Project

General

Profile

Download (41.9 KB) Statistics
| Branch: | Tag: | Revision:
1
(********************************************************************)
2
(*                                                                  *)
3
(*  The LustreC compiler toolset   /  The LustreC Development Team  *)
4
(*  Copyright 2012 -    --   ONERA - CNRS - INPT                    *)
5
(*                                                                  *)
6
(*  LustreC is free software, distributed WITHOUT ANY WARRANTY      *)
7
(*  under the terms of the GNU Lesser General Public License        *)
8
(*  version 2.1.                                                    *)
9
(*                                                                  *)
10
(********************************************************************)
11

    
12
open Format
13
open Lustre_types
14
open Machine_code_types
15
(*open Dimension*)
16

    
17

    
18
exception Error of Location.t * Error.error_kind
19

    
20
module VDeclModule =
21
struct (* Node module *)
22
  type t = var_decl
23
  let compare v1 v2 = compare v1.var_id v2.var_id
24
end
25

    
26
module VMap = Map.Make(VDeclModule)
27

    
28
module VSet: sig
29
  include Set.S
30
  val pp: Format.formatter -> t -> unit 
31
end with type elt = var_decl =
32
  struct
33
    include Set.Make(VDeclModule)
34
    let pp fmt s =
35
      Format.fprintf fmt "{@[%a}@]" (Utils.fprintf_list ~sep:",@ " Printers.pp_var) (elements s)  
36
  end
37
let dummy_type_dec = {ty_dec_desc=Tydec_any; ty_dec_loc=Location.dummy_loc}
38

    
39
let dummy_clock_dec = {ck_dec_desc=Ckdec_any; ck_dec_loc=Location.dummy_loc}
40

    
41

    
42

    
43
(************************************************************)
44
(* *)
45

    
46
let mktyp loc d =
47
  { ty_dec_desc = d; ty_dec_loc = loc }
48

    
49
let mkclock loc d =
50
  { ck_dec_desc = d; ck_dec_loc = loc }
51

    
52
let mkvar_decl loc ?(orig=false) (id, ty_dec, ck_dec, is_const, value, parentid) =
53
  assert (value = None || is_const);
54
  { var_id = id;
55
    var_orig = orig;
56
    var_dec_type = ty_dec;
57
    var_dec_clock = ck_dec;
58
    var_dec_const = is_const;
59
    var_dec_value = value;
60
    var_parent_nodeid = parentid;
61
    var_type = Types.new_var ();
62
    var_clock = Clocks.new_var true;
63
    var_loc = loc }
64

    
65
let dummy_var_decl name typ =
66
  {
67
    var_id = name;
68
    var_orig = false;
69
    var_dec_type = dummy_type_dec;
70
    var_dec_clock = dummy_clock_dec;
71
    var_dec_const = false;
72
    var_dec_value = None;
73
    var_parent_nodeid = None;
74
    var_type =  typ;
75
    var_clock = Clocks.new_ck Clocks.Cvar true;
76
    var_loc = Location.dummy_loc
77
  }
78

    
79
let mkexpr loc d =
80
  { expr_tag = Utils.new_tag ();
81
    expr_desc = d;
82
    expr_type = Types.new_var ();
83
    expr_clock = Clocks.new_var true;
84
    expr_delay = Delay.new_var ();
85
    expr_annot = None;
86
    expr_loc = loc }
87

    
88
let var_decl_of_const ?(parentid=None) c =
89
  { var_id = c.const_id;
90
    var_orig = true;
91
    var_dec_type = { ty_dec_loc = c.const_loc; ty_dec_desc = Tydec_any };
92
    var_dec_clock = { ck_dec_loc = c.const_loc; ck_dec_desc = Ckdec_any };
93
    var_dec_const = true;
94
    var_dec_value = None;
95
    var_parent_nodeid = parentid;
96
    var_type = c.const_type;
97
    var_clock = Clocks.new_var false;
98
    var_loc = c.const_loc }
99

    
100
let mk_new_name used id =
101
  let rec new_name name cpt =
102
    if used name
103
    then new_name (sprintf "_%s_%i" id cpt) (cpt+1)
104
    else name
105
  in new_name id 1
106

    
107
let mkeq loc (lhs, rhs) =
108
  { eq_lhs = lhs;
109
    eq_rhs = rhs;
110
    eq_loc = loc }
111

    
112
let mkassert loc expr =
113
  { assert_loc = loc;
114
    assert_expr = expr
115
  }
116

    
117
let mktop_decl loc own itf d =
118
  { top_decl_desc = d; top_decl_loc = loc; top_decl_owner = own; top_decl_itf = itf }
119

    
120
let mkpredef_call loc funname args =
121
  mkexpr loc (Expr_appl (funname, mkexpr loc (Expr_tuple args), None))
122

    
123
let is_clock_dec_type cty =
124
  match cty with
125
  | Tydec_clock _ -> true
126
  | _             -> false
127

    
128
let const_of_top top_decl =
129
  match top_decl.top_decl_desc with
130
  | Const c -> c
131
  | _ -> assert false
132

    
133
let node_of_top top_decl =
134
  match top_decl.top_decl_desc with
135
  | Node nd -> nd
136
  | _ -> raise Not_found
137

    
138
let imported_node_of_top top_decl =
139
  match top_decl.top_decl_desc with
140
  | ImportedNode ind -> ind
141
  | _ -> assert false
142

    
143
let typedef_of_top top_decl =
144
  match top_decl.top_decl_desc with
145
  | TypeDef tdef -> tdef
146
  | _ -> assert false
147

    
148
let dependency_of_top top_decl =
149
  match top_decl.top_decl_desc with
150
  | Open (local, dep) -> (local, dep)
151
  | _ -> assert false
152

    
153
let consts_of_enum_type top_decl =
154
  match top_decl.top_decl_desc with
155
  | TypeDef tdef ->
156
    (match tdef.tydef_desc with
157
    | Tydec_enum tags ->
158
       List.map
159
	 (fun tag ->
160
	   let cdecl = {
161
	     const_id = tag;
162
	     const_loc = top_decl.top_decl_loc;
163
	     const_value = Const_tag tag;
164
	     const_type = Type_predef.type_const tdef.tydef_id
165
	   } in
166
	   { top_decl with top_decl_desc = Const cdecl })
167
	 tags
168
     | _               -> [])
169
  | _ -> assert false
170

    
171
(************************************************************)
172
(*   Eexpr functions *)
173
(************************************************************)
174

    
175

    
176
let empty_contract =
177
  {
178
    consts = []; locals = []; stmts = []; assume = []; guarantees = []; modes = []; imports = []; spec_loc = Location.dummy_loc;
179
  }
180

    
181
(* For const declaration we do as for regular lustre node.
182
But for local flows we registered the variable and the lustre flow definition *)
183
let mk_contract_var id is_const type_opt expr loc =
184
  let typ = match type_opt with None -> mktyp loc Tydec_any | Some t -> t in
185
  if is_const then
186
  let v = mkvar_decl loc (id, typ, mkclock loc Ckdec_any, is_const, Some expr, None) in
187
  { empty_contract with consts = [v]; spec_loc = loc; }
188
  else
189
    let v = mkvar_decl loc (id, typ, mkclock loc Ckdec_any, is_const, None, None) in
190
    let eq = mkeq loc ([id], expr) in 
191
    { empty_contract with locals = [v]; stmts = [Eq eq]; spec_loc = loc; }
192

    
193
let mk_contract_guarantees eexpr =
194
  { empty_contract with guarantees = [eexpr]; spec_loc = eexpr.eexpr_loc }
195

