Project

General

Profile

Download (25.4 KB) Statistics
| Branch: | Tag: | Revision:
1
(* ----------------------------------------------------------------------------
2
 * SchedMCore - A MultiCore Scheduling Framework
3
 * Copyright (C) 2009-2011, ONERA, Toulouse, FRANCE - LIFL, Lille, FRANCE
4
 *
5
 * This file is part of Prelude
6
 *
7
 * Prelude is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public License
9
 * as published by the Free Software Foundation ; either version 2 of
10
 * the License, or (at your option) any later version.
11
 *
12
 * Prelude is distributed in the hope that it will be useful, but
13
 * WITHOUT ANY WARRANTY ; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with this program ; if not, write to the Free Software
19
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
20
 * USA
21
 *---------------------------------------------------------------------------- *)
22

    
23
(** Main typing module. Classic inference algorithm with destructive
24
    unification. *)
25

    
26
let debug fmt args = () (* Format.eprintf "%a"  *)
27
(* Though it shares similarities with the clock calculus module, no code
28
    is shared.  Simple environments, very limited identifier scoping, no
29
    identifier redefinition allowed. *)
30

    
31
open Utils
32
(* Yes, opening both modules is dirty as some type names will be
33
   overwritten, yet this makes notations far lighter.*)
34
open LustreSpec
35
open Corelang
36
open Types
37
open Format
38

    
39
let pp_typing_env fmt env =
40
  Env.pp_env print_ty fmt env
41

    
42
(** [occurs tvar ty] returns true if the type variable [tvar] occurs in
43
    type [ty]. False otherwise. *)
44
let rec occurs tvar ty =
45
  let ty = repr ty in
46
  match ty.tdesc with
47
  | Tvar -> ty=tvar
48
  | Tarrow (t1, t2) ->
49
      (occurs tvar t1) || (occurs tvar t2)
50
  | Ttuple tl ->
51
      List.exists (occurs tvar) tl
52
  | Tarray (_, t)
53
  | Tstatic (_, t)
54
  | Tclock t
55
  | Tlink t -> occurs tvar t
56
  | Tenum _ | Tconst _ | Tunivar | Tint | Treal | Tbool | Trat -> false
57

    
58
(** Promote monomorphic type variables to polymorphic type variables. *)
59
(* Generalize by side-effects *)
60
let rec generalize ty =
61
  match ty.tdesc with
62
  | Tvar ->
63
      (* No scopes, always generalize *)
64
      ty.tdesc <- Tunivar
65
  | Tarrow (t1,t2) ->
66
      generalize t1; generalize t2
67
  | Ttuple tlist ->
68
      List.iter generalize tlist
69
  | Tstatic (d, t)
70
  | Tarray (d, t) -> Dimension.generalize d; generalize t
71
  | Tclock t
72
  | Tlink t ->
73
      generalize t
74
  | Tenum _ | Tconst _ | Tunivar | Tint | Treal | Tbool | Trat -> ()
75

    
76
(** Downgrade polymorphic type variables to monomorphic type variables *)
77
let rec instantiate inst_vars inst_dim_vars ty =
78
  let ty = repr ty in
79
  match ty.tdesc with
80
  | Tenum _ | Tconst _ | Tvar | Tint | Treal | Tbool | Trat -> ty
81
  | Tarrow (t1,t2) ->
82
      {ty with tdesc =
83
       Tarrow ((instantiate inst_vars inst_dim_vars t1), (instantiate inst_vars inst_dim_vars t2))}
84
  | Ttuple tlist ->
85
      {ty with tdesc = Ttuple (List.map (instantiate inst_vars inst_dim_vars) tlist)}
86
  | Tclock t ->
87
	{ty with tdesc = Tclock (instantiate inst_vars inst_dim_vars t)}
88
  | Tstatic (d, t) ->
89
	{ty with tdesc = Tstatic (Dimension.instantiate inst_dim_vars d, instantiate inst_vars inst_dim_vars t)}
90
  | Tarray (d, t) ->
91
	{ty with tdesc = Tarray (Dimension.instantiate inst_dim_vars d, instantiate inst_vars inst_dim_vars t)}
92
  | Tlink t ->
93
	(* should not happen *)
94
	{ty with tdesc = Tlink (instantiate inst_vars inst_dim_vars t)}
95
  | Tunivar ->
96
      try
97
        List.assoc ty.tid !inst_vars
98
      with Not_found ->
99
        let var = new_var () in
100
	inst_vars := (ty.tid, var)::!inst_vars;
101
	var
102

