc = Fun (id, List.map (eliminate_expr elim) vl)}
|
56
|
| Array(vl) -> {expr with value_desc = Array(List.map (eliminate_expr elim) vl)}
|
57
|
| Access(v1, v2) -> { expr with value_desc = Access(eliminate_expr elim v1, eliminate_expr elim v2)}
|
58
|
| Power(v1, v2) -> { expr with value_desc = Power(eliminate_expr elim v1, eliminate_expr elim v2)}
|
59
|
| Cst _ -> expr
|
60
|
|
61
|
let eliminate_dim elim dim =
|
62
|
Dimension.expr_replace_expr
|
63
|
(fun v -> try
|
64
|
dimension_of_value (IMap.find v elim)
|
65
|
with Not_found -> mkdim_ident dim.dim_loc v)
|
66
|
dim
|
67
|
|
68
|
|
69
|
(* 8th Jan 2016: issues when merging salsa with horn_encoding: The following
|
70
|
functions seem unsused. They have to be adapted to the new type for expr
|
71
|
*)
|
72
|
|
73
|
let unfold_expr_offset m offset expr =
|
74
|
List.fold_left
|
75
|
(fun res -> (function | Index i -> mk_val (Access (res, value_of_dimension m i))
|
76
|
(Types.array_element_type res.value_type)
|
77
|
| Field _ -> Format.eprintf "internal error: not yet implemented !"; assert false))
|
78
|
expr offset
|
79
|
|
80
|
let rec simplify_cst_expr m offset typ cst =
|
81
|
match offset, cst with
|
82
|
| [] , _
|
83
|
-> mk_val (Cst cst) typ
|
84
|
| Index i :: q, Const_array cl when Dimension.is_dimension_const i
|
85
|
-> let elt_typ = Types.array_element_type typ in
|
86
|
simplify_cst_expr m q elt_typ (List.nth cl (Dimension.size_const_dimension i))
|
87
|
| Index i :: q, Const_array cl
|
88
|
-> let elt_typ = Types.array_element_type typ in
|
89
|
unfold_expr_offset m [Index i] (mk_val (Array (List.map (simplify_cst_expr m q elt_typ) cl)) typ)
|
90
|
| Field f :: q, Const_struct fl
|
91
|
-> let fld_typ = Types.struct_field_type typ f in
|
92
|
simplify_cst_expr m q fld_typ (List.assoc f fl)
|
93
|
| _ -> (Format.eprintf "internal error: Optimize_machine.simplify_cst_expr %a@." Printers.pp_const cst; assert false)
|
94
|
|
95
|
let simplify_expr_offset m expr =
|
96
|
let rec simplify offset expr =
|
97
|
match offset, expr.value_desc with
|
98
|
| Field _ ::_ , _ -> failwith "not yet implemented"
|
99
|
| _ , Fun (id, vl) when Basic_library.is_value_internal_fun expr
|
100
|
-> mk_val (Fun (id, List.map (simplify offset) vl)) expr.value_type
|
101
|
| _ , Fun _
|
102
|
| _ , Var _ -> unfold_expr_offset m offset expr
|
103
|
| _ , Cst cst -> simplify_cst_expr m offset expr.value_type cst
|
104
|
| _ , Access (expr, i) -> simplify (Index (dimension_of_value i) :: offset) expr
|
105
|
| [] , _ -> expr
|
106
|
| Index _ :: q, Power (expr, _) -> simplify q expr
|
107
|
| Index i :: q, Array vl when Dimension.is_dimension_const i
|
108
|
-> simplify q (List.nth vl (Dimension.size_const_dimension i))
|
109
|
| Index i :: q, Array vl -> unfold_expr_offset m [Index i] (mk_val (Array (List.map (simplify q) vl)) expr.value_type)
|
110
|
(*Format.eprintf "simplify_expr %a %a = %a@." pp_val expr (Utils.fprintf_list ~sep:"" Printers.pp_offset) offset pp_val res; res)
|
111
|
with e -> (Format.eprintf "simplify_expr %a %a = <FAIL>@." pp_val expr (Utils.fprintf_list ~sep:"" Printers.pp_offset) offset; raise e*)
|
112
|
in simplify [] expr
|
113
|
|
114
|
let rec simplify_instr_offset m instr =
|
115
|
match get_instr_desc instr with
|
116
|
| MLocalAssign (v, expr) -> update_instr_desc instr (MLocalAssign (v, simplify_expr_offset m expr))
|
117
|
| MStateAssign (v, expr) -> update_instr_desc instr (MStateAssign (v, simplify_expr_offset m expr))
|
118
|
| MReset _ -> instr
|
119
|
| MNoReset _ -> instr
|
120
|
| MStep (outputs, id, inputs) -> update_instr_desc instr (MStep (outputs, id, List.map (simplify_expr_offset m) inputs))
|
121
|
| MBranch (cond, brl)
|
122
|
-> update_instr_desc instr (
|
123
|
MBranch(simplify_expr_offset m cond, List.map (fun (l, il) -> l, simplify_instrs_offset m il) brl)
|
124
|
)
|
125
|
