Project

General

Profile

Download (32.4 KB) Statistics
| Branch: | Tag: | Revision:
1
(********************************************************************)
2
(*                                                                  *)
3
(*  The LustreC compiler toolset   /  The LustreC Development Team  *)
4
(*  Copyright 2012 -    --   ONERA - CNRS - INPT                    *)
5
(*                                                                  *)
6
(*  LustreC is free software, distributed WITHOUT ANY WARRANTY      *)
7
(*  under the terms of the GNU Lesser General Public License        *)
8
(*  version 2.1.                                                    *)
9
(*                                                                  *)
10
(********************************************************************)
11

    
12
open Format
13
open LustreSpec
14
open Dimension
15

    
16

    
17
exception Error of Location.t * error
18

    
19
module VDeclModule =
20
struct (* Node module *)
21
  type t = var_decl
22
  let compare v1 v2 = compare v1.var_id v2.var_id
23
end
24

    
25
module VMap = Map.Make(VDeclModule)
26

    
27
module VSet = Set.Make(VDeclModule)
28

    
29
let dummy_type_dec = {ty_dec_desc=Tydec_any; ty_dec_loc=Location.dummy_loc}
30

    
31
let dummy_clock_dec = {ck_dec_desc=Ckdec_any; ck_dec_loc=Location.dummy_loc}
32

    
33

    
34

    
35
(************************************************************)
36
(* *)
37

    
38
let mktyp loc d =
39
  { ty_dec_desc = d; ty_dec_loc = loc }
40

    
41
let mkclock loc d =
42
  { ck_dec_desc = d; ck_dec_loc = loc }
43

    
44
let mkvar_decl loc ?(orig=false) (id, ty_dec, ck_dec, is_const) =
45
  { var_id = id;
46
    var_orig = orig;
47
    var_dec_type = ty_dec;
48
    var_dec_clock = ck_dec;
49
    var_dec_const = is_const;
50
    var_type = Types.new_var ();
51
    var_clock = Clocks.new_var true;
52
    var_loc = loc }
53

    
54
let mkexpr loc d =
55
  { expr_tag = Utils.new_tag ();
56
    expr_desc = d;
57
    expr_type = Types.new_var ();
58
    expr_clock = Clocks.new_var true;
59
    expr_delay = Delay.new_var ();
60
    expr_annot = None;
61
    expr_loc = loc }
62

    
63
let var_decl_of_const c =
64
  { var_id = c.const_id;
65
    var_orig = true;
66
    var_dec_type = { ty_dec_loc = c.const_loc; ty_dec_desc = Tydec_any };
67
    var_dec_clock = { ck_dec_loc = c.const_loc; ck_dec_desc = Ckdec_any };
68
    var_dec_const = true;
69
    var_type = c.const_type;
70
    var_clock = Clocks.new_var false;
71
    var_loc = c.const_loc }
72

    
73
let mk_new_name used id =
74
  let rec new_name name cpt =
75
    if used name
76
    then new_name (sprintf "_%s_%i" id cpt) (cpt+1)
77
    else name
78
  in new_name id 1
79

    
80
let mkeq loc (lhs, rhs) =
81
  { eq_lhs = lhs;
82
    eq_rhs = rhs;
83
    eq_loc = loc }
84

    
85
let mkassert loc expr =
86
  { assert_loc = loc;
87
    assert_expr = expr
88
  }
89

    
90
let mktop_decl loc own itf d =
91
  { top_decl_desc = d; top_decl_loc = loc; top_decl_owner = own; top_decl_itf = itf }
92

    
93
let mkpredef_call loc funname args =
94
  mkexpr loc (Expr_appl (funname, mkexpr loc (Expr_tuple args), None))
95

    
96

    
97
let const_of_top top_decl =
98
  match top_decl.top_decl_desc with
99
  | Const c -> c
100
  | _ -> assert false
101

    
102
let node_of_top top_decl =
103
  match top_decl.top_decl_desc with
104
  | Node nd -> nd
105
  | _ -> assert false
106

    
107
let imported_node_of_top top_decl =
108
  match top_decl.top_decl_desc with
109
  | ImportedNode ind -> ind
110
  | _ -> assert false
111

    
112
let typedef_of_top top_decl =
113
  match top_decl.top_decl_desc with
114
  | TypeDef tdef -> tdef
115
  | _ -> assert false
116

    
117
let dependency_of_top top_decl =
118
  match top_decl.top_decl_desc with
119
  | Open (local, dep) -> (local, dep)
120
  | _ -> assert false
121

    
122
let consts_of_enum_type top_decl =
123
  match top_decl.top_decl_desc with
124
  | TypeDef tdef ->
125
    (match tdef.tydef_desc with
126
     | Tydec_enum tags -> List.map (fun tag -> let cdecl = { const_id = tag; const_loc = top_decl.top_decl_loc; const_value = Const_tag tag; const_type = Type_predef.type_const tdef.tydef_id } in { top_decl with top_decl_desc = Const cdecl }) tags
127
     | _               -> [])
128
  | _ -> assert false
129

    
130
(************************************************************)
131
(*   Eexpr functions *)
132
(************************************************************)
133

    
134
let merge_node_annot ann1 ann2 =
135
  { requires = ann1.requires @ ann2.requires;
136
    ensures = ann1.ensures @ ann2.ensures;
137
    behaviors = ann1.behaviors @ ann2.behaviors;
138
    spec_loc = ann1.spec_loc
139
  }
140

    
141
let mkeexpr loc expr =
142
  { eexpr_tag = Utils.new_tag ();
143
    eexpr_qfexpr = expr;
144
    eexpr_quantifiers = [];
145
    eexpr_type = Types.new_var ();
146
    eexpr_clock = Clocks.new_var true;
147
    eexpr_normalized = None;
148
    eexpr_loc = loc }
149