    
103
(* [type_coretype cty] types the type declaration [cty] *)
104
let rec type_coretype type_dim cty =
105
  match (*get_repr_type*) cty with
106
  | Tydec_any -> new_var ()
107
  | Tydec_int -> Type_predef.type_int
108
  | Tydec_real -> Type_predef.type_real
109
  | Tydec_float -> Type_predef.type_real
110
  | Tydec_bool -> Type_predef.type_bool
111
  | Tydec_clock ty -> Type_predef.type_clock (type_coretype type_dim ty)
112
  | Tydec_const c -> Type_predef.type_const c
113
  | Tydec_enum tl -> Type_predef.type_enum tl
114
  | Tydec_array (d, ty) ->
115
    begin
116
      type_dim d;
117
      Type_predef.type_array d (type_coretype type_dim ty)
118
    end
119

    
120
(* [coretype_type is the reciprocal of [type_typecore] *)
121
let rec coretype_type ty =
122
 match (repr ty).tdesc with
123
 | Tvar           -> Tydec_any
124
 | Tint           -> Tydec_int
125
 | Treal          -> Tydec_real
126
 | Tbool          -> Tydec_bool
127
 | Tconst c       -> Tydec_const c
128
 | Tclock t       -> Tydec_clock (coretype_type t)
129
 | Tenum tl       -> Tydec_enum tl
130
 | Tarray (d, t)  -> Tydec_array (d, coretype_type t)
131
 | Tstatic (_, t) -> coretype_type t
132
 | _         -> assert false
133

    
134
let get_type_definition tname =
135
  try
136
    type_coretype (fun d -> ()) (Hashtbl.find type_table (Tydec_const tname))
137
  with Not_found -> raise (Error (Location.dummy_loc, Unbound_type tname))
138

    
139
(** [unify t1 t2] unifies types [t1] and [t2]. Raises [Unify
140
    (t1,t2)] if the types are not unifiable.*)
141
(* Standard destructive unification *)
142
let rec unify t1 t2 =
143
  let t1 = repr t1 in
144
  let t2 = repr t2 in
145
  if t1=t2 then
146
    ()
147
  else
148
    (* No type abbreviations resolution for now *)
149
    match t1.tdesc,t2.tdesc with
150
      (* This case is not mandory but will keep "older" types *)
151
    | Tvar, Tvar ->
152
        if t1.tid < t2.tid then
153
          t2.tdesc <- Tlink t1
154
        else
155
          t1.tdesc <- Tlink t2
156
    | (Tvar, _) when (not (occurs t1 t2)) ->
157
        t1.tdesc <- Tlink t2
158
    | (_,Tvar) when (not (occurs t2 t1)) ->
159
        t2.tdesc <- Tlink t1
160
    | Tarrow (t1,t2), Tarrow (t1',t2') ->
161
      begin
162
        unify t1 t1';
163
	unify t2 t2'
164
      end
165
    | Ttuple tlist1, Ttuple tlist2 ->
166
        if (List.length tlist1) <> (List.length tlist2) then
167
	  raise (Unify (t1, t2))
168
	else
169
          List.iter2 unify tlist1 tlist2
170
    | Tclock _, Tstatic _
171
    | Tstatic _, Tclock _ -> raise (Unify (t1, t2))
172
    | Tclock t1', _ -> unify t1' t2
173
    | _, Tclock t2' -> unify t1 t2'
174
    | Tint, Tint | Tbool, Tbool | Trat, Trat
175
    | Tunivar, _ | _, Tunivar -> ()
176
    | (Tconst t, _) ->
177
      let def_t = get_type_definition t in
178
      unify def_t t2
179
    | (_, Tconst t)  ->
180
      let def_t = get_type_definition t in
181
      unify t1 def_t
182
    | Tenum tl, Tenum tl' when tl == tl' -> ()
183
    | Tstatic (e1, t1'), Tstatic (e2, t2')
184
    | Tarray (e1, t1'), Tarray (e2, t2') ->
185
      begin
186
	unify t1' t2';
187
	Dimension.eval Basic_library.eval_env (fun c -> None) e1;
188
	Dimension.eval Basic_library.eval_env (fun c -> None) e2;
189
	Dimension.unify e1 e2;
190
      end
191
    | _,_ -> raise (Unify (t1, t2))
192