    
196
let mk_contract_assume eexpr =
197
  { empty_contract with assume = [eexpr]; spec_loc = eexpr.eexpr_loc }
198

    
199
let mk_contract_mode id rl el loc =
200
  { empty_contract with modes = [{ mode_id = id; require = rl; ensure = el; mode_loc = loc; }]; spec_loc = loc }
201

    
202
let mk_contract_import id ins outs loc =
203
  { empty_contract with imports = [{import_nodeid = id; inputs = ins; outputs = outs; import_loc = loc; }]; spec_loc = loc }
204

    
205
    
206
let merge_contracts ann1 ann2 = (* keeping the first item loc *)
207
  { consts = ann1.consts @ ann2.consts;
208
    locals = ann1.locals @ ann2.locals;
209
    stmts = ann1.stmts @ ann2.stmts;
210
    assume = ann1.assume @ ann2.assume;
211
    guarantees = ann1.guarantees @ ann2.guarantees;
212
    modes = ann1.modes @ ann2.modes;
213
    imports = ann1.imports @ ann2.imports;
214
    spec_loc = ann1.spec_loc
215
  }
216

    
217
let mkeexpr loc expr =
218
  { eexpr_tag = Utils.new_tag ();
219
    eexpr_qfexpr = expr;
220
    eexpr_quantifiers = [];
221
    eexpr_type = Types.new_var ();
222
    eexpr_clock = Clocks.new_var true;
223
    eexpr_loc = loc }
224

    
225
let extend_eexpr q e = { e with eexpr_quantifiers = q@e.eexpr_quantifiers }
226

    
227
(*
228
let mkepredef_call loc funname args =
229
  mkeexpr loc (EExpr_appl (funname, mkeexpr loc (EExpr_tuple args), None))
230

    
231
let mkepredef_unary_call loc funname arg =
232
  mkeexpr loc (EExpr_appl (funname, arg, None))
233
*)
234

    
235
let merge_expr_annot ann1 ann2 =
236
  match ann1, ann2 with
237
    | None, None -> assert false
238
    | Some _, None -> ann1
239
    | None, Some _ -> ann2
240
    | Some ann1, Some ann2 -> Some {
241
      annots = ann1.annots @ ann2.annots;
242
      annot_loc = ann1.annot_loc
243
    }
244

    
245
let update_expr_annot node_id e annot =
246
  List.iter (fun (key, _) -> 
247
    Annotations.add_expr_ann node_id e.expr_tag key
248
  ) annot.annots;
249
  e.expr_annot <- merge_expr_annot e.expr_annot (Some annot);
250
  e
251

    
252

    
253
let mkinstr ?lustre_expr ?lustre_eq i =
254
  {
255
    instr_desc = i;
256
    (* lustre_expr = lustre_expr; *)
257
    lustre_eq = lustre_eq;
258
  }
259

    
260
let get_instr_desc i = i.instr_desc
261
let update_instr_desc i id = { i with instr_desc = id }
262

    
263
(***********************************************************)
264
(* Fast access to nodes, by name *)
265
let (node_table : (ident, top_decl) Hashtbl.t) = Hashtbl.create 30
266
let consts_table = Hashtbl.create 30
267

    
268
let print_node_table fmt () =
269
  begin
270
    Format.fprintf fmt "{ /* node table */@.";
271
    Hashtbl.iter (fun id nd ->
272
      Format.fprintf fmt "%s |-> %a"
273
	id
274
	Printers.pp_short_decl nd
275
    ) node_table;
276
    Format.fprintf fmt "}@."
277
  end
278

    
279
let print_consts_table fmt () =
280
  begin
281
    Format.fprintf fmt "{ /* consts table */@.";
282
    Hashtbl.iter (fun id const ->
283
      Format.fprintf fmt "%s |-> %a"
284
	id
285
	Printers.pp_const_decl (const_of_top const)
286
    ) consts_table;
287
    Format.fprintf fmt "}@."
288
  end
289

    
290
let node_name td =
291
    match td.top_decl_desc with 
292
    | Node nd         -> nd.node_id
293
    | ImportedNode nd -> nd.nodei_id
294
    | _ -> assert false
295

    
296
let is_generic_node td =
297
  match td.top_decl_desc with 
298
  | Node nd         -> List.exists (fun v -> v.var_dec_const) nd.node_inputs
299
  | ImportedNode nd -> List.exists (fun v -> v.var_dec_const) nd.nodei_inputs
300
  | _ -> assert false
301

    
302
let node_inputs td =
303
  match td.top_decl_desc with 
304
  | Node nd         -> nd.node_inputs
305
  | ImportedNode nd -> nd.nodei_inputs
306
  | _ -> assert false
307

    
308
let node_from_name id =
309
      Hashtbl.find node_table id
310
  (* with Not_found -> (Format.eprintf "Unable to find any node named %s@ @?" id;
311
   *       	     assert false) *)
312

    
313
let update_node id top =
314
  Hashtbl.replace node_table id top
315

    
316
let is_imported_node td =
317
  match td.top_decl_desc with 
318
  | Node nd         -> false
319
  | ImportedNode nd -> true
320
  | _ -> assert false
321

    
322

    
323
(* alias and type definition table *)
324

    
325
let mktop = mktop_decl Location.dummy_loc !Options.dest_dir false
326

    
327
let top_int_type = mktop (TypeDef {tydef_id = "int"; tydef_desc = Tydec_int})
328
let top_bool_type = mktop (TypeDef {tydef_id = "bool"; tydef_desc = Tydec_bool})
329
(* let top_float_type = mktop (TypeDef {tydef_id = "float"; tydef_desc = Tydec_float}) *)
330
let top_real_type = mktop (TypeDef {tydef_id = "real"; tydef_desc = Tydec_real})
331

    
332
let type_table =
333
  Utils.create_hashtable 20 [
334
    Tydec_int  , top_int_type;
335
    Tydec_bool , top_bool_type;
336
    (* Tydec_float, top_float_type; *)
337
    Tydec_real , top_real_type
338
  ]
339

    
340
let print_type_table fmt () =
341
  begin
342
    Format.fprintf fmt "{ /* type table */@.";
343
    Hashtbl.iter (fun tydec tdef ->
344
      Format.fprintf fmt "%a |-> %a"
345
	Printers.pp_var_type_dec_desc tydec
346
	Printers.pp_typedef (typedef_of_top tdef)
347
    ) type_table;
348
    Format.fprintf fmt "}@."
349
  end
350

    
351
let rec is_user_type typ =
352
  match typ with
353
  | Tydec_int | Tydec_bool | Tydec_real 
354
  (* | Tydec_float *) | Tydec_any | Tydec_const _ -> false
355
  | Tydec_clock typ' -> is_user_type typ'
356
  | _ -> true
357

    
358
let get_repr_type typ =
359
  let typ_def = (typedef_of_top (Hashtbl.find type_table typ)).tydef_desc in
360
  if is_user_type typ_def then typ else typ_def
361