| MSpec _ | MComment _ -> instr
|
126
|
|
127
|
and simplify_instrs_offset m instrs =
|
128
|
List.map (simplify_instr_offset m) instrs
|
129
|
|
130
|
let is_scalar_const c =
|
131
|
match c with
|
132
|
| Const_real _
|
133
|
| Const_int _
|
134
|
| Const_tag _ -> true
|
135
|
| _ -> false
|
136
|
|
137
|
(* An instruction v = expr may (and will) be unfolded iff:
|
138
|
- either expr is atomic
|
139
|
(no complex expressions, only const, vars and array/struct accesses)
|
140
|
- or v has a fanin <= 1 (used at most once)
|
141
|
*)
|
142
|
let is_unfoldable_expr fanin expr =
|
143
|
let rec unfold_const offset cst =
|
144
|
match offset, cst with
|
145
|
| _ , Const_int _
|
146
|
| _ , Const_real _
|
147
|
| _ , Const_tag _ -> true
|
148
|
| Field f :: q, Const_struct fl -> unfold_const q (List.assoc f fl)
|
149
|
| [] , Const_struct _ -> false
|
150
|
| Index i :: q, Const_array cl when Dimension.is_dimension_const i
|
151
|
-> unfold_const q (List.nth cl (Dimension.size_const_dimension i))
|
152
|
| _ , Const_array _ -> false
|
153
|
| _ -> assert false in
|
154
|
let rec unfold offset expr =
|
155
|
match offset, expr.value_desc with
|
156
|
| _ , Cst cst -> unfold_const offset cst
|
157
|
| _ , Var _ -> true
|
158
|
| [] , Power _
|
159
|
| [] , Array _ -> false
|
160
|
| Index _ :: q, Power (v, _) -> unfold q v
|
161
|
| Index i :: q, Array vl when Dimension.is_dimension_const i
|
162
|
-> unfold q (List.nth vl (Dimension.size_const_dimension i))
|
163
|
| _ , Array _ -> false
|
164
|
| _ , Access (v, i) -> unfold (Index (dimension_of_value i) :: offset) v
|
165
|
| _ , Fun (_, vl) when fanin < 2 && Basic_library.is_value_internal_fun expr
|
166
|
-> List.for_all (unfold offset) vl
|
167
|
| _ , Fun _ -> false
|
168
|
| _ -> assert false
|
169
|
in unfold [] expr
|
170
|
|
171
|
let basic_unfoldable_assign fanin v expr =
|
172
|
try
|
173
|
let d = Hashtbl.find fanin v.var_id
|
174
|
in is_unfoldable_expr d expr
|
175
|
with Not_found -> false
|
176
|
|
177
|
let unfoldable_assign fanin v expr =
|
178
|
(if !Options.mpfr then Mpfr.unfoldable_value expr else true)
|
179
|
&& basic_unfoldable_assign fanin v expr
|
180
|
|
181
|
let merge_elim elim1 elim2 =
|
182
|
let merge _ e1 e2 =
|
183
|
match e1, e2 with
|
184
|
| Some e1, Some e2 -> if e1 = e2 then Some e1 else None
|
185
|
| _ , Some e2 -> Some e2
|
186
|
| Some e1, _ -> Some e1
|
187
|
| _ -> None
|
188
|
in IMap.merge merge elim1 elim2
|
189
|
|
190
|
(* see if elim has to take in account the provided instr:
|
191
|
if so, update elim and return the remove flag,
|
192
|
otherwise, the expression should be kept and elim is left untouched *)
|
193
|
let rec instrs_unfold m fanin elim instrs =
|
194
|
let elim, rev_instrs =
|
195
|
List.fold_left (fun (elim, instrs) instr ->
|
196
|
(* each subexpression in instr that could be rewritten by the elim set is
|
197
|
rewritten *)
|
198
|
let instr = eliminate m (IMap.map fst elim) instr in
|
199
|
(* if instr is a simple local assign, then (a) elim is simplified with it (b) it
|
200
|
is stored as the elim set *)
|
201
|
instr_unfold m fanin instrs elim instr
|
202
|
) (elim, []) instrs
|
203
|
in elim, List.rev rev_instrs
|
204
|
|
205
|
and instr_unfold m fanin instrs (elim:(value_t * eq) IMap.t) instr =
|
206
|
(* Format.eprintf "SHOULD WE STORE THE EXPRESSION IN INSTR %a TO ELIMINATE IT@." pp_instr instr;*)
|
207
|
match get_instr_desc instr with
|
208
|
(* Simple cases*)
|
209
|
| MStep([v], id, vl) when Basic_library.is_value_internal_fun (mk_val (Fun (id, vl)) v.var_type)
|
210
|
-> instr_unfold m fanin instrs elim (update_instr_desc instr (MLocalAssign (v, mk_val (Fun (id, vl)) v.var_type)))
|
211
|
| MLocalAssign(v, expr) when not (is_clock_dec_type v.var_dec_type.ty_dec_desc) && unfoldable_assign fanin v expr
|
212
|
-> (* we don't eliminate clock definitions *)
|
213
|
let new_eq =
