1
|
(* ---------------------------------------------------------- *)
|
2
|
(* --- Instance of 'Pre-condition (file oversampling0_4.c, line 138) in 'f_reset'' in 'g_reset' at call 'f_reset' (file oversampling0_4.c, line 321)
|
3
|
--- *)
|
4
|
(* ---------------------------------------------------------- *)
|
5
|
Require Import ZArith.
|
6
|
Require Import Reals.
|
7
|
Require Import BuiltIn.
|
8
|
Require Import bool.Bool.
|
9
|
Require Import int.Int.
|
10
|
Require Import int.Abs.
|
11
|
Require Import int.ComputerDivision.
|
12
|
Require Import real.Real.
|
13
|
Require Import real.RealInfix.
|
14
|
Require Import real.FromInt.
|
15
|
Require Import map.Map.
|
16
|
Require Import Qedlib.
|
17
|
Require Import Qed.
|
18
|
Require Import Memory.
|
19
|
|
20
|
Require Import Axiomatic.
|
21
|
Require Import Compound.
|
22
|
|
23
|
Goal
|
24
|
forall (t : array Z),
|
25
|
forall (t_1 : farray addr addr),
|
26
|
forall (a : addr),
|
27
|
let a_1 := t_1.[ (shiftfield_F_g_mem_ni_1 a) ] in
|
28
|
let a_2 := t_1.[ (shiftfield_F_g_mem_ni_0 a) ] in
|
29
|
let a_3 := t_1.[ (shiftfield_F_f_mem_ni_2 a_2) ] in
|
30
|
((framed t_1)) ->
|
31
|
((linked t)) ->
|
32
|
((P_valid_g t t_1 a)) ->
|
33
|
((((region ((base a))%Z)) <= 0)%Z) ->
|
34
|
(a_1 <> a_3) ->
|
35
|
((separated a 3%Z a_2 2%Z)) ->
|
36
|
((separated a 3%Z a_1 1%Z)) ->
|
37
|
((separated a_2 2%Z a_1 1%Z)) ->
|
38
|
((separated a 3%Z a_3 1%Z)) ->
|
39
|
((separated a_2 2%Z a_3 1%Z)) ->
|
40
|
((P_valid_f t t_1 a_2)).
|
41
|
|
42
|
Proof.
|
43
|
auto with zarith.
|
44
|
Qed.
|
45
|
|