    
150
let extend_eexpr q e = { e with eexpr_quantifiers = q@e.eexpr_quantifiers }
151

    
152
(*
153
let mkepredef_call loc funname args =
154
  mkeexpr loc (EExpr_appl (funname, mkeexpr loc (EExpr_tuple args), None))
155

    
156
let mkepredef_unary_call loc funname arg =
157
  mkeexpr loc (EExpr_appl (funname, arg, None))
158
*)
159

    
160
let merge_expr_annot ann1 ann2 =
161
  match ann1, ann2 with
162
    | None, None -> assert false
163
    | Some _, None -> ann1
164
    | None, Some _ -> ann2
165
    | Some ann1, Some ann2 -> Some {
166
      annots = ann1.annots @ ann2.annots;
167
      annot_loc = ann1.annot_loc
168
    }
169

    
170
let update_expr_annot node_id e annot =
171
  List.iter (fun (key, _) -> 
172
    Annotations.add_expr_ann node_id e.expr_tag key
173
  ) annot.annots;
174
  { e with expr_annot = merge_expr_annot e.expr_annot (Some annot) }
175

    
176

    
177
(***********************************************************)
178
(* Fast access to nodes, by name *)
179
let (node_table : (ident, top_decl) Hashtbl.t) = Hashtbl.create 30
180
let consts_table = Hashtbl.create 30
181

    
182
let print_node_table fmt () =
183
  begin
184
    Format.fprintf fmt "{ /* node table */@.";
185
    Hashtbl.iter (fun id nd ->
186
      Format.fprintf fmt "%s |-> %a"
187
	id
188
	Printers.pp_short_decl nd
189
    ) node_table;
190
    Format.fprintf fmt "}@."
191
  end
192

    
193
let print_consts_table fmt () =
194
  begin
195
    Format.fprintf fmt "{ /* consts table */@.";
196
    Hashtbl.iter (fun id const ->
197
      Format.fprintf fmt "%s |-> %a"
198
	id
199
	Printers.pp_const_decl (const_of_top const)
200
    ) consts_table;
201
    Format.fprintf fmt "}@."
202
  end
203

    
204
let node_name td =
205
    match td.top_decl_desc with 
206
    | Node nd         -> nd.node_id
207
    | ImportedNode nd -> nd.nodei_id
208
    | _ -> assert false
209

    
210
let is_generic_node td =
211
  match td.top_decl_desc with 
212
  | Node nd         -> List.exists (fun v -> v.var_dec_const) nd.node_inputs
213
  | ImportedNode nd -> List.exists (fun v -> v.var_dec_const) nd.nodei_inputs
214
  | _ -> assert false
215

    
216
let node_inputs td =
217
  match td.top_decl_desc with 
218
  | Node nd         -> nd.node_inputs
219
  | ImportedNode nd -> nd.nodei_inputs
220
  | _ -> assert false
221

    
222
let node_from_name id =
223
  try
224
    Hashtbl.find node_table id
225
  with Not_found -> (Format.eprintf "Unable to find any node named %s@ @?" id;
226
		     assert false)
227

    
228
let is_imported_node td =
229
  match td.top_decl_desc with 
230
  | Node nd         -> false
231
  | ImportedNode nd -> true
232
  | _ -> assert false
233

    
234

    
235
(* alias and type definition table *)
236

    
237
let mktop = mktop_decl Location.dummy_loc Version.include_path false 
238

    
239
let top_int_type = mktop (TypeDef {tydef_id = "int"; tydef_desc = Tydec_int})
240
let top_bool_type = mktop (TypeDef {tydef_id = "bool"; tydef_desc = Tydec_bool})
241
let top_float_type = mktop (TypeDef {tydef_id = "float"; tydef_desc = Tydec_float})
242
let top_real_type = mktop (TypeDef {tydef_id = "real"; tydef_desc = Tydec_real})
243

    
244
let type_table =
245
  Utils.create_hashtable 20 [
246
    Tydec_int  , top_int_type;
247
    Tydec_bool , top_bool_type;
248
    Tydec_float, top_float_type;
249
    Tydec_real , top_real_type
250
  ]
251

    
252
let print_type_table fmt () =
253
  begin
254
    Format.fprintf fmt "{ /* type table */@.";
255
    Hashtbl.iter (fun tydec tdef ->
256
      Format.fprintf fmt "%a |-> %a"
257
	Printers.pp_var_type_dec_desc tydec
258
	Printers.pp_typedef (typedef_of_top tdef)
259
    ) type_table;
260
    Format.fprintf fmt "}@."
261
  end
262

    
263
let rec is_user_type typ =
264
  match typ with
265
  | Tydec_int | Tydec_bool | Tydec_real 
266
  | Tydec_float | Tydec_any | Tydec_const _ -> false
267
  | Tydec_clock typ' -> is_user_type typ'
268
  | _ -> true
269

    
270
let get_repr_type typ =
271
  let typ_def = (typedef_of_top (Hashtbl.find type_table typ)).tydef_desc in
272
  if is_user_type typ_def then typ else typ_def
273