|
214
|
Corelang.mkeq
|
215
|
(desome instr.lustre_eq).eq_loc
|
216
|
([v.var_id], (desome instr.lustre_eq).eq_rhs)
|
217
|
in
|
218
|
(IMap.add v.var_id (expr, new_eq ) elim, instrs)
|
219
|
| MBranch(g, hl) when false
|
220
|
-> let elim_branches = List.map (fun (h, l) -> (h, instrs_unfold m fanin elim l)) hl in
|
221
|
let (elim, branches) =
|
222
|
List.fold_right
|
223
|
(fun (h, (e, l)) (elim, branches) -> (merge_elim elim e, (h, l)::branches))
|
224
|
elim_branches (elim, [])
|
225
|
in elim, ((update_instr_desc instr (MBranch (g, branches))) :: instrs)
|
226
|
| _
|
227
|
-> (elim, instr :: instrs)
|
228
|
(* default case, we keep the instruction and do not modify elim *)
|
229
|
|
230
|
|
231
|
(** We iterate in the order, recording simple local assigns in an accumulator
|
232
|
1. each expression is rewritten according to the accumulator
|
233
|
2. local assigns then rewrite occurrences of the lhs in the computed accumulator
|
234
|
*)
|
235
|
|
236
|
let static_call_unfold elim (inst, (n, args)) =
|
237
|
let replace v =
|
238
|
try
|
239
|
dimension_of_value (IMap.find v elim)
|
240
|
with Not_found -> Dimension.mkdim_ident Location.dummy_loc v
|
241
|
in (inst, (n, List.map (Dimension.expr_replace_expr replace) args))
|
242
|
|
243
|
(** Perform optimization on machine code:
|
244
|
- iterate through step instructions and remove simple local assigns
|
245
|
|
246
|
*)
|
247
|
let machine_unfold fanin elim machine =
|
248
|
Log.report ~level:3 (fun fmt -> Format.fprintf fmt "machine_unfold %s %a@ "
|
249
|
machine.mname.node_id (pp_elim machine) (IMap.map fst elim));
|
250
|
let elim_consts, mconst = instrs_unfold machine fanin elim machine.mconst in
|
251
|
let elim_vars, instrs = instrs_unfold machine fanin elim_consts machine.mstep.step_instrs in
|
252
|
let instrs = simplify_instrs_offset machine instrs in
|
253
|
let checks = List.map
|
254
|
(fun (loc, check) ->
|
255
|
loc,
|
256
|
eliminate_expr machine (IMap.map fst elim_vars) check
|
257
|
) machine.mstep.step_checks
|
258
|
in
|
259
|
let locals = List.filter (fun v -> not (IMap.mem v.var_id elim_vars)) machine.mstep.step_locals in
|
260
|
let elim_consts = IMap.map fst elim_consts in
|
261
|
let minstances = List.map (static_call_unfold elim_consts) machine.minstances in
|
262
|
let mcalls = List.map (static_call_unfold elim_consts) machine.mcalls
|
263
|
in
|
264
|
{
|
265
|
machine with
|
266
|
mstep = {
|
267
|
machine.mstep with
|
268
|
step_locals = locals;
|
269
|
step_instrs = instrs;
|
270
|
step_checks = checks
|
271
|
};
|
272
|
mconst = mconst;
|
273
|
minstances = minstances;
|
274
|
mcalls = mcalls;
|
275
|
},
|
276
|
elim_vars
|
277
|
|
278
|
let instr_of_const top_const =
|
279
|
let const = const_of_top top_const in
|
280
|
let loc = const.const_loc in
|
281
|
let id = const.const_id in
|
282
|
let vdecl = mkvar_decl loc (id, mktyp Location.dummy_loc Tydec_any, mkclock loc Ckdec_any, true, None, None) in
|
283
|
let vdecl = { vdecl with var_type = const.const_type } in
|
284
|
let lustre_eq = mkeq loc ([const.const_id], mkexpr loc (Expr_const const.const_value)) in
|
285
|
mkinstr
|
286
|
~lustre_eq
|
287
|
True
|
288
|
(MLocalAssign (vdecl, mk_val (Cst const.const_value) vdecl.var_type))
|
289
|
|
290
|
(* We do not perform this optimization on contract nodes since there
|
291
|
is not explicit dependence btw variables and their use in
|
292
|
contracts. *)
|
293
|
let machines_unfold consts node_schs machines =
|
294
|
List.fold_right (fun m (machines, removed) ->
|
295
|
let is_contract = match m.mspec.mnode_spec with
|
296
|
| Some (Contract _) -> true
|
297
|
| _ -> false in
|
298
|
if is_contract then
|
299
|
m :: machines, removed
|
300
|
else
|
301
|
let fanin = (IMap.find m.mname.node_id node_schs).Scheduling_type.fanin_table in
|
302
|
let elim_consts, _ = instrs_unfold m fanin IMap.empty (List.map instr_of_const consts) in