    
362
let rec coretype_equal ty1 ty2 =
363
  let res =
364
  match ty1, ty2 with
365
  | Tydec_any           , _
366
  | _                   , Tydec_any             -> assert false
367
  | Tydec_const _       , Tydec_const _         -> get_repr_type ty1 = get_repr_type ty2
368
  | Tydec_const _       , _                     -> let ty1' = (typedef_of_top (Hashtbl.find type_table ty1)).tydef_desc
369
	       					   in (not (is_user_type ty1')) && coretype_equal ty1' ty2
370
  | _                   , Tydec_const _         -> coretype_equal ty2 ty1
371
  | Tydec_int           , Tydec_int
372
  | Tydec_real          , Tydec_real
373
  (* | Tydec_float         , Tydec_float *)
374
  | Tydec_bool          , Tydec_bool            -> true
375
  | Tydec_clock ty1     , Tydec_clock ty2       -> coretype_equal ty1 ty2
376
  | Tydec_array (d1,ty1), Tydec_array (d2, ty2) -> Dimension.is_eq_dimension d1 d2 && coretype_equal ty1 ty2
377
  | Tydec_enum tl1      , Tydec_enum tl2        -> List.sort compare tl1 = List.sort compare tl2
378
  | Tydec_struct fl1    , Tydec_struct fl2      ->
379
       List.length fl1 = List.length fl2
380
    && List.for_all2 (fun (f1, t1) (f2, t2) -> f1 = f2 && coretype_equal t1 t2)
381
      (List.sort (fun (f1,_) (f2,_) -> compare f1 f2) fl1)
382
      (List.sort (fun (f1,_) (f2,_) -> compare f1 f2) fl2)
383
  | _                                  -> false
384
  in ((*Format.eprintf "coretype_equal %a %a = %B@." Printers.pp_var_type_dec_desc ty1 Printers.pp_var_type_dec_desc ty2 res;*) res)
385

    
386
let tag_true = "true"
387
let tag_false = "false"
388
let tag_default = "default"
389

    
390
let const_is_bool c =
391
 match c with
392
 | Const_tag t -> t = tag_true || t = tag_false
393
 | _           -> false
394

    
395
(* Computes the negation of a boolean constant *)
396
let const_negation c =
397
  assert (const_is_bool c);
398
  match c with
399
  | Const_tag t when t = tag_true  -> Const_tag tag_false
400
  | _                              -> Const_tag tag_true
401

    
402
let const_or c1 c2 =
403
  assert (const_is_bool c1 && const_is_bool c2);
404
  match c1, c2 with
405
  | Const_tag t1, _            when t1 = tag_true -> c1
406
  | _           , Const_tag t2 when t2 = tag_true -> c2
407
  | _                                             -> Const_tag tag_false
408

    
409
let const_and c1 c2 =
410
  assert (const_is_bool c1 && const_is_bool c2);
411
  match c1, c2 with
412
  | Const_tag t1, _            when t1 = tag_false -> c1
413
  | _           , Const_tag t2 when t2 = tag_false -> c2
414
  | _                                              -> Const_tag tag_true
415

    
416
let const_xor c1 c2 =
417
  assert (const_is_bool c1 && const_is_bool c2);
418
   match c1, c2 with
419
  | Const_tag t1, Const_tag t2 when t1 <> t2  -> Const_tag tag_true
420
  | _                                         -> Const_tag tag_false
421

    
422
let const_impl c1 c2 =
423
  assert (const_is_bool c1 && const_is_bool c2);
424
  match c1, c2 with
425
  | Const_tag t1, _ when t1 = tag_false           -> Const_tag tag_true
426
  | _           , Const_tag t2 when t2 = tag_true -> Const_tag tag_true
427
  | _                                             -> Const_tag tag_false
428

    
429
(* To guarantee uniqueness of tags in enum types *)
430
let tag_table =
431
  Utils.create_hashtable 20 [
432
   tag_true, top_bool_type;
433
   tag_false, top_bool_type
434
  ]
435

    
436
(* To guarantee uniqueness of fields in struct types *)
437
let field_table =
438
  Utils.create_hashtable 20 [
439
  ]
440

    
441
let get_enum_type_tags cty =
442
(*Format.eprintf "get_enum_type_tags %a@." Printers.pp_var_type_dec_desc cty;*)
443
 match cty with
444
 | Tydec_bool    -> [tag_true; tag_false]
445
 | Tydec_const _ -> (match (typedef_of_top (Hashtbl.find type_table cty)).tydef_desc with
446
                     | Tydec_enum tl -> tl
447
                     | _             -> assert false)
448
 | _            -> assert false
449

    
450
let get_struct_type_fields cty =
451
 match cty with
452
 | Tydec_const _ -> (match (typedef_of_top (Hashtbl.find type_table cty)).tydef_desc with
453
                     | Tydec_struct fl -> fl
454
                     | _               -> assert false)
455
 | _            -> assert false
456

    
457
let const_of_bool b =
458
 Const_tag (if b then tag_true else tag_false)
459

    
460
(* let get_const c = snd (Hashtbl.find consts_table c) *)
461

    
462
let ident_of_expr expr =
463
 match expr.expr_desc with
464
 | Expr_ident id -> id
465
 | _             -> assert false
466

    
467
(* Generate a new ident expression from a declared variable *)
468
let expr_of_vdecl v =
469
  { expr_tag = Utils.new_tag ();
470
    expr_desc = Expr_ident v.var_id;
471
    expr_type = v.var_type;
472
    expr_clock = v.var_clock;
473
    expr_delay = Delay.new_var ();
474
    expr_annot = None;
475
    expr_loc = v.var_loc }
476

    
477
(* Caution, returns an untyped and unclocked expression *)
478
let expr_of_ident id loc =
479
  {expr_tag = Utils.new_tag ();
480
   expr_desc = Expr_ident id;
481
   expr_type = Types.new_var ();
482
   expr_clock = Clocks.new_var true;
483
   expr_delay = Delay.new_var ();
484
   expr_loc = loc;
485
   expr_annot = None}
486

    
487
let is_tuple_expr expr =
488
 match expr.expr_desc with
489
  | Expr_tuple _ -> true
490
  | _            -> false
491

    
492
let expr_list_of_expr expr =
493
  match expr.expr_desc with
494
  | Expr_tuple elist -> elist
495
  | _                -> [expr]
496

    
497
let expr_of_expr_list loc elist =
498
 match elist with
499
 | [t]  -> { t with expr_loc = loc }
500
 | t::_ ->
501
    let tlist = List.map (fun e -> e.expr_type) elist in
502
    let clist = List.map (fun e -> e.expr_clock) elist in
503
    { t with expr_desc = Expr_tuple elist;
504
	     expr_type = Type_predef.type_tuple tlist;
505
	     expr_clock = Clock_predef.ck_tuple clist;
506
	     expr_tag = Utils.new_tag ();
507
	     expr_loc = loc }
508
 | _    -> assert false
509

    
510
let call_of_expr expr =
511
 match expr.expr_desc with
512
 | Expr_appl (f, args, r) -> (f, expr_list_of_expr args, r)
513
 | _                      -> assert false
514

    
515
    
516
(* Conversion from dimension expr to standard expr, for the purpose of printing, typing, etc... *)
517
let rec expr_of_dimension dim =
518
  let open Dimension in
519
  match dim.dim_desc with
520
 | Dbool b        ->
521
     mkexpr dim.dim_loc (Expr_const (const_of_bool b))
522
 | Dint i         ->
523
     mkexpr dim.dim_loc (Expr_const (Const_int i))
524
 | Dident id      ->
525
     mkexpr dim.dim_loc (Expr_ident id)
526
 | Dite (c, t, e) ->
527
     mkexpr dim.dim_loc (Expr_ite (expr_of_dimension c, expr_of_dimension t, expr_of_dimension e))
528
 | Dappl (id, args) ->
529
     mkexpr dim.dim_loc (Expr_appl (id, expr_of_expr_list dim.dim_loc (List.map expr_of_dimension args), None))
530
 | Dlink dim'       -> expr_of_dimension dim'
531
 | Dvar
532
 | Dunivar          -> (Format.eprintf "internal error: Corelang.expr_of_dimension %a@." Dimension.pp_dimension dim;
533
			assert false)
534