    
274
let rec coretype_equal ty1 ty2 =
275
  let res =
276
  match ty1, ty2 with
277
  | Tydec_any           , _
278
  | _                   , Tydec_any             -> assert false
279
  | Tydec_const _       , Tydec_const _         -> get_repr_type ty1 = get_repr_type ty2
280
  | Tydec_const _       , _                     -> let ty1' = (typedef_of_top (Hashtbl.find type_table ty1)).tydef_desc
281
	       					   in (not (is_user_type ty1')) && coretype_equal ty1' ty2
282
  | _                   , Tydec_const _         -> coretype_equal ty2 ty1
283
  | Tydec_int           , Tydec_int
284
  | Tydec_real          , Tydec_real
285
  | Tydec_float         , Tydec_float
286
  | Tydec_bool          , Tydec_bool            -> true
287
  | Tydec_clock ty1     , Tydec_clock ty2       -> coretype_equal ty1 ty2
288
  | Tydec_array (d1,ty1), Tydec_array (d2, ty2) -> Dimension.is_eq_dimension d1 d2 && coretype_equal ty1 ty2
289
  | Tydec_enum tl1      , Tydec_enum tl2        -> List.sort compare tl1 = List.sort compare tl2
290
  | Tydec_struct fl1    , Tydec_struct fl2      ->
291
       List.length fl1 = List.length fl2
292
    && List.for_all2 (fun (f1, t1) (f2, t2) -> f1 = f2 && coretype_equal t1 t2)
293
      (List.sort (fun (f1,_) (f2,_) -> compare f1 f2) fl1)
294
      (List.sort (fun (f1,_) (f2,_) -> compare f1 f2) fl2)
295
  | _                                  -> false
296
  in ((*Format.eprintf "coretype_equal %a %a = %B@." Printers.pp_var_type_dec_desc ty1 Printers.pp_var_type_dec_desc ty2 res;*) res)
297

    
298
let tag_true = "true"
299
let tag_false = "false"
300

    
301
let const_is_bool c =
302
 match c with
303
 | Const_tag t -> t = tag_true || t = tag_false
304
 | _           -> false
305

    
306
(* Computes the negation of a boolean constant *)
307
let const_negation c =
308
  assert (const_is_bool c);
309
  match c with
310
  | Const_tag t when t = tag_true  -> Const_tag tag_false
311
  | _                              -> Const_tag tag_true
312

    
313
let const_or c1 c2 =
314
  assert (const_is_bool c1 && const_is_bool c2);
315
  match c1, c2 with
316
  | Const_tag t1, _            when t1 = tag_true -> c1
317
  | _           , Const_tag t2 when t2 = tag_true -> c2
318
  | _                                             -> Const_tag tag_false
319

    
320
let const_and c1 c2 =
321
  assert (const_is_bool c1 && const_is_bool c2);
322
  match c1, c2 with
323
  | Const_tag t1, _            when t1 = tag_false -> c1
324
  | _           , Const_tag t2 when t2 = tag_false -> c2
325
  | _                                              -> Const_tag tag_true
326

    
327
let const_xor c1 c2 =
328
  assert (const_is_bool c1 && const_is_bool c2);
329
   match c1, c2 with
330
  | Const_tag t1, Const_tag t2 when t1 <> t2  -> Const_tag tag_true
331
  | _                                         -> Const_tag tag_false
332

    
333
let const_impl c1 c2 =
334
  assert (const_is_bool c1 && const_is_bool c2);
335
  match c1, c2 with
336
  | Const_tag t1, _ when t1 = tag_false           -> Const_tag tag_true
337
  | _           , Const_tag t2 when t2 = tag_true -> Const_tag tag_true
338
  | _                                             -> Const_tag tag_false
339

    
340
(* To guarantee uniqueness of tags in enum types *)
341
let tag_table =
342
  Utils.create_hashtable 20 [
343
   tag_true, top_bool_type;
344
   tag_false, top_bool_type
345
  ]
346

    
347
(* To guarantee uniqueness of fields in struct types *)
348
let field_table =
349
  Utils.create_hashtable 20 [
350
  ]
351

    
352
let get_enum_type_tags cty =
353
(*Format.eprintf "get_enum_type_tags %a@." Printers.pp_var_type_dec_desc cty;*)
354
 match cty with
355
 | Tydec_bool    -> [tag_true; tag_false]
356
 | Tydec_const _ -> (match (typedef_of_top (Hashtbl.find type_table cty)).tydef_desc with
357
                     | Tydec_enum tl -> tl
358
                     | _             -> assert false)
359
 | _            -> assert false
360

    
361
let get_struct_type_fields cty =
362
 match cty with
363
 | Tydec_const _ -> (match (typedef_of_top (Hashtbl.find type_table cty)).tydef_desc with
364
                     | Tydec_struct fl -> fl
365
                     | _               -> assert false)
366
 | _            -> assert false
367

    
368
let const_of_bool b =
369
 Const_tag (if b then tag_true else tag_false)
370

    
371
(* let get_const c = snd (Hashtbl.find consts_table c) *)
372

    
373
let ident_of_expr expr =
374
 match expr.expr_desc with
375
 | Expr_ident id -> id
376
 | _             -> assert false
377

    
378
(* Caution, returns an untyped and unclocked expression *)
379
let expr_of_ident id loc =
380
  {expr_tag = Utils.new_tag ();
381
   expr_desc = Expr_ident id;
382
   expr_type = Types.new_var ();
383
   expr_clock = Clocks.new_var true;
384
   expr_delay = Delay.new_var ();
385
   expr_loc = loc;
386
   expr_annot = None}
387

    
388
let is_tuple_expr expr =
389
 match expr.expr_desc with
390
  | Expr_tuple _ -> true
391
  | _            -> false
392

    
393
let expr_list_of_expr expr =
394
  match expr.expr_desc with
395
  | Expr_tuple elist -> elist
396
  | _                -> [expr]
397

    
398
let expr_of_expr_list loc elist =
399
 match elist with
400
 | [t]  -> { t with expr_loc = loc }
401
 | t::_ ->
402
    let tlist = List.map (fun e -> e.expr_type) elist in
403
    let clist = List.map (fun e -> e.expr_clock) elist in
404
    { t with expr_desc = Expr_tuple elist;
405
	     expr_type = Type_predef.type_tuple tlist;
406
	     expr_clock = Clock_predef.ck_tuple clist;
407
	     expr_tag = Utils.new_tag ();
408
	     expr_loc = loc }
409
 | _    -> assert false
410