|
303
|
let (m, removed_m) = machine_unfold fanin elim_consts m in
|
304
|
(m::machines, IMap.add m.mname.node_id removed_m removed)
|
305
|
)
|
306
|
machines
|
307
|
([], IMap.empty)
|
308
|
|
309
|
let get_assign_lhs instr =
|
310
|
match get_instr_desc instr with
|
311
|
| MLocalAssign(v, e) -> mk_val (Var v) e.value_type
|
312
|
| MStateAssign(v, e) -> mk_val (Var v) e.value_type
|
313
|
| _ -> assert false
|
314
|
|
315
|
let get_assign_rhs instr =
|
316
|
match get_instr_desc instr with
|
317
|
| MLocalAssign(_, e)
|
318
|
| MStateAssign(_, e) -> e
|
319
|
| _ -> assert false
|
320
|
|
321
|
let is_assign instr =
|
322
|
match get_instr_desc instr with
|
323
|
| MLocalAssign _
|
324
|
| MStateAssign _ -> true
|
325
|
| _ -> false
|
326
|
|
327
|
let mk_assign m v e =
|
328
|
match v.value_desc with
|
329
|
| Var v -> if is_memory m v then MStateAssign(v, e) else MLocalAssign(v, e)
|
330
|
| _ -> assert false
|
331
|
|
332
|
let rec assigns_instr instr assign =
|
333
|
match get_instr_desc instr with
|
334
|
| MLocalAssign (i,_)
|
335
|
| MStateAssign (i,_) -> VSet.add i assign
|
336
|
| MStep (ol, _, _) -> List.fold_right VSet.add ol assign
|
337
|
| MBranch (_,hl) -> List.fold_right (fun (_, il) -> assigns_instrs il) hl assign
|
338
|
| _ -> assign
|
339
|
|
340
|
and assigns_instrs instrs assign =
|
341
|
List.fold_left (fun assign instr -> assigns_instr instr assign) assign instrs
|
342
|
|
343
|
(*
|
344
|
and substitute_expr subst expr =
|
345
|
match expr with
|
346
|
| Var v -> (try IMap.find expr subst with Not_found -> expr)
|
347
|
| Fun (id, vl) -> Fun (id, List.map (substitute_expr subst) vl)
|
348
|
| Array(vl) -> Array(List.map (substitute_expr subst) vl)
|
349
|
| Access(v1, v2) -> Access(substitute_expr subst v1, substitute_expr subst v2)
|
350
|
| Power(v1, v2) -> Power(substitute_expr subst v1, substitute_expr subst v2)
|
351
|
| Cst _ -> expr
|
352
|
*)
|
353
|
(** Finds a substitute for [instr] in [instrs],
|
354
|
i.e. another instr' with the same rhs expression.
|
355
|
Then substitute this expression with the first assigned var
|
356
|
*)
|
357
|
let subst_instr m subst instrs instr =
|
358
|
(* Format.eprintf "subst instr: %a@." (pp_instr m) instr; *)
|
359
|
let instr = eliminate m subst instr in
|
360
|
let instr_v = get_assign_lhs instr in
|
361
|
let instr_e = get_assign_rhs instr in
|
362
|
try
|
363
|
(* Searching for equivalent asssign *)
|
364
|
let instr' = List.find (fun instr' -> is_assign instr' &&
|
365
|
get_assign_rhs instr' = instr_e) instrs in
|
366
|
(* Registering the instr_v as instr'_v while replacing *)
|
367
|
match instr_v.value_desc with
|
368
|
| Var v ->
|
369
|
let instr'_v = get_assign_lhs instr' in
|
370
|
if not (is_memory m v) then
|
371
|
(* The current instruction defines a local variables, ie not
|
372
|
memory, we can just record the relationship and continue
|
373
|
*)
|
374
|
IMap.add v.var_id instr'_v subst, instrs
|
375
|
else (
|
376
|
(* The current instruction defines a memory. We need to keep
|
377
|
the definition, simplified *)
|
378
|
(match instr'_v.value_desc with
|
379
|
| Var v' ->
|
380
|
if not (is_memory m v') then
|
381
|
(* We define v' = v. Don't need to update the records. *)
|
382
|
let instr = eliminate m subst (update_instr_desc instr (mk_assign m instr_v instr'_v)) in
|
383
|
subst, instr :: instrs
|
384
|
else ( (* Last case, v', the lhs of the previous similar
|
385
|
definition is, itself, a memory *)
|
386
|
|
387
|
(* TODO regarder avec X. Il me semble qu'on peut faire plus simple: *)
|
388
|
(* Filtering out the list of instructions:
|
389
|
- we copy in the same order the list of instr in instrs (fold_right)
|
390
|
- if the current instr is this instr' then apply
|
391
|
the elimination with v' -> v on instr' before recording it as an instruction.