    
535
let dimension_of_const loc const =
536
  let open Dimension in
537
 match const with
538
 | Const_int i                                    -> mkdim_int loc i
539
 | Const_tag t when t = tag_true || t = tag_false -> mkdim_bool loc (t = tag_true)
540
 | _                                              -> raise InvalidDimension
541

    
542
(* Conversion from standard expr to dimension expr, for the purpose of injecting static call arguments 
543
   into dimension expressions *)
544
let rec dimension_of_expr expr =
545
  let open Dimension in
546
  match expr.expr_desc with
547
  | Expr_const c  -> dimension_of_const expr.expr_loc c
548
  | Expr_ident id -> mkdim_ident expr.expr_loc id
549
  | Expr_appl (f, args, None) when Basic_library.is_expr_internal_fun expr ->
550
      let k = Types.get_static_value (Env.lookup_value Basic_library.type_env f) in
551
      if k = None then raise InvalidDimension;
552
      mkdim_appl expr.expr_loc f (List.map dimension_of_expr (expr_list_of_expr args))
553
  | Expr_ite (i, t, e)        ->
554
      mkdim_ite expr.expr_loc (dimension_of_expr i) (dimension_of_expr t) (dimension_of_expr e)
555
  | _ -> raise InvalidDimension (* not a simple dimension expression *)
556

    
557

    
558
let sort_handlers hl =
559
 List.sort (fun (t, _) (t', _) -> compare t t') hl
560

    
561
let num_10 = Num.num_of_int 10
562
  
563
let rec is_eq_const c1 c2 =
564
  match c1, c2 with
565
  | Const_real (n1, i1, _), Const_real (n2, i2, _)
566
    -> Num.(let n1 = n1 // (num_10 **/ (num_of_int i1)) in
567
	    let n2 = n2 // (num_10 **/ (num_of_int i2)) in
568
	    eq_num n1 n2)
569
  | Const_struct lcl1, Const_struct lcl2
570
    -> List.length lcl1 = List.length lcl2
571
    && List.for_all2 (fun (l1, c1) (l2, c2) -> l1 = l2 && is_eq_const c1 c2) lcl1 lcl2
572
  | _  -> c1 = c2
573

    
574
let rec is_eq_expr e1 e2 = match e1.expr_desc, e2.expr_desc with
575
  | Expr_const c1, Expr_const c2 -> is_eq_const c1 c2
576
  | Expr_ident i1, Expr_ident i2 -> i1 = i2
577
  | Expr_array el1, Expr_array el2 
578
  | Expr_tuple el1, Expr_tuple el2 -> 
579
    List.length el1 = List.length el2 && List.for_all2 is_eq_expr el1 el2 
580
  | Expr_arrow (e1, e2), Expr_arrow (e1', e2') -> is_eq_expr e1 e1' && is_eq_expr e2 e2'
581
  | Expr_fby (e1,e2), Expr_fby (e1',e2') -> is_eq_expr e1 e1' && is_eq_expr e2 e2'
582
  | Expr_ite (i1, t1, e1), Expr_ite (i2, t2, e2) -> is_eq_expr i1 i2 && is_eq_expr t1 t2 && is_eq_expr e1 e2
583
  (* | Expr_concat (e1,e2), Expr_concat (e1',e2') -> is_eq_expr e1 e1' && is_eq_expr e2 e2' *)
584
  (* | Expr_tail e, Expr_tail e' -> is_eq_expr e e' *)
585
  | Expr_pre e, Expr_pre e' -> is_eq_expr e e'
586
  | Expr_when (e, i, l), Expr_when (e', i', l') -> l=l' && i=i' && is_eq_expr e e'
587
  | Expr_merge(i, hl), Expr_merge(i', hl') -> i=i' && List.for_all2 (fun (t, h) (t', h') -> t=t' && is_eq_expr h h') (sort_handlers hl) (sort_handlers hl')
588
  | Expr_appl (i, e, r), Expr_appl (i', e', r') -> i=i' && r=r' && is_eq_expr e e'
589
  | Expr_power (e1, i1), Expr_power (e2, i2)
590
  | Expr_access (e1, i1), Expr_access (e2, i2) -> is_eq_expr e1 e2 && is_eq_expr (expr_of_dimension i1) (expr_of_dimension i2)
591
  | _ -> false
592

    
593
let get_node_vars nd =
594
  nd.node_inputs @ nd.node_locals @ nd.node_outputs
595

    
596
let mk_new_node_name nd id =
597
  let used_vars = get_node_vars nd in
598
  let used v = List.exists (fun vdecl -> vdecl.var_id = v) used_vars in
599
  mk_new_name used id
600

    
601
let get_var id var_list =
602
  List.find (fun v -> v.var_id = id) var_list
603

    
604
let get_node_var id node =
605
  try
606
    get_var id (get_node_vars node)
607
  with Not_found -> begin
608
    (* Format.eprintf "Unable to find variable %s in node %s@.@?" id node.node_id; *)
609
    raise Not_found
610
  end
611

    
612

    
613
let get_node_eqs =
614
  let get_eqs stmts =
615
    List.fold_right
616
      (fun stmt (res_eq, res_aut) ->
617
	match stmt with
618
	| Eq eq -> eq :: res_eq, res_aut
619
	| Aut aut -> res_eq, aut::res_aut)
620
      stmts
621
      ([], []) in
622
  let table_eqs = Hashtbl.create 23 in
623
  (fun nd ->
624
    try
625
      let (old, res) = Hashtbl.find table_eqs nd.node_id
626
      in if old == nd.node_stmts then res else raise Not_found
627
    with Not_found -> 
628
      let res = get_eqs nd.node_stmts in
629
      begin
630
	Hashtbl.replace table_eqs nd.node_id (nd.node_stmts, res);
631
	res
632
      end)
633

    
634
let get_node_eq id node =
635
  let eqs, auts = get_node_eqs node in
636
  try
637
    List.find (fun eq -> List.mem id eq.eq_lhs) eqs
638
  with
639
    Not_found -> (* Shall be defined in automata auts *) raise Not_found
640
      
641
let get_nodes prog = 
642
  List.fold_left (
643
    fun nodes decl ->
644
      match decl.top_decl_desc with
645
	| Node _ -> decl::nodes
646
	| Const _ | ImportedNode _ | Include _ | Open _ | TypeDef _ -> nodes  
647
  ) [] prog
648

    
649
let get_imported_nodes prog = 
650
  List.fold_left (
651
    fun nodes decl ->
652
      match decl.top_decl_desc with
653
	| ImportedNode _ -> decl::nodes
654
	| Const _ | Node _ | Include _ | Open _ | TypeDef _-> nodes  
655
  ) [] prog
656

    
657
let get_consts prog = 
658
  List.fold_right (
659
    fun decl consts ->
660
      match decl.top_decl_desc with
661
	| Const _ -> decl::consts
662
	| Node _ | ImportedNode _ | Include _ | Open _ | TypeDef _ -> consts  
663
  ) prog []
664

    
665
let get_typedefs prog = 
666
  List.fold_right (
667
    fun decl types ->
668
      match decl.top_decl_desc with
669
	| TypeDef _ -> decl::types
670
	| Node _ | ImportedNode _ | Include _ | Open _ | Const _ -> types  
671
  ) prog []
672