    
411
let call_of_expr expr =
412
 match expr.expr_desc with
413
 | Expr_appl (f, args, r) -> (f, expr_list_of_expr args, r)
414
 | _                      -> assert false
415

    
416
(* Conversion from dimension expr to standard expr, for the purpose of printing, typing, etc... *)
417
let rec expr_of_dimension dim =
418
 match dim.dim_desc with
419
 | Dbool b        ->
420
     mkexpr dim.dim_loc (Expr_const (const_of_bool b))
421
 | Dint i         ->
422
     mkexpr dim.dim_loc (Expr_const (Const_int i))
423
 | Dident id      ->
424
     mkexpr dim.dim_loc (Expr_ident id)
425
 | Dite (c, t, e) ->
426
     mkexpr dim.dim_loc (Expr_ite (expr_of_dimension c, expr_of_dimension t, expr_of_dimension e))
427
 | Dappl (id, args) ->
428
     mkexpr dim.dim_loc (Expr_appl (id, expr_of_expr_list dim.dim_loc (List.map expr_of_dimension args), None))
429
 | Dlink dim'       -> expr_of_dimension dim'
430
 | Dvar
431
 | Dunivar          -> (Format.eprintf "internal error: expr_of_dimension %a@." Dimension.pp_dimension dim;
432
			assert false)
433

    
434
let dimension_of_const loc const =
435
 match const with
436
 | Const_int i                                    -> mkdim_int loc i
437
 | Const_tag t when t = tag_true || t = tag_false -> mkdim_bool loc (t = tag_true)
438
 | _                                              -> raise InvalidDimension
439

    
440
(* Conversion from standard expr to dimension expr, for the purpose of injecting static call arguments 
441
   into dimension expressions *)
442
let rec dimension_of_expr expr =
443
  match expr.expr_desc with
444
  | Expr_const c  -> dimension_of_const expr.expr_loc c
445
  | Expr_ident id -> mkdim_ident expr.expr_loc id
446
  | Expr_appl (f, args, None) when Basic_library.is_internal_fun f ->
447
      let k = Types.get_static_value (Env.lookup_value Basic_library.type_env f) in
448
      if k = None then raise InvalidDimension;
449
      mkdim_appl expr.expr_loc f (List.map dimension_of_expr (expr_list_of_expr args))
450
  | Expr_ite (i, t, e)        ->
451
      mkdim_ite expr.expr_loc (dimension_of_expr i) (dimension_of_expr t) (dimension_of_expr e)
452
  | _ -> raise InvalidDimension (* not a simple dimension expression *)
453

    
454

    
455
let sort_handlers hl =
456
 List.sort (fun (t, _) (t', _) -> compare t t') hl
457

    
458
let rec is_eq_expr e1 e2 = match e1.expr_desc, e2.expr_desc with
459
  | Expr_const c1, Expr_const c2 -> c1 = c2
460
  | Expr_ident i1, Expr_ident i2 -> i1 = i2
461
  | Expr_array el1, Expr_array el2 
462
  | Expr_tuple el1, Expr_tuple el2 -> 
463
    List.length el1 = List.length el2 && List.for_all2 is_eq_expr el1 el2 
464
  | Expr_arrow (e1, e2), Expr_arrow (e1', e2') -> is_eq_expr e1 e1' && is_eq_expr e2 e2'
465
  | Expr_fby (e1,e2), Expr_fby (e1',e2') -> is_eq_expr e1 e1' && is_eq_expr e2 e2'
466
  | Expr_ite (i1, t1, e1), Expr_ite (i2, t2, e2) -> is_eq_expr i1 i2 && is_eq_expr t1 t2 && is_eq_expr e1 e2
467
  (* | Expr_concat (e1,e2), Expr_concat (e1',e2') -> is_eq_expr e1 e1' && is_eq_expr e2 e2' *)
468
  (* | Expr_tail e, Expr_tail e' -> is_eq_expr e e' *)
469
  | Expr_pre e, Expr_pre e' -> is_eq_expr e e'
470
  | Expr_when (e, i, l), Expr_when (e', i', l') -> l=l' && i=i' && is_eq_expr e e'
471
  | Expr_merge(i, hl), Expr_merge(i', hl') -> i=i' && List.for_all2 (fun (t, h) (t', h') -> t=t' && is_eq_expr h h') (sort_handlers hl) (sort_handlers hl')
472
  | Expr_appl (i, e, r), Expr_appl (i', e', r') -> i=i' && r=r' && is_eq_expr e e'
473
  | Expr_power (e1, i1), Expr_power (e2, i2)
474
  | Expr_access (e1, i1), Expr_access (e2, i2) -> is_eq_expr e1 e2 && is_eq_expr (expr_of_dimension i1) (expr_of_dimension i2)
475
  | _ -> false
476

    
477
let get_node_vars nd =
478
  nd.node_inputs @ nd.node_locals @ nd.node_outputs
479

    
480
let get_var id var_list =
481
    List.find (fun v -> v.var_id = id) var_list
482

    
483
let get_node_var id node =
484
  get_var id (get_node_vars node)
485

    
486
let get_node_eqs =
487
  let get_eqs stmts =
488
    List.fold_right
489
      (fun stmt res ->
490
	match stmt with
491
	| Eq eq -> eq :: res
492
	| Aut _ -> assert false)
493
      stmts
494
      [] in
495
  let table_eqs = Hashtbl.create 23 in
496
  (fun nd ->
497
    try
498
      let (old, res) = Hashtbl.find table_eqs nd.node_id
499
      in if old == nd.node_stmts then res else raise Not_found
500
    with Not_found -> 
501
      let res = get_eqs nd.node_stmts in
502
      begin
503
	Hashtbl.replace table_eqs nd.node_id (nd.node_stmts, res);
504
	res
505
      end)
506