|
392
|
*)
|
393
|
let subst_v' = IMap.add v'.var_id instr_v IMap.empty in
|
394
|
let instrs' =
|
395
|
snd
|
396
|
(List.fold_right
|
397
|
(fun instr (ok, instrs) ->
|
398
|
(ok || instr = instr',
|
399
|
if ok then
|
400
|
instr :: instrs
|
401
|
else
|
402
|
if instr = instr' then
|
403
|
instrs
|
404
|
else
|
405
|
eliminate m subst_v' instr :: instrs))
|
406
|
instrs (false, []))
|
407
|
in
|
408
|
IMap.add v'.var_id instr_v subst, instr :: instrs'
|
409
|
)
|
410
|
| _ -> assert false)
|
411
|
)
|
412
|
| _ -> assert false
|
413
|
|
414
|
with Not_found ->
|
415
|
(* No such equivalent expr: keeping the definition *)
|
416
|
subst, instr :: instrs
|
417
|
|
418
|
(** Common sub-expression elimination for machine instructions *)
|
419
|
(* - [subst] : hashtable from ident to (simple) definition
|
420
|
it is an equivalence table
|
421
|
- [elim] : set of eliminated variables
|
422
|
- [instrs] : previous instructions, which [instr] is compared against
|
423
|
- [instr] : current instruction, normalized by [subst]
|
424
|
*)
|
425
|
let rec instr_cse m (subst, instrs) instr =
|
426
|
match get_instr_desc instr with
|
427
|
(* Simple cases*)
|
428
|
| MStep([v], id, vl) when Basic_library.is_internal_fun id (List.map (fun v -> v.value_type) vl)
|
429
|
-> instr_cse m (subst, instrs) (update_instr_desc instr (MLocalAssign (v, mk_val (Fun (id, vl)) v.var_type)))
|
430
|
| MLocalAssign(v, expr) when is_unfoldable_expr 2 expr
|
431
|
-> (IMap.add v.var_id expr subst, instr :: instrs)
|
432
|
| _ when is_assign instr
|
433
|
-> subst_instr m subst instrs instr
|
434
|
| _ -> (subst, instr :: instrs)
|
435
|
|
436
|
(** Apply common sub-expression elimination to a sequence of instrs
|
437
|
*)
|
438
|
let instrs_cse m subst instrs =
|
439
|
let subst, rev_instrs =
|
440
|
List.fold_left (instr_cse m) (subst, []) instrs
|
441
|
in subst, List.rev rev_instrs
|
442
|
|
443
|
(** Apply common sub-expression elimination to a machine
|
444
|
- iterate through step instructions and remove simple local assigns
|
445
|
*)
|
446
|
let machine_cse subst machine =
|
447
|
(*Log.report ~level:1 (fun fmt -> Format.fprintf fmt "machine_cse %a@." pp_elim subst);*)
|
448
|
let _, instrs = instrs_cse machine subst machine.mstep.step_instrs in
|
449
|
let assigned = assigns_instrs instrs VSet.empty
|
450
|
in
|
451
|
{
|
452
|
machine with
|
453
|
mmemory = List.filter (fun vdecl -> VSet.mem vdecl assigned) machine.mmemory;
|
454
|
mstep = {
|
455
|
machine.mstep with
|
456
|
step_locals = List.filter (fun vdecl -> VSet.mem vdecl assigned) machine.mstep.step_locals;
|
457
|
step_instrs = instrs
|
458
|
}
|
459
|
}
|
460
|
|
461
|
let machines_cse machines =
|
462
|
List.map
|
463
|
(machine_cse IMap.empty)
|
464
|
machines
|
465
|
|
466
|
(* variable substitution for optimizing purposes *)
|
467
|
|
468
|
(* checks whether an [instr] is skip and can be removed from program *)
|
469
|
let rec instr_is_skip instr =
|
470
|
match get_instr_desc instr with
|
471
|
| MLocalAssign (i, { value_desc = (Var v) ; _}) when i = v -> true
|
472
|
| MStateAssign (i, { value_desc = Var v; _}) when i = v -> true
|
473
|
| MBranch (_, hl) -> List.for_all (fun (_, il) -> instrs_are_skip il) hl
|
474
|
| _ -> false
|
475
|
and instrs_are_skip instrs =
|
476
|
List.for_all instr_is_skip instrs
|
477
|
|
478
|
let instr_cons instr cont =
|
479
|
if instr_is_skip instr then cont else instr::cont
|
480
|
|
481
|
let rec instr_remove_skip instr cont =
|
482
|
match get_instr_desc instr with
|
483
|
| MLocalAssign (i, { value_desc = Var v; _ }) when i = v -> cont
|
484
|
| MStateAssign (i, { value_desc = Var v; _ }) when i = v -> cont
|
485
|
| MBranch (g, hl) -> update_instr_desc instr (MBranch (g, List.map (fun (h, il) -> (h, instrs_remove_skip il [])) hl)) :: cont
|
486
|
| _ -> instr::cont
|
487
|
|
488
|
and instrs_remove_skip instrs cont =
|
489
|
List.fold_right instr_remove_skip instrs cont
|
490
|
|
491
|
let rec value_replace_var fvar value =