    
673
let get_dependencies prog =
674
  List.fold_right (
675
    fun decl deps ->
676
      match decl.top_decl_desc with
677
	| Open _ -> decl::deps
678
	| Node _ | ImportedNode _ | TypeDef _ | Include _ | Const _ -> deps  
679
  ) prog []
680

    
681
let get_node_interface nd =
682
 {nodei_id = nd.node_id;
683
  nodei_type = nd.node_type;
684
  nodei_clock = nd.node_clock;
685
  nodei_inputs = nd.node_inputs;
686
  nodei_outputs = nd.node_outputs;
687
  nodei_stateless = nd.node_dec_stateless;
688
  nodei_spec = nd.node_spec;
689
  (* nodei_annot = nd.node_annot; *)
690
  nodei_prototype = None;
691
  nodei_in_lib = [];
692
 }
693

    
694
(************************************************************************)
695
(*        Renaming                                                      *)
696

    
697
let rec rename_static rename cty =
698
 match cty with
699
 | Tydec_array (d, cty') -> Tydec_array (Dimension.expr_replace_expr rename d, rename_static rename cty')
700
 | Tydec_clock cty       -> Tydec_clock (rename_static rename cty)
701
 | Tydec_struct fl       -> Tydec_struct (List.map (fun (f, cty) -> f, rename_static rename cty) fl)
702
 | _                      -> cty
703

    
704
let rec rename_carrier rename cck =
705
 match cck with
706
 | Ckdec_bool cl -> Ckdec_bool (List.map (fun (c, l) -> rename c, l) cl)
707
 | _             -> cck
708

    
709
 (*Format.eprintf "Types.rename_static %a = %a@." print_ty ty print_ty res; res*)
710

    
711
(* applies the renaming function [fvar] to all variables of expression [expr] *)
712
 (* let rec expr_replace_var fvar expr = *)
713
 (*  { expr with expr_desc = expr_desc_replace_var fvar expr.expr_desc } *)
714

    
715
 (* and expr_desc_replace_var fvar expr_desc = *)
716
 (*   match expr_desc with *)
717
 (*   | Expr_const _ -> expr_desc *)
718
 (*   | Expr_ident i -> Expr_ident (fvar i) *)
719
 (*   | Expr_array el -> Expr_array (List.map (expr_replace_var fvar) el) *)
720
 (*   | Expr_access (e1, d) -> Expr_access (expr_replace_var fvar e1, d) *)
721
 (*   | Expr_power (e1, d) -> Expr_power (expr_replace_var fvar e1, d) *)
722
 (*   | Expr_tuple el -> Expr_tuple (List.map (expr_replace_var fvar) el) *)
723
 (*   | Expr_ite (c, t, e) -> Expr_ite (expr_replace_var fvar c, expr_replace_var fvar t, expr_replace_var fvar e) *)
724
 (*   | Expr_arrow (e1, e2)-> Expr_arrow (expr_replace_var fvar e1, expr_replace_var fvar e2)  *)
725
 (*   | Expr_fby (e1, e2) -> Expr_fby (expr_replace_var fvar e1, expr_replace_var fvar e2) *)
726
 (*   | Expr_pre e' -> Expr_pre (expr_replace_var fvar e') *)
727
 (*   | Expr_when (e', i, l)-> Expr_when (expr_replace_var fvar e', fvar i, l) *)
728
 (*   | Expr_merge (i, hl) -> Expr_merge (fvar i, List.map (fun (t, h) -> (t, expr_replace_var fvar h)) hl) *)
729
 (*   | Expr_appl (i, e', i') -> Expr_appl (i, expr_replace_var fvar e', Utils.option_map (expr_replace_var fvar) i') *)
730

    
731

    
732

    
733
 let rec rename_expr  f_node f_var expr =
734
   { expr with expr_desc = rename_expr_desc f_node f_var expr.expr_desc }
735
 and rename_expr_desc f_node f_var expr_desc =
736
   let re = rename_expr  f_node f_var in
737
   match expr_desc with
738
   | Expr_const _ -> expr_desc
739
   | Expr_ident i -> Expr_ident (f_var i)
740
   | Expr_array el -> Expr_array (List.map re el)
741
   | Expr_access (e1, d) -> Expr_access (re e1, d)
742
   | Expr_power (e1, d) -> Expr_power (re e1, d)
743
   | Expr_tuple el -> Expr_tuple (List.map re el)
744
   | Expr_ite (c, t, e) -> Expr_ite (re c, re t, re e)
745
   | Expr_arrow (e1, e2)-> Expr_arrow (re e1, re e2) 
746
   | Expr_fby (e1, e2) -> Expr_fby (re e1, re e2)
747
   | Expr_pre e' -> Expr_pre (re e')
748
   | Expr_when (e', i, l)-> Expr_when (re e', f_var i, l)
749
   | Expr_merge (i, hl) -> 
750
     Expr_merge (f_var i, List.map (fun (t, h) -> (t, re h)) hl)
751
   | Expr_appl (i, e', i') -> 
752
     Expr_appl (f_node i, re e', Utils.option_map re i')
753

    
754
 let rename_dec_type f_node f_var t = assert false (*
755
						     Types.rename_dim_type (Dimension.rename f_node f_var) t*)
756

    
757
 let rename_dec_clock f_node f_var c = assert false (* 
758
					  Clocks.rename_clock_expr f_var c*)
759
   
760
 let rename_var f_node f_var v = {
761
   v with
762
     var_id = f_var v.var_id;
763
     var_dec_type = rename_dec_type f_node f_var v.var_type;
764
     var_dec_clock = rename_dec_clock f_node f_var v.var_clock
765
 } 
766

    
767
 let rename_vars f_node f_var = List.map (rename_var f_node f_var) 
768

    
769
 let rec rename_eq f_node f_var eq = { eq with
770
   eq_lhs = List.map f_var eq.eq_lhs; 
771
   eq_rhs = rename_expr f_node f_var eq.eq_rhs
772
 } 
773
 and rename_handler f_node f_var  h = {h with
774
   hand_state = f_var h.hand_state;
775
   hand_unless = List.map (
776
     fun (l,e,b,id) -> l, rename_expr f_node f_var e, b, f_var id
777
   ) h.hand_unless;
778
   hand_until = List.map (
779
     fun (l,e,b,id) -> l, rename_expr f_node f_var e, b, f_var id
780
   ) h.hand_until;
781
   hand_locals = rename_vars f_node f_var h.hand_locals;
782
   hand_stmts = rename_stmts f_node f_var h.hand_stmts;
783
   hand_annots = rename_annots f_node f_var h.hand_annots;
784
   
785
 } 
786
 and rename_aut f_node f_var  aut = { aut with
787
   aut_id = f_var aut.aut_id;
788
   aut_handlers = List.map (rename_handler f_node f_var) aut.aut_handlers;
789
 }
790
 and rename_stmts f_node f_var stmts = List.map (fun stmt -> match stmt with
791
   | Eq eq -> Eq (rename_eq f_node f_var eq)
792
   | Aut at -> Aut (rename_aut f_node f_var at))
793
   stmts
794
 and rename_annotl f_node f_var  annots = 
795
   List.map 
796
     (fun (key, value) -> key, rename_eexpr f_node f_var value) 
797
     annots
798
 and rename_annot f_node f_var annot =
799
   { annot with annots = rename_annotl f_node f_var annot.annots }
800
 and rename_annots f_node f_var annots =
801
   List.map (rename_annot f_node f_var) annots
802
and rename_eexpr f_node f_var ee =
803
   { ee with
804
     eexpr_tag = Utils.new_tag ();
805
     eexpr_qfexpr = rename_expr f_node f_var ee.eexpr_qfexpr;
806
     eexpr_quantifiers = List.map (fun (typ,vdecls) -> typ, rename_vars f_node f_var vdecls) ee.eexpr_quantifiers;
807
   }
808
 
