1

(*  *)

2

(*  Assertion (file oversampling0_4.c, line 161)  *)

3

(*  *)

4

Require Import ZArith.

5

Require Import Reals.

6

Require Import BuiltIn.

7

Require Import bool.Bool.

8

Require Import int.Int.

9

Require Import int.Abs.

10

Require Import int.ComputerDivision.

11

Require Import real.Real.

12

Require Import real.RealInfix.

13

Require Import real.FromInt.

14

Require Import map.Map.

15

Require Import Qedlib.

16

Require Import Qed.

17


18

Require Import Axiomatic.

19

Require Import S_f_mem_pack.

20

Require Import Memory.

21

Require Import Compound.

22

Require Import Cint.

23


24

Goal

25

forall (t : array Z),

26

forall (t_2 t_1 : farray addr Z),

27

forall (t_3 : farray addr addr),

28

forall (a_2 a_1 a : addr),

29

forall (f_1 f : S_f_mem_pack),

30

let a_3 := t_3.[ (shiftfield_F_f_mem_ni_2 a_2) ] in

31

(P_f_pack0) >

32

(a <> a_1) >

33

((IsS_f_mem_pack f)) >

34

((IsS_f_mem_pack f_1)) >

35

((framed t_3)) >

36

((linked t)) >

37

(a <> a_3) >

38

(a_1 <> a_3) >

39

((valid_rw t a 1%Z)) >

40

((valid_rw t a_1 1%Z)) >

41

((P_valid_f t t_3 a_2)) >

42

((((region ((base a))%Z)) <= 0)%Z) >

43

((((region ((base a_1))%Z)) <= 0)%Z) >

44

((((region ((base a_2))%Z)) <= 0)%Z) >

45

((separated a_2 2%Z a 1%Z)) >

46

((separated a_2 2%Z a_1 1%Z)) >

47

((P_f_pack2 t_3 t_2 f_1 a_2)) >

48

((separated a_2 2%Z a_3 1%Z)) >

49

((is_uint32

50

(t_1.[ (shiftfield_F__arrow_reg__first

51

((shiftfield_F__arrow_mem__reg a_3))) ])%Z)) >

52

(P_trans_fA).

53