|
492
|
match value.value_desc with
|
493
|
| Cst _ -> value
|
494
|
| Var v -> { value with value_desc = Var (fvar v) }
|
495
|
| Fun (id, args) -> { value with value_desc = Fun (id, List.map (value_replace_var fvar) args) }
|
496
|
| Array vl -> { value with value_desc = Array (List.map (value_replace_var fvar) vl)}
|
497
|
| Access (t, i) -> { value with value_desc = Access(value_replace_var fvar t, i)}
|
498
|
| Power (v, n) -> { value with value_desc = Power(value_replace_var fvar v, n)}
|
499
|
|
500
|
let rec instr_replace_var fvar instr cont =
|
501
|
match get_instr_desc instr with
|
502
|
| MSpec _ | MComment _ -> instr_cons instr cont
|
503
|
| MLocalAssign (i, v) -> instr_cons (update_instr_desc instr (MLocalAssign (fvar i, value_replace_var fvar v))) cont
|
504
|
| MStateAssign (i, v) -> instr_cons (update_instr_desc instr (MStateAssign (i, value_replace_var fvar v))) cont
|
505
|
| MReset _ -> instr_cons instr cont
|
506
|
| MNoReset _ -> instr_cons instr cont
|
507
|
| MStep (il, i, vl) -> instr_cons (update_instr_desc instr (MStep (List.map fvar il, i, List.map (value_replace_var fvar) vl))) cont
|
508
|
| MBranch (g, hl) -> instr_cons (update_instr_desc instr (MBranch (value_replace_var fvar g, List.map (fun (h, il) -> (h, instrs_replace_var fvar il [])) hl))) cont
|
509
|
|
510
|
and instrs_replace_var fvar instrs cont =
|
511
|
List.fold_right (instr_replace_var fvar) instrs cont
|
512
|
|
513
|
let step_replace_var fvar step =
|
514
|
(* Some outputs may have been replaced by locals.
|
515
|
We then need to rename those outputs
|
516
|
without changing their clocks, etc *)
|
517
|
let outputs' =
|
518
|
List.map (fun o -> { o with var_id = (fvar o).var_id }) step.step_outputs in
|
519
|
let locals' =
|
520
|
List.fold_left (fun res l ->
|
521
|
let l' = fvar l in
|
522
|
if List.exists (fun o -> o.var_id = l'.var_id) outputs'
|
523
|
then res
|
524
|
else Utils.add_cons l' res)
|
525
|
[] step.step_locals in
|
526
|
{ step with
|
527
|
step_checks = List.map (fun (l, v) -> (l, value_replace_var fvar v)) step.step_checks;
|
528
|
step_outputs = outputs';
|
529
|
step_locals = locals';
|
530
|
step_instrs = instrs_replace_var fvar step.step_instrs [];
|
531
|
}
|
532
|
|
533
|
let machine_replace_variables fvar m =
|
534
|
{ m with
|
535
|
mstep = step_replace_var fvar m.mstep
|
536
|
}
|
537
|
|
538
|
let machine_reuse_variables m reuse =
|
539
|
let fvar v =
|
540
|
try
|
541
|
Hashtbl.find reuse v.var_id
|
542
|
with Not_found -> v in
|
543
|
machine_replace_variables fvar m
|
544
|
|
545
|
let machines_reuse_variables prog reuse_tables =
|
546
|
List.map
|
547
|
(fun m ->
|
548
|
machine_reuse_variables m (Utils.IMap.find m.mname.node_id reuse_tables)
|
549
|
) prog
|
550
|
|
551
|
let rec instr_assign res instr =
|
552
|
match get_instr_desc instr with
|
553
|
| MLocalAssign (i, _) -> Disjunction.CISet.add i res
|
554
|
| MStateAssign (i, _) -> Disjunction.CISet.add i res
|
555
|
| MBranch (_, hl) -> List.fold_left (fun res (_, b) -> instrs_assign res b) res hl
|
556
|
| MStep (il, _, _) -> List.fold_right Disjunction.CISet.add il res
|
557
|
| _ -> res
|
558
|
|
559
|
and instrs_assign res instrs =
|
560
|
List.fold_left instr_assign res instrs
|
561
|
|
562
|
let rec instr_constant_assign var instr =
|
563
|
match get_instr_desc instr with
|
564
|
| MLocalAssign (i, { value_desc = Cst (Const_tag _); _ })
|
565
|
| MStateAssign (i, { value_desc = Cst (Const_tag _); _ }) -> i = var
|
566
|
| MBranch (_, hl) -> List.for_all (fun (_, b) -> instrs_constant_assign var b) hl
|
567
|
| _ -> false
|
568
|
|
569
|
and instrs_constant_assign var instrs =
|
570
|
List.fold_left (fun res i -> if Disjunction.CISet.mem var (instr_assign Disjunction.CISet.empty i) then instr_constant_assign var i else res) false instrs
|
571
|
|
572
|
let rec instr_reduce branches instr1 cont =
|
573
|
match get_instr_desc instr1 with
|
574
|
| MLocalAssign (_, { value_desc = Cst (Const_tag c); _}) -> instr1 :: (List.assoc c branches @ cont)