809
     
810
     
811
   
812
 let rename_node f_node f_var nd =
813
   let rename_var = rename_var f_node f_var in
814
   let rename_expr = rename_expr f_node f_var in
815
   let rename_stmts = rename_stmts f_node f_var in
816
   let inputs = List.map rename_var nd.node_inputs in
817
   let outputs = List.map rename_var nd.node_outputs in
818
   let locals = List.map rename_var nd.node_locals in
819
   let gen_calls = List.map rename_expr nd.node_gencalls in
820
   let node_checks = List.map (Dimension.rename f_node f_var)  nd.node_checks in
821
   let node_asserts = List.map 
822
     (fun a -> 
823
       {a with assert_expr = 
824
	   let expr = a.assert_expr in
825
	   rename_expr expr})
826
     nd.node_asserts
827
   in
828
   let node_stmts = rename_stmts nd.node_stmts
829

    
830
     
831
   in
832
   let spec = 
833
     Utils.option_map 
834
       (fun s -> assert false; (*rename_node_annot f_node f_var s*) ) (* TODO: implement! *) 
835
       nd.node_spec 
836
   in
837
   let annot = rename_annots f_node f_var nd.node_annot in
838
   {
839
     node_id = f_node nd.node_id;
840
     node_type = nd.node_type;
841
     node_clock = nd.node_clock;
842
     node_inputs = inputs;
843
     node_outputs = outputs;
844
     node_locals = locals;
845
     node_gencalls = gen_calls;
846
     node_checks = node_checks;
847
     node_asserts = node_asserts;
848
     node_stmts = node_stmts;
849
     node_dec_stateless = nd.node_dec_stateless;
850
     node_stateless = nd.node_stateless;
851
     node_spec = spec;
852
     node_annot = annot;
853
   }
854

    
855

    
856
let rename_const f_const c =
857
  { c with const_id = f_const c.const_id }
858

    
859
let rename_typedef f_var t =
860
  match t.tydef_desc with
861
  | Tydec_enum tags -> { t with tydef_desc = Tydec_enum (List.map f_var tags) }
862
  | _               -> t
863

    
864
let rename_prog f_node f_var f_const prog =
865
  List.rev (
866
    List.fold_left (fun accu top ->
867
      (match top.top_decl_desc with
868
      | Node nd -> 
869
	 { top with top_decl_desc = Node (rename_node f_node f_var nd) }
870
      | Const c -> 
871
	 { top with top_decl_desc = Const (rename_const f_const c) }
872
      | TypeDef tdef ->
873
	 { top with top_decl_desc = TypeDef (rename_typedef f_var tdef) }
874
      | ImportedNode _
875
        | Include _ | Open _       -> top)
876
      ::accu
877
) [] prog
878
		   )
879

    
880
(* Applies the renaming function [fvar] to every rhs
881
   only when the corresponding lhs satisfies predicate [pvar] *)
882
 let eq_replace_rhs_var pvar fvar eq =
883
   let pvar l = List.exists pvar l in
884
   let rec replace lhs rhs =
885
     { rhs with expr_desc =
886
     match lhs with
887
     | []  -> assert false
888
     | [_] -> if pvar lhs then rename_expr_desc (fun x -> x) fvar rhs.expr_desc else rhs.expr_desc
889
     | _   ->
890
       (match rhs.expr_desc with
891
       | Expr_tuple tl ->
892
	 Expr_tuple (List.map2 (fun v e -> replace [v] e) lhs tl)
893
       | Expr_appl (f, arg, None) when Basic_library.is_expr_internal_fun rhs ->
894
	 let args = expr_list_of_expr arg in
895
	 Expr_appl (f, expr_of_expr_list arg.expr_loc (List.map (replace lhs) args), None)
896
       | Expr_array _
897
       | Expr_access _
898
       | Expr_power _
899
       | Expr_const _
900
       | Expr_ident _
901
       | Expr_appl _   ->
902
	 if pvar lhs
903
	 then rename_expr_desc (fun x -> x) fvar rhs.expr_desc
904
	 else rhs.expr_desc
905
       | Expr_ite (c, t, e)   -> Expr_ite (replace lhs c, replace lhs t, replace lhs e)
906
       | Expr_arrow (e1, e2)  -> Expr_arrow (replace lhs e1, replace lhs e2) 
907
       | Expr_fby (e1, e2)    -> Expr_fby (replace lhs e1, replace lhs e2)
908
       | Expr_pre e'          -> Expr_pre (replace lhs e')
909
       | Expr_when (e', i, l) -> let i' = if pvar lhs then fvar i else i
910
				 in Expr_when (replace lhs e', i', l)
911
       | Expr_merge (i, hl)   -> let i' = if pvar lhs then fvar i else i
912
				 in Expr_merge (i', List.map (fun (t, h) -> (t, replace lhs h)) hl)
913
       )
914
     }
915
   in { eq with eq_rhs = replace eq.eq_lhs eq.eq_rhs }
916

    
917
    
918
(**********************************************************************)
919
(* Pretty printers *)
920

    
921
let pp_decl_type fmt tdecl =
922
  match tdecl.top_decl_desc with
923
  | Node nd ->
924
    fprintf fmt "%s: " nd.node_id;
925
    Utils.reset_names ();
926
    fprintf fmt "%a@ " Types.print_ty nd.node_type
927
  | ImportedNode ind ->
928
    fprintf fmt "%s: " ind.nodei_id;
929
    Utils.reset_names ();
930
    fprintf fmt "%a@ " Types.print_ty ind.nodei_type
931
  | Const _ | Include _ | Open _ | TypeDef _ -> ()
932

    
933
let pp_prog_type fmt tdecl_list =
934
  Utils.fprintf_list ~sep:"" pp_decl_type fmt tdecl_list
935

    
936
let pp_decl_clock fmt cdecl =
937
  match cdecl.top_decl_desc with
938
  | Node nd ->
939
    fprintf fmt "%s: " nd.node_id;
940
    Utils.reset_names ();
941
    fprintf fmt "%a@ " Clocks.print_ck nd.node_clock
942
  | ImportedNode ind ->
943
    fprintf fmt "%s: " ind.nodei_id;
944
    Utils.reset_names ();
945
    fprintf fmt "%a@ " Clocks.print_ck ind.nodei_clock
946
  | Const _ | Include _ | Open _ | TypeDef _ -> ()
947

    
948
let pp_prog_clock fmt prog =
949
  Utils.fprintf_list ~sep:"" pp_decl_clock fmt prog
950

    
951

    
952
(* filling node table with internal functions *)
953
let vdecls_of_typ_ck cpt ty =
954
  let loc = Location.dummy_loc in
955
  List.map
956
    (fun _ -> incr cpt;
957
              let name = sprintf "_var_%d" !cpt in
958
              mkvar_decl loc (name, mktyp loc Tydec_any, mkclock loc Ckdec_any, false, None, None))
959
    (Types.type_list_of_type ty)
960