    
507
let get_node_eq id node =
508
 List.find (fun eq -> List.mem id eq.eq_lhs) (get_node_eqs node)
509

    
510
let get_nodes prog = 
511
  List.fold_left (
512
    fun nodes decl ->
513
      match decl.top_decl_desc with
514
	| Node _ -> decl::nodes
515
	| Const _ | ImportedNode _ | Open _ | TypeDef _ -> nodes  
516
  ) [] prog
517

    
518
let get_imported_nodes prog = 
519
  List.fold_left (
520
    fun nodes decl ->
521
      match decl.top_decl_desc with
522
	| ImportedNode _ -> decl::nodes
523
	| Const _ | Node _ | Open _ | TypeDef _-> nodes  
524
  ) [] prog
525

    
526
let get_consts prog = 
527
  List.fold_right (
528
    fun decl consts ->
529
      match decl.top_decl_desc with
530
	| Const _ -> decl::consts
531
	| Node _ | ImportedNode _ | Open _ | TypeDef _ -> consts  
532
  ) prog []
533

    
534
let get_typedefs prog = 
535
  List.fold_right (
536
    fun decl types ->
537
      match decl.top_decl_desc with
538
	| TypeDef _ -> decl::types
539
	| Node _ | ImportedNode _ | Open _ | Const _ -> types  
540
  ) prog []
541

    
542
let get_dependencies prog =
543
  List.fold_right (
544
    fun decl deps ->
545
      match decl.top_decl_desc with
546
	| Open _ -> decl::deps
547
	| Node _ | ImportedNode _ | TypeDef _ | Const _ -> deps  
548
  ) prog []
549

    
550
let get_node_interface nd =
551
 {nodei_id = nd.node_id;
552
  nodei_type = nd.node_type;
553
  nodei_clock = nd.node_clock;
554
  nodei_inputs = nd.node_inputs;
555
  nodei_outputs = nd.node_outputs;
556
  nodei_stateless = nd.node_dec_stateless;
557
  nodei_spec = nd.node_spec;
558
  nodei_prototype = None;
559
  nodei_in_lib = None;
560
 }
561

    
562
(************************************************************************)
563
(*        Renaming                                                      *)
564

    
565
(* applies the renaming function [fvar] to all variables of expression [expr] *)
566
 let rec expr_replace_var fvar expr =
567
  { expr with expr_desc = expr_desc_replace_var fvar expr.expr_desc }
568

    
569
 and expr_desc_replace_var fvar expr_desc =
570
   match expr_desc with
571
   | Expr_const _ -> expr_desc
572
   | Expr_ident i -> Expr_ident (fvar i)
573
   | Expr_array el -> Expr_array (List.map (expr_replace_var fvar) el)
574
   | Expr_access (e1, d) -> Expr_access (expr_replace_var fvar e1, d)
575
   | Expr_power (e1, d) -> Expr_power (expr_replace_var fvar e1, d)
576
   | Expr_tuple el -> Expr_tuple (List.map (expr_replace_var fvar) el)
577
   | Expr_ite (c, t, e) -> Expr_ite (expr_replace_var fvar c, expr_replace_var fvar t, expr_replace_var fvar e)
578
   | Expr_arrow (e1, e2)-> Expr_arrow (expr_replace_var fvar e1, expr_replace_var fvar e2) 
579
   | Expr_fby (e1, e2) -> Expr_fby (expr_replace_var fvar e1, expr_replace_var fvar e2)
580
   | Expr_pre e' -> Expr_pre (expr_replace_var fvar e')
581
   | Expr_when (e', i, l)-> Expr_when (expr_replace_var fvar e', fvar i, l)
582
   | Expr_merge (i, hl) -> Expr_merge (fvar i, List.map (fun (t, h) -> (t, expr_replace_var fvar h)) hl)
583
   | Expr_appl (i, e', i') -> Expr_appl (i, expr_replace_var fvar e', Utils.option_map (expr_replace_var fvar) i')
584

    
585
(* Applies the renaming function [fvar] to every rhs
586
   only when the corresponding lhs satisfies predicate [pvar] *)
587
 let eq_replace_rhs_var pvar fvar eq =
588
   let pvar l = List.exists pvar l in
589
   let rec replace lhs rhs =
590
     { rhs with expr_desc = replace_desc lhs rhs.expr_desc }
591
   and replace_desc lhs rhs_desc =
592
     match lhs with
593
     | []  -> assert false
594
     | [_] -> if pvar lhs then expr_desc_replace_var fvar rhs_desc else rhs_desc
595
     | _   ->
596
       (match rhs_desc with
597
       | Expr_tuple tl ->
598
	 Expr_tuple (List.map2 (fun v e -> replace [v] e) lhs tl)
599
       | Expr_appl (f, arg, None) when Basic_library.is_internal_fun f ->
600
	 let args = expr_list_of_expr arg in
601
	 Expr_appl (f, expr_of_expr_list arg.expr_loc (List.map (replace lhs) args), None)
602
       | Expr_array _
603
       | Expr_access _
604
       | Expr_power _
605
       | Expr_const _
606
       | Expr_ident _
607
       | Expr_appl _   ->
608
	 if pvar lhs
609
	 then expr_desc_replace_var fvar rhs_desc
610
	 else rhs_desc
611
       | Expr_ite (c, t, e)   -> Expr_ite (replace lhs c, replace lhs t, replace lhs e)
612
       | Expr_arrow (e1, e2)  -> Expr_arrow (replace lhs e1, replace lhs e2) 
613
       | Expr_fby (e1, e2)    -> Expr_fby (replace lhs e1, replace lhs e2)
614
       | Expr_pre e'          -> Expr_pre (replace lhs e')
615
       | Expr_when (e', i, l) -> let i' = if pvar lhs then fvar i else i
616
				 in Expr_when (replace lhs e', i', l)
617
       | Expr_merge (i, hl)   -> let i' = if pvar lhs then fvar i else i
618
				 in Expr_merge (i', List.map (fun (t, h) -> (t, replace lhs h)) hl)
619
       )
620
   in { eq with eq_rhs = replace eq.eq_lhs eq.eq_rhs }
621