|
575
|
| MStateAssign (_, { value_desc = Cst (Const_tag c); _}) -> instr1 :: (List.assoc c branches @ cont)
|
576
|
| MBranch (g, hl) -> (update_instr_desc instr1 (MBranch (g, List.map (fun (h, b) -> (h, instrs_reduce branches b [])) hl))) :: cont
|
577
|
| _ -> instr1 :: cont
|
578
|
|
579
|
and instrs_reduce branches instrs cont =
|
580
|
match instrs with
|
581
|
| [] -> cont
|
582
|
| [i] -> instr_reduce branches i cont
|
583
|
| i1::i2::q -> i1 :: instrs_reduce branches (i2::q) cont
|
584
|
|
585
|
let rec instrs_fusion instrs =
|
586
|
match instrs, List.map get_instr_desc instrs with
|
587
|
| [], []
|
588
|
| [_], [_] ->
|
589
|
instrs
|
590
|
| i1::_::q, _::(MBranch ({ value_desc = Var v; _}, hl))::_ when instr_constant_assign v i1 ->
|
591
|
instr_reduce (List.map (fun (h, b) -> h, instrs_fusion b) hl) i1 (instrs_fusion q)
|
592
|
| i1::i2::q, _ ->
|
593
|
i1 :: instrs_fusion (i2::q)
|
594
|
| _ -> assert false (* Other cases should not happen since both lists are of same size *)
|
595
|
|
596
|
let step_fusion step =
|
597
|
{ step with
|
598
|
step_instrs = instrs_fusion step.step_instrs;
|
599
|
}
|
600
|
|
601
|
let machine_fusion m =
|
602
|
{ m with
|
603
|
mstep = step_fusion m.mstep
|
604
|
}
|
605
|
|
606
|
let machines_fusion prog =
|
607
|
List.map machine_fusion prog
|
608
|
|
609
|
|
610
|
(* Additional function to modify the prog according to removed variables map *)
|
611
|
|
612
|
let elim_prog_variables prog removed_table =
|
613
|
List.map (
|
614
|
fun t ->
|
615
|
match t.top_decl_desc with
|
616
|
Node nd ->
|
617
|
if IMap.mem nd.node_id removed_table then
|
618
|
let nd_elim_map = IMap.find nd.node_id removed_table in
|
619
|
(* Iterating through the elim map to compute
|
620
|
- the list of variables to remove
|
621
|
- the associated list of lustre definitions x = expr to
|
622
|
be used when removing these variables *)
|
623
|
let vars_to_replace, defs = (* Recovering vid from node locals *)
|
624
|
IMap.fold (fun v (_,eq) (accu_locals, accu_defs) ->
|
625
|
let locals =
|
626
|
try
|
627
|
(List.find (fun v' -> v'.var_id = v) nd.node_locals)::accu_locals
|
628
|
with Not_found -> accu_locals (* Variable v shall
|
629
|
be a global
|
630
|
constant, we do no
|
631
|
need to eliminate
|
632
|
it from the locals
|
633
|
*)
|
634
|
in
|
635
|
(* xxx let new_eq = { eq_lhs = [v]; eq_rhs = e; eq_loc = e.expr_loc } in *)
|
636
|
let defs = eq::accu_defs in
|
637
|
locals, defs
|
638
|
) nd_elim_map ([], [])
|
639
|
in
|
640
|
|
641
|
let new_locals, new_stmts =
|
642
|
List.fold_right (fun stmt (locals, res_stmts) ->
|
643
|
match stmt with
|
644
|
Aut _ -> assert false (* should be processed by now *)
|
645
|
| Eq eq -> (
|
646
|
match eq.eq_lhs with
|
647
|
| [] -> assert false (* shall not happen *)
|
648
|
| _::_::_ ->
|
649
|
(* When more than one lhs we just keep the
|
650
|
equation and do not delete it *)
|
651
|
let eq_rhs' = substitute_expr vars_to_replace defs eq.eq_rhs in
|
652
|
locals, (Eq { eq with eq_rhs = eq_rhs' })::res_stmts
|
653
|
| [lhs] ->
|
654
|
if List.exists (fun v -> v.var_id = lhs) vars_to_replace then
|
655
|
(* We remove the def *)
|
656
|
List.filter (fun l -> l.var_id != lhs) locals,
|
657
|
res_stmts
|
658
|
else (* We keep it but modify any use of an eliminatend var *)
|
659
|
let eq_rhs' = substitute_expr vars_to_replace defs eq.eq_rhs in
|
660
|
locals,
|
661
|
(Eq { eq with eq_rhs = eq_rhs' })::res_stmts
|
662
|
|
663
|
)
|
664
|
) nd.node_stmts (nd.node_locals,[])
|
665
|
in
|
666
|
let nd' = { nd with
|
667
|
node_locals = new_locals;
|
668
|
node_stmts = new_stmts;
|
669
|
}
|
670
|
in
|
671
|
{ t with top_decl_desc = Node nd' }
|
672
|
else
|
673
|
t
|
674
|
| _ -> t
|
675
|
) prog
|
676
|
|
677
|
(*** Main function ***)
|
678
|
|
679
|
(*
|
680
|
This functions produces an optimzed prog * machines
|
681
|
It
|
682
|
1- eliminates common sub-expressions (TODO how is this different from normalization?)