    
961
let mk_internal_node id =
962
  let spec = None in
963
  let ty = Env.lookup_value Basic_library.type_env id in
964
  let ck = Env.lookup_value Basic_library.clock_env id in
965
  let (tin, tout) = Types.split_arrow ty in
966
  (*eprintf "internal fun %s: %d -> %d@." id (List.length (Types.type_list_of_type tin)) (List.length (Types.type_list_of_type tout));*)
967
  let cpt = ref (-1) in
968
  mktop
969
    (ImportedNode
970
       {nodei_id = id;
971
	nodei_type = ty;
972
	nodei_clock = ck;
973
	nodei_inputs = vdecls_of_typ_ck cpt tin;
974
	nodei_outputs = vdecls_of_typ_ck cpt tout;
975
	nodei_stateless = Types.get_static_value ty <> None;
976
	nodei_spec = spec;
977
	(* nodei_annot = []; *)
978
	nodei_prototype = None;
979
       	nodei_in_lib = [];
980
       })
981

    
982
let add_internal_funs () =
983
  List.iter
984
    (fun id -> let nd = mk_internal_node id in Hashtbl.add node_table id nd)
985
    Basic_library.internal_funs
986

    
987

    
988

    
989
(* Replace any occurence of a var in vars_to_replace by its associated
990
   expression in defs until e does not contain any such variables *)
991
let rec substitute_expr vars_to_replace defs e =
992
  let se = substitute_expr vars_to_replace defs in
993
  { e with expr_desc = 
994
      let ed = e.expr_desc in
995
      match ed with
996
      | Expr_const _ -> ed
997
      | Expr_array el -> Expr_array (List.map se el)
998
      | Expr_access (e1, d) -> Expr_access (se e1, d)
999
      | Expr_power (e1, d) -> Expr_power (se e1, d)
1000
      | Expr_tuple el -> Expr_tuple (List.map se el)
1001
      | Expr_ite (c, t, e) -> Expr_ite (se c, se t, se e)
1002
      | Expr_arrow (e1, e2)-> Expr_arrow (se e1, se e2) 
1003
      | Expr_fby (e1, e2) -> Expr_fby (se e1, se e2)
1004
      | Expr_pre e' -> Expr_pre (se e')
1005
      | Expr_when (e', i, l)-> Expr_when (se e', i, l)
1006
      | Expr_merge (i, hl) -> Expr_merge (i, List.map (fun (t, h) -> (t, se h)) hl)
1007
      | Expr_appl (i, e', i') -> Expr_appl (i, se e', i')
1008
      | Expr_ident i -> 
1009
	if List.exists (fun v -> v.var_id = i) vars_to_replace then (
1010
	  let eq_i eq = eq.eq_lhs = [i] in
1011
	  if List.exists eq_i defs then
1012
	    let sub = List.find eq_i defs in
1013
	    let sub' = se sub.eq_rhs in
1014
	    sub'.expr_desc
1015
	  else 
1016
	    assert false
1017
	)
1018
	else
1019
	  ed
1020

    
1021
  }
1022
  
1023
 let rec expr_to_eexpr  expr =
1024
   { eexpr_tag = expr.expr_tag;
1025
     eexpr_qfexpr = expr;
1026
     eexpr_quantifiers = [];
1027
     eexpr_type = expr.expr_type;
1028
     eexpr_clock = expr.expr_clock;
1029
     eexpr_loc = expr.expr_loc;
1030
   }
1031
 (* and expr_desc_to_eexpr_desc expr_desc = *)
1032
 (*   let conv = expr_to_eexpr in *)
1033
 (*   match expr_desc with *)
1034
 (*   | Expr_const c -> EExpr_const (match c with *)
1035
 (*     | Const_int x -> EConst_int x  *)
1036
 (*     | Const_real x -> EConst_real x  *)
1037
 (*     | Const_float x -> EConst_float x  *)
1038
 (*     | Const_tag x -> EConst_tag x  *)
1039
 (*     | _ -> assert false *)
1040

    
1041
 (*   ) *)
1042
 (*   | Expr_ident i -> EExpr_ident i *)
1043
 (*   | Expr_tuple el -> EExpr_tuple (List.map conv el) *)
1044

    
1045
 (*   | Expr_arrow (e1, e2)-> EExpr_arrow (conv e1, conv e2)  *)
1046
 (*   | Expr_fby (e1, e2) -> EExpr_fby (conv e1, conv e2) *)
1047
 (*   | Expr_pre e' -> EExpr_pre (conv e') *)
1048
 (*   | Expr_appl (i, e', i') ->  *)
1049
 (*     EExpr_appl  *)
1050
 (*       (i, conv e', match i' with None -> None | Some(id, _) -> Some id) *)
1051

    
1052
 (*   | Expr_when _ *)
1053
 (*   | Expr_merge _ -> assert false *)
1054
 (*   | Expr_array _  *)
1055
 (*   | Expr_access _  *)
1056
 (*   | Expr_power _  -> assert false *)
1057
 (*   | Expr_ite (c, t, e) -> assert false  *)
1058
 (*   | _ -> assert false *)
1059
      
1060
     
1061
let rec get_expr_calls nodes e =
1062
  let get_calls = get_expr_calls nodes in
1063
  match e.expr_desc with
1064
  | Expr_const _ 
1065
   | Expr_ident _ -> Utils.ISet.empty
1066
   | Expr_tuple el
1067
   | Expr_array el -> List.fold_left (fun accu e -> Utils.ISet.union accu (get_calls e)) Utils.ISet.empty el
1068
   | Expr_pre e1 
1069
   | Expr_when (e1, _, _) 
1070
   | Expr_access (e1, _) 
1071
   | Expr_power (e1, _) -> get_calls e1
1072
   | Expr_ite (c, t, e) -> Utils.ISet.union (Utils.ISet.union (get_calls c) (get_calls t)) (get_calls e) 
1073
   | Expr_arrow (e1, e2) 
1074
   | Expr_fby (e1, e2) -> Utils.ISet.union (get_calls e1) (get_calls e2)
1075
   | Expr_merge (_, hl) -> List.fold_left (fun accu (_, h) -> Utils.ISet.union accu (get_calls h)) Utils.ISet.empty  hl
1076
   | Expr_appl (i, e', i') -> 
1077
     if Basic_library.is_expr_internal_fun e then 
1078
       (get_calls e') 
1079
     else
1080
       let calls =  Utils.ISet.add i (get_calls e') in
1081
       let test = (fun n -> match n.top_decl_desc with Node nd -> nd.node_id = i | _ -> false) in
1082
       if List.exists test nodes then
1083
	 match (List.find test nodes).top_decl_desc with
1084
	 | Node nd -> Utils.ISet.union (get_node_calls nodes nd) calls
1085
	 | _ -> assert false
1086
       else 
1087
	 calls
1088

    
1089
and get_eq_calls nodes eq =
1090
  get_expr_calls nodes eq.eq_rhs
1091
and get_aut_handler_calls nodes h =
1092
  List.fold_left (fun accu stmt -> match stmt with
1093
  | Eq eq -> Utils.ISet.union (get_eq_calls nodes eq) accu
1094
  | Aut aut' ->  Utils.ISet.union (get_aut_calls nodes aut') accu
1095
  ) Utils.ISet.empty h.hand_stmts 
1096
and get_aut_calls nodes aut =
1097
  List.fold_left (fun accu h -> Utils.ISet.union (get_aut_handler_calls nodes h) accu)
1098
    Utils.ISet.empty aut.aut_handlers
1099
and get_node_calls nodes node =
1100
  let eqs, auts = get_node_eqs node in
1101
  let aut_calls =
1102
    List.fold_left
1103
      (fun accu aut -> Utils.ISet.union (get_aut_calls nodes aut) accu)
1104
      Utils.ISet.empty auts
1105
  in
1106
  List.fold_left
1107
    (fun accu eq -> Utils.ISet.union (get_eq_calls nodes eq) accu)
1108
    aut_calls eqs
1109