    
622

    
623
 let rec rename_expr  f_node f_var f_const expr =
624
   { expr with expr_desc = rename_expr_desc f_node f_var f_const expr.expr_desc }
625
 and rename_expr_desc f_node f_var f_const expr_desc =
626
   let re = rename_expr  f_node f_var f_const in
627
   match expr_desc with
628
   | Expr_const _ -> expr_desc
629
   | Expr_ident i -> Expr_ident (f_var i)
630
   | Expr_array el -> Expr_array (List.map re el)
631
   | Expr_access (e1, d) -> Expr_access (re e1, d)
632
   | Expr_power (e1, d) -> Expr_power (re e1, d)
633
   | Expr_tuple el -> Expr_tuple (List.map re el)
634
   | Expr_ite (c, t, e) -> Expr_ite (re c, re t, re e)
635
   | Expr_arrow (e1, e2)-> Expr_arrow (re e1, re e2) 
636
   | Expr_fby (e1, e2) -> Expr_fby (re e1, re e2)
637
   | Expr_pre e' -> Expr_pre (re e')
638
   | Expr_when (e', i, l)-> Expr_when (re e', f_var i, l)
639
   | Expr_merge (i, hl) -> 
640
     Expr_merge (f_var i, List.map (fun (t, h) -> (t, re h)) hl)
641
   | Expr_appl (i, e', i') -> 
642
     Expr_appl (f_node i, re e', Utils.option_map re i')
643
  
644
 let rename_node_annot f_node f_var f_const expr  =
645
   expr
646
 (* TODO assert false *)
647

    
648
 let rename_expr_annot f_node f_var f_const annot =
649
   annot
650
 (* TODO assert false *)
651

    
652
let rename_node f_node f_var f_const nd =
653
  let rename_var v = { v with var_id = f_var v.var_id } in
654
  let rename_eq eq = { eq with
655
      eq_lhs = List.map f_var eq.eq_lhs; 
656
      eq_rhs = rename_expr f_node f_var f_const eq.eq_rhs
657
    } 
658
  in
659
  let inputs = List.map rename_var nd.node_inputs in
660
  let outputs = List.map rename_var nd.node_outputs in
661
  let locals = List.map rename_var nd.node_locals in
662
  let gen_calls = List.map (rename_expr f_node f_var f_const) nd.node_gencalls in
663
  let node_checks = List.map (Dimension.expr_replace_var f_var)  nd.node_checks in
664
  let node_asserts = List.map 
665
    (fun a -> 
666
      {a with assert_expr = 
667
	  let expr = a.assert_expr in
668
	  rename_expr f_node f_var f_const expr})
669
    nd.node_asserts
670
  in
671
  let node_stmts = List.map (fun eq -> Eq (rename_eq eq)) (get_node_eqs nd) in
672
  let spec = 
673
    Utils.option_map 
674
      (fun s -> rename_node_annot f_node f_var f_const s) 
675
      nd.node_spec 
676
  in
677
  let annot =
678
    List.map 
679
      (fun s -> rename_expr_annot f_node f_var f_const s) 
680
      nd.node_annot
681
  in
682
  {
683
    node_id = f_node nd.node_id;
684
    node_type = nd.node_type;
685
    node_clock = nd.node_clock;
686
    node_inputs = inputs;
687
    node_outputs = outputs;
688
    node_locals = locals;
689
    node_gencalls = gen_calls;
690
    node_checks = node_checks;
691
    node_asserts = node_asserts;
692
    node_stmts = node_stmts;
693
    node_dec_stateless = nd.node_dec_stateless;
694
    node_stateless = nd.node_stateless;
695
    node_spec = spec;
696
    node_annot = annot;
697
  }
698

    
699

    
700
let rename_const f_const c =
701
  { c with const_id = f_const c.const_id }
702

    
703
let rename_typedef f_var t =
704
  match t.tydef_desc with
705
  | Tydec_enum tags -> { t with tydef_desc = Tydec_enum (List.map f_var tags) }
706
  | _               -> t
707

    
708
let rename_prog f_node f_var f_const prog =
709
  List.rev (
710
    List.fold_left (fun accu top ->
711
      (match top.top_decl_desc with
712
      | Node nd -> 
713
	 { top with top_decl_desc = Node (rename_node f_node f_var f_const nd) }
714
      | Const c -> 
715
	 { top with top_decl_desc = Const (rename_const f_const c) }
716
      | TypeDef tdef ->
717
	 { top with top_decl_desc = TypeDef (rename_typedef f_var tdef) }
718
      | ImportedNode _
719
      | Open _       -> top)
720
      ::accu
721
) [] prog
722
		   )
723

    
724
(**********************************************************************)
725
(* Pretty printers *)
726

    
727
let pp_decl_type fmt tdecl =
728
  match tdecl.top_decl_desc with
729
  | Node nd ->
730
    fprintf fmt "%s: " nd.node_id;
731
    Utils.reset_names ();
732
    fprintf fmt "%a@ " Types.print_ty nd.node_type
733
  | ImportedNode ind ->
734
    fprintf fmt "%s: " ind.nodei_id;
735
    Utils.reset_names ();
736
    fprintf fmt "%a@ " Types.print_ty ind.nodei_type
737
  | Const _ | Open _ | TypeDef _ -> ()
738