|
683
|
2- inline constants and eliminate duplicated variables
|
684
|
3- try to reuse variables whenever possible
|
685
|
|
686
|
When item (2) identified eliminated variables, the initial prog is modified, its normalized recomputed, as well as its scheduling, before regenerating the machines.
|
687
|
|
688
|
The function returns both the (possibly updated) prog as well as the machines
|
689
|
|
690
|
|
691
|
*)
|
692
|
let optimize params prog node_schs machine_code =
|
693
|
let machine_code =
|
694
|
if !Options.optimization >= 4 (* && !Options.output <> "horn" *) then begin
|
695
|
Log.report ~level:1
|
696
|
(fun fmt -> Format.fprintf fmt "@ @[<v 2>.. machines optimization: sub-expression elimination@ ");
|
697
|
let machine_code = machines_cse machine_code in
|
698
|
Log.report ~level:3 (fun fmt -> Format.fprintf fmt "@[<v 2>.. generated machines (sub-expr elim):@ %a@]@ "
|
699
|
pp_machines machine_code);
|
700
|
Log.report ~level:1 (fun fmt -> Format.fprintf fmt "@]");
|
701
|
machine_code
|
702
|
end else
|
703
|
machine_code
|
704
|
in
|
705
|
(* Optimize machine code *)
|
706
|
let prog, machine_code, removed_table =
|
707
|
if !Options.optimization >= 2
|
708
|
&& !Options.output <> "emf" (*&& !Options.output <> "horn"*)
|
709
|
then begin
|
710
|
Log.report ~level:1
|
711
|
(fun fmt ->
|
712
|
Format.fprintf fmt
|
713
|
"@ @[<v 2>.. machines optimization: const. inlining (partial eval. with const)@ ");
|
714
|
let machine_code, removed_table =
|
715
|
machines_unfold (Corelang.get_consts prog) node_schs machine_code in
|
716
|
Log.report ~level:3
|
717
|
(fun fmt ->
|
718
|
Format.fprintf fmt "@ Eliminated flows: %a@ "
|
719
|
(pp_imap (fun fmt m -> pp_elim empty_machine fmt (IMap.map fst m))) removed_table);
|
720
|
Log.report ~level:3
|
721
|
(fun fmt ->
|
722
|
Format.fprintf fmt
|
723
|
"@ @[<v 2>.. generated machines (const inlining):@ %a@]@ "
|
724
|
pp_machines machine_code);
|
725
|
(* If variables were eliminated, relaunch the
|
726
|
normalization/machine generation *)
|
727
|
let prog, machine_code, removed_table =
|
728
|
if IMap.is_empty removed_table then
|
729
|
(* stopping here, no need to reupdate the prog *)
|
730
|
prog, machine_code, removed_table
|
731
|
else (
|
732
|
let prog = elim_prog_variables prog removed_table in
|
733
|
(* Mini stage1 *)
|
734
|
let prog = Normalization.normalize_prog params prog in
|
735
|
let prog = SortProg.sort_nodes_locals prog in
|
736
|
(* Mini stage2: note that we do not protect against
|
737
|
alg. loop since this should have been handled before *)
|
738
|
let prog, node_schs = Scheduling.schedule_prog prog in
|
739
|
let machine_code = Machine_code.translate_prog prog node_schs in
|
740
|
(* Mini stage2 machine optimiation *)
|
741
|
let machine_code, removed_table =
|
742
|
machines_unfold (Corelang.get_consts prog) node_schs machine_code in
|
743
|
prog, machine_code, removed_table
|
744
|
)
|
745
|
in
|
746
|
Log.report ~level:1 (fun fmt -> Format.fprintf fmt "@]");
|
747
|
prog, machine_code, removed_table
|
748
|
|
749
|
end else
|
750
|
prog, machine_code, IMap.empty
|
751
|
in
|
752
|
(* Optimize machine code *)
|
753
|
let machine_code =
|
754
|
if !Options.optimization >= 3 && not (Backends.is_functional ()) then
|
755
|
begin
|
756
|
Log.report ~level:1 (fun fmt -> Format.fprintf fmt ".. machines optimization: minimize stack usage by reusing variables@,");
|
757
|
let node_schs = Scheduling.remove_prog_inlined_locals removed_table node_schs in
|
758
|
let reuse_tables = Scheduling.compute_prog_reuse_table node_schs in
|
759
|
machines_fusion (machines_reuse_variables machine_code reuse_tables)
|
760
|
end
|
761
|
else
|
762
|
machine_code
|
763
|
in
|
764
|
|
765
|
|
766
|
prog, List.rev machine_code
|
767
|
|
768
|
|
769
|
(* Local Variables: *)
|
770
|
(* compile-command:"make -C .." *)
|
771
|
(* End: *)
|