    
1110
let get_expr_vars e =
1111
  let rec get_expr_vars vars e =
1112
    get_expr_desc_vars vars e.expr_desc
1113
  and get_expr_desc_vars vars expr_desc =
1114
    (*Format.eprintf "get_expr_desc_vars expr=%a@." Printers.pp_expr (mkexpr Location.dummy_loc expr_desc);*)
1115
  match expr_desc with
1116
  | Expr_const _ -> vars
1117
  | Expr_ident x -> Utils.ISet.add x vars
1118
  | Expr_tuple el
1119
  | Expr_array el -> List.fold_left get_expr_vars vars el
1120
  | Expr_pre e1 -> get_expr_vars vars e1
1121
  | Expr_when (e1, c, _) -> get_expr_vars (Utils.ISet.add c vars) e1 
1122
  | Expr_access (e1, d) 
1123
  | Expr_power (e1, d)   -> List.fold_left get_expr_vars vars [e1; expr_of_dimension d]
1124
  | Expr_ite (c, t, e) -> List.fold_left get_expr_vars vars [c; t; e]
1125
  | Expr_arrow (e1, e2) 
1126
  | Expr_fby (e1, e2) -> List.fold_left get_expr_vars vars [e1; e2]
1127
  | Expr_merge (c, hl) -> List.fold_left (fun vars (_, h) -> get_expr_vars vars h) (Utils.ISet.add c vars) hl
1128
  | Expr_appl (_, arg, None)   -> get_expr_vars vars arg
1129
  | Expr_appl (_, arg, Some r) -> List.fold_left get_expr_vars vars [arg; r]
1130
  in
1131
  get_expr_vars Utils.ISet.empty e 
1132

    
1133
let rec expr_has_arrows e =
1134
  expr_desc_has_arrows e.expr_desc
1135
and expr_desc_has_arrows expr_desc =
1136
  match expr_desc with
1137
  | Expr_const _ 
1138
  | Expr_ident _ -> false
1139
  | Expr_tuple el
1140
  | Expr_array el -> List.exists expr_has_arrows el
1141
  | Expr_pre e1 
1142
  | Expr_when (e1, _, _) 
1143
  | Expr_access (e1, _) 
1144
  | Expr_power (e1, _) -> expr_has_arrows e1
1145
  | Expr_ite (c, t, e) -> List.exists expr_has_arrows [c; t; e]
1146
  | Expr_arrow (e1, e2) 
1147
  | Expr_fby (e1, e2) -> true
1148
  | Expr_merge (_, hl) -> List.exists (fun (_, h) -> expr_has_arrows h) hl
1149
  | Expr_appl (i, e', i') -> expr_has_arrows e'
1150

    
1151
and eq_has_arrows eq =
1152
  expr_has_arrows eq.eq_rhs
1153
and aut_has_arrows aut = List.exists (fun h -> List.exists (fun stmt -> match stmt with Eq eq -> eq_has_arrows eq | Aut aut' -> aut_has_arrows aut') h.hand_stmts ) aut.aut_handlers 
1154
and node_has_arrows node =
1155
  let eqs, auts = get_node_eqs node in
1156
  List.exists (fun eq -> eq_has_arrows eq) eqs || List.exists (fun aut -> aut_has_arrows aut) auts
1157

    
1158

    
1159

    
1160
let copy_var_decl vdecl =
1161
  mkvar_decl vdecl.var_loc ~orig:vdecl.var_orig (vdecl.var_id, vdecl.var_dec_type, vdecl.var_dec_clock, vdecl.var_dec_const, vdecl.var_dec_value, vdecl.var_parent_nodeid)
1162

    
1163
let copy_const cdecl =
1164
  { cdecl with const_type = Types.new_var () }
1165

    
1166
let copy_node nd =
1167
  { nd with
1168
    node_type     = Types.new_var ();
1169
    node_clock    = Clocks.new_var true;
1170
    node_inputs   = List.map copy_var_decl nd.node_inputs;
1171
    node_outputs  = List.map copy_var_decl nd.node_outputs;
1172
    node_locals   = List.map copy_var_decl nd.node_locals;
1173
    node_gencalls = [];
1174
    node_checks   = [];
1175
    node_stateless = None;
1176
  }
1177

    
1178
let copy_top top =
1179
  match top.top_decl_desc with
1180
  | Node nd -> { top with top_decl_desc = Node (copy_node nd)  }
1181
  | Const c -> { top with top_decl_desc = Const (copy_const c) }
1182
  | _       -> top
1183

    
1184
let copy_prog top_list =
1185
  List.map copy_top top_list
1186

    
1187

    
1188
let rec expr_contains_expr expr_tag expr  =
1189
  let search = expr_contains_expr expr_tag in
1190
  expr.expr_tag = expr_tag ||
1191
      (
1192
	match expr.expr_desc with
1193
	| Expr_const _ -> false
1194
	| Expr_array el -> List.exists search el
1195
	| Expr_access (e1, _) 
1196
	| Expr_power (e1, _) -> search e1
1197
	| Expr_tuple el -> List.exists search el
1198
	| Expr_ite (c, t, e) -> List.exists search [c;t;e]
1199
	| Expr_arrow (e1, e2)
1200
	| Expr_fby (e1, e2) -> List.exists search [e1; e2]
1201
	| Expr_pre e' 
1202
	| Expr_when (e', _, _) -> search e'
1203
	| Expr_merge (_, hl) -> List.exists (fun (_, h) -> search h) hl
1204
	| Expr_appl (_, e', None) -> search e' 
1205
	| Expr_appl (_, e', Some e'') -> List.exists search [e'; e''] 
1206
	| Expr_ident _ -> false
1207
      )
1208

    
1209

    
1210

    
1211
(* Generate a new local [node] variable *)
1212
let cpt_fresh = ref 0
1213

    
1214
let reset_cpt_fresh () =
1215
    cpt_fresh := 0
1216
    
1217
let mk_fresh_var (parentid, ctx_env) loc ty ck =
1218
  let rec aux () =
1219
  incr cpt_fresh;
1220
  let s = Printf.sprintf "__%s_%d" parentid !cpt_fresh in
1221
  if List.exists (fun v -> v.var_id = s) ctx_env then aux () else
1222
  {
1223
    var_id = s;
1224
    var_orig = false;
1225
    var_dec_type = dummy_type_dec;
1226
    var_dec_clock = dummy_clock_dec;
1227
    var_dec_const = false;
1228
    var_dec_value = None;
1229
    var_parent_nodeid = Some parentid;
1230
    var_type = ty;
1231
    var_clock = ck;
1232
    var_loc = loc
1233
  }
1234
  in aux ()
1235

    
1236

    
1237
let find_eq xl eqs =
1238
  let rec aux accu eqs =
1239
    match eqs with
1240
	| [] ->
1241
	  begin
1242
	    Format.eprintf "Looking for variables %a in the following equations@.%a@."
1243
	      (Utils.fprintf_list ~sep:" , " (fun fmt v -> Format.fprintf fmt "%s" v)) xl
1244
	      Printers.pp_node_eqs eqs;
1245
	    assert false
1246
	  end
1247
	| hd::tl ->
1248
	  if List.exists (fun x -> List.mem x hd.eq_lhs) xl then hd, accu@tl else aux (hd::accu) tl
1249
    in
1250
    aux [] eqs
1251

    
1252
(* Local Variables: *)
1253
(* compile-command:"make -C .." *)
1254
(* End: *)
(16-16/66)