    
739
let pp_prog_type fmt tdecl_list =
740
  Utils.fprintf_list ~sep:"" pp_decl_type fmt tdecl_list
741

    
742
let pp_decl_clock fmt cdecl =
743
  match cdecl.top_decl_desc with
744
  | Node nd ->
745
    fprintf fmt "%s: " nd.node_id;
746
    Utils.reset_names ();
747
    fprintf fmt "%a@ " Clocks.print_ck nd.node_clock
748
  | ImportedNode ind ->
749
    fprintf fmt "%s: " ind.nodei_id;
750
    Utils.reset_names ();
751
    fprintf fmt "%a@ " Clocks.print_ck ind.nodei_clock
752
  | Const _ | Open _ | TypeDef _ -> ()
753

    
754
let pp_prog_clock fmt prog =
755
  Utils.fprintf_list ~sep:"" pp_decl_clock fmt prog
756

    
757
let pp_error fmt = function
758
    Main_not_found ->
759
      fprintf fmt "Cannot compile node %s: could not find the node definition.@."
760
	!Options.main_node
761
  | Main_wrong_kind ->
762
    fprintf fmt
763
      "Name %s does not correspond to a (non-imported) node definition.@." 
764
      !Options.main_node
765
  | No_main_specified ->
766
    fprintf fmt "No main node specified@."
767
  | Unbound_symbol sym ->
768
    fprintf fmt
769
      "%s is undefined.@."
770
      sym
771
  | Already_bound_symbol sym -> 
772
    fprintf fmt
773
      "%s is already defined.@."
774
      sym
775
  | Unknown_library sym ->
776
    fprintf fmt
777
      "impossible to load library %s.lusic@.Please compile the corresponding interface or source file.@."
778
      sym
779

    
780
(* filling node table with internal functions *)
781
let vdecls_of_typ_ck cpt ty =
782
  let loc = Location.dummy_loc in
783
  List.map
784
    (fun _ -> incr cpt;
785
              let name = sprintf "_var_%d" !cpt in
786
              mkvar_decl loc (name, mktyp loc Tydec_any, mkclock loc Ckdec_any, false))
787
    (Types.type_list_of_type ty)
788

    
789
let mk_internal_node id =
790
  let spec = None in
791
  let ty = Env.lookup_value Basic_library.type_env id in
792
  let ck = Env.lookup_value Basic_library.clock_env id in
793
  let (tin, tout) = Types.split_arrow ty in
794
  (*eprintf "internal fun %s: %d -> %d@." id (List.length (Types.type_list_of_type tin)) (List.length (Types.type_list_of_type tout));*)
795
  let cpt = ref (-1) in
796
  mktop
797
    (ImportedNode
798
       {nodei_id = id;
799
	nodei_type = ty;
800
	nodei_clock = ck;
801
	nodei_inputs = vdecls_of_typ_ck cpt tin;
802
	nodei_outputs = vdecls_of_typ_ck cpt tout;
803
	nodei_stateless = Types.get_static_value ty <> None;
804
	nodei_spec = spec;
805
	nodei_prototype = None;
806
       	nodei_in_lib = None;
807
       })
808

    
809
let add_internal_funs () =
810
  List.iter
811
    (fun id -> let nd = mk_internal_node id in Hashtbl.add node_table id nd)
812
    Basic_library.internal_funs
813

    
814

    
815

    
816
(* Replace any occurence of a var in vars_to_replace by its associated
817
   expression in defs until e does not contain any such variables *)
818
let rec substitute_expr vars_to_replace defs e =
819
  let se = substitute_expr vars_to_replace defs in
820
  { e with expr_desc = 
821
      let ed = e.expr_desc in
822
      match ed with
823
      | Expr_const _ -> ed
824
      | Expr_array el -> Expr_array (List.map se el)
825
      | Expr_access (e1, d) -> Expr_access (se e1, d)
826
      | Expr_power (e1, d) -> Expr_power (se e1, d)
827
      | Expr_tuple el -> Expr_tuple (List.map se el)
828
      | Expr_ite (c, t, e) -> Expr_ite (se c, se t, se e)
829
      | Expr_arrow (e1, e2)-> Expr_arrow (se e1, se e2) 
830
      | Expr_fby (e1, e2) -> Expr_fby (se e1, se e2)
831
      | Expr_pre e' -> Expr_pre (se e')
832
      | Expr_when (e', i, l)-> Expr_when (se e', i, l)
833
      | Expr_merge (i, hl) -> Expr_merge (i, List.map (fun (t, h) -> (t, se h)) hl)
834
      | Expr_appl (i, e', i') -> Expr_appl (i, se e', i')
835
      | Expr_ident i -> 
836
	if List.exists (fun v -> v.var_id = i) vars_to_replace then (
837
	  let eq_i eq = eq.eq_lhs = [i] in
838
	  if List.exists eq_i defs then
839
	    let sub = List.find eq_i defs in
840
	    let sub' = se sub.eq_rhs in
841
	    sub'.expr_desc
842
	  else 
843
	    assert false
844
	)
845
	else
846
	  ed
847

    
848
  }
849
(* FAUT IL RETIRER ?
850
  
851
 let rec expr_to_eexpr  expr =
852
   { eexpr_tag = expr.expr_tag;
853
     eexpr_desc = expr_desc_to_eexpr_desc expr.expr_desc;
854
     eexpr_type = expr.expr_type;
855
     eexpr_clock = expr.expr_clock;
856
     eexpr_loc = expr.expr_loc
857
   }
858
 and expr_desc_to_eexpr_desc expr_desc =
859
   let conv = expr_to_eexpr in
860
   match expr_desc with
861
   | Expr_const c -> EExpr_const (match c with
862
     | Const_int x -> EConst_int x 
863
     | Const_real x -> EConst_real x 
864
     | Const_float x -> EConst_float x 
865
     | Const_tag x -> EConst_tag x 
866
     | _ -> assert false
867

    
868
   )
869
   | Expr_ident i -> EExpr_ident i
870
   | Expr_tuple el -> EExpr_tuple (List.map conv el)
871

    
872
   | Expr_arrow (e1, e2)-> EExpr_arrow (conv e1, conv e2) 
873
   | Expr_fby (e1, e2) -> EExpr_fby (conv e1, conv e2)
874
   | Expr_pre e' -> EExpr_pre (conv e')
875
   | Expr_appl (i, e', i') -> 
876
     EExpr_appl 
877
       (i, conv e', match i' with None -> None | Some(id, _) -> Some id)
878

    
879
   | Expr_when _
880
   | Expr_merge _ -> assert false
881
   | Expr_array _ 
882
   | Expr_access _ 
883
   | Expr_power _  -> assert false
884
   | Expr_ite (c, t, e) -> assert false 
885
   | _ -> assert false
886

    
887
     *)
888
let rec get_expr_calls nodes e =
889
  get_calls_expr_desc nodes e.expr_desc
890
and get_calls_expr_desc nodes expr_desc =
891
  let get_calls = get_expr_calls nodes in
892
  match expr_desc with
893
  | Expr_const _ 
894
   | Expr_ident _ -> Utils.ISet.empty
895
   | Expr_tuple el
896
   | Expr_array el -> List.fold_left (fun accu e -> Utils.ISet.union accu (get_calls e)) Utils.ISet.empty el
897
   | Expr_pre e1 
898
   | Expr_when (e1, _, _) 
899
   | Expr_access (e1, _) 
900
   | Expr_power (e1, _) -> get_calls e1
901
   | Expr_ite (c, t, e) -> Utils.ISet.union (Utils.ISet.union (get_calls c) (get_calls t)) (get_calls e) 
902
   | Expr_arrow (e1, e2) 
903
   | Expr_fby (e1, e2) -> Utils.ISet.union (get_calls e1) (get_calls e2)
904
   | Expr_merge (_, hl) -> List.fold_left (fun accu (_, h) -> Utils.ISet.union accu (get_calls h)) Utils.ISet.empty  hl
905
   | Expr_appl (i, e', i') -> 
906
     if Basic_library.is_internal_fun i then 
907
       (get_calls e') 
908
     else
909
       let calls =  Utils.ISet.add i (get_calls e') in
910
       let test = (fun n -> match n.top_decl_desc with Node nd -> nd.node_id = i | _ -> false) in
911
       if List.exists test nodes then
912
	 match (List.find test nodes).top_decl_desc with
913
	 | Node nd -> Utils.ISet.union (get_node_calls nodes nd) calls
914
	 | _ -> assert false
915
       else 
916
	 calls
917

    
918
and get_eq_calls nodes eq =
919
  get_expr_calls nodes eq.eq_rhs
920
and get_node_calls nodes node =
921
  List.fold_left (fun accu eq -> Utils.ISet.union (get_eq_calls nodes eq) accu) Utils.ISet.empty (get_node_eqs node)
922

    
923
let rec get_expr_vars vars e =
924
  get_expr_desc_vars vars e.expr_desc
925
and get_expr_desc_vars vars expr_desc =
926
  match expr_desc with
927
  | Expr_const _ -> vars
928
  | Expr_ident x -> Utils.ISet.add x vars
929
  | Expr_tuple el
930
  | Expr_array el -> List.fold_left get_expr_vars vars el
931
  | Expr_pre e1 -> get_expr_vars vars e1
932
  | Expr_when (e1, c, _) -> get_expr_vars (Utils.ISet.add c vars) e1 
933
  | Expr_access (e1, d) 
934
  | Expr_power (e1, d)   -> List.fold_left get_expr_vars vars [e1; expr_of_dimension d]
935
  | Expr_ite (c, t, e) -> List.fold_left get_expr_vars vars [c; t; e]
936
  | Expr_arrow (e1, e2) 
937
  | Expr_fby (e1, e2) -> List.fold_left get_expr_vars vars [e1; e2]
938
  | Expr_merge (c, hl) -> List.fold_left (fun vars (_, h) -> get_expr_vars vars h) (Utils.ISet.add c vars) hl
939
  | Expr_appl (_, arg, None)   -> get_expr_vars vars arg
940
  | Expr_appl (_, arg, Some r) -> List.fold_left get_expr_vars vars [arg; r]
941

    
942

    
943
let rec expr_has_arrows e =
944
  expr_desc_has_arrows e.expr_desc
945
and expr_desc_has_arrows expr_desc =
946
  match expr_desc with
947
  | Expr_const _ 
948
  | Expr_ident _ -> false
949
  | Expr_tuple el
950
  | Expr_array el -> List.exists expr_has_arrows el
951
  | Expr_pre e1 
952
  | Expr_when (e1, _, _) 
953
  | Expr_access (e1, _) 
954
  | Expr_power (e1, _) -> expr_has_arrows e1
955
  | Expr_ite (c, t, e) -> List.exists expr_has_arrows [c; t; e]
956
  | Expr_arrow (e1, e2) 
957
  | Expr_fby (e1, e2) -> true
958
  | Expr_merge (_, hl) -> List.exists (fun (_, h) -> expr_has_arrows h) hl
959
  | Expr_appl (i, e', i') -> expr_has_arrows e'
960

    
961
and eq_has_arrows eq =
962
  expr_has_arrows eq.eq_rhs
963
and node_has_arrows node =
964
  List.exists (fun eq -> eq_has_arrows eq) (get_node_eqs node)
965

    
966
(* Local Variables: *)
967
(* compile-command:"make -C .." *)
968
(* End: *)
(12-12/50)