    
193
(** [semi_unify t1 t2] checks whether type [t1] is an instance of type [t2]. Raises [Unify
194
    (t1,t2)] if the types are not semi-unifiable.*)
195
(* Standard destructive semi-unification *)
196
let rec semi_unify t1 t2 =
197
  let t1 = repr t1 in
198
  let t2 = repr t2 in
199
  if t1=t2 then
200
    ()
201
  else
202
    (* No type abbreviations resolution for now *)
203
    match t1.tdesc,t2.tdesc with
204
      (* This case is not mandory but will keep "older" types *)
205
    | Tvar, Tvar ->
206
        if t1.tid < t2.tid then
207
          t2.tdesc <- Tlink t1
208
        else
209
          t1.tdesc <- Tlink t2
210
    | (Tvar, _) -> raise (Unify (t1, t2))
211
    | (_,Tvar) when (not (occurs t2 t1)) ->
212
        t2.tdesc <- Tlink t1
213
    | Tarrow (t1,t2), Tarrow (t1',t2') ->
214
      begin
215
        unify t1 t1';
216
	unify t2 t2'
217
      end
218
    | Ttuple tlist1, Ttuple tlist2 ->
219
        if (List.length tlist1) <> (List.length tlist2) then
220
	  raise (Unify (t1, t2))
221
	else
222
          List.iter2 semi_unify tlist1 tlist2
223
    | Tclock _, Tstatic _
224
    | Tstatic _, Tclock _ -> raise (Unify (t1, t2))
225
    | Tclock t1', _ -> semi_unify t1' t2
226
    | _, Tclock t2' -> semi_unify t1 t2'
227
    | Tint, Tint | Tbool, Tbool | Trat, Trat
228
    | Tunivar, _ | _, Tunivar -> ()
229
    | (Tconst t, _) ->
230
      let def_t = get_type_definition t in
231
      semi_unify def_t t2
232
    | (_, Tconst t)  ->
233
      let def_t = get_type_definition t in
234
      semi_unify t1 def_t
235
    | Tenum tl, Tenum tl' when tl == tl' -> ()
236
    | Tstatic (e1, t1'), Tstatic (e2, t2')
237
    | Tarray (e1, t1'), Tarray (e2, t2') ->
238
      begin
239
	semi_unify t1' t2';
240
	Dimension.eval Basic_library.eval_env (fun c -> None) e1;
241
	Dimension.eval Basic_library.eval_env (fun c -> None) e2;
242
	Dimension.semi_unify e1 e2;
243
      end
244
    | _,_ -> raise (Unify (t1, t2))
245

    
246
let try_unify ty1 ty2 loc =
247
  try
248
    unify ty1 ty2
249
  with
250
  | Unify _ ->
251
    raise (Error (loc, Type_clash (ty1,ty2)))
252
  | Dimension.Unify _ ->
253
    raise (Error (loc, Type_clash (ty1,ty2)))
254

    
255
let rec type_const loc c = 
256
  match c with
257
  | Const_int _ -> Type_predef.type_int
258
  | Const_real _ -> Type_predef.type_real
259
  | Const_float _ -> Type_predef.type_real
260
  | Const_array ca -> let d = Dimension.mkdim_int loc (List.length ca) in
261
		      let ty = new_var () in
262
		      List.iter (fun e -> try_unify (type_const loc e) ty loc) ca;
263
		      Type_predef.type_array d ty
264
  | Const_tag t  ->
265
    if Hashtbl.mem tag_table t
266
    then type_coretype (fun d -> ()) (Hashtbl.find tag_table t)
267
    else raise (Error (loc, Unbound_value ("enum tag " ^ t)))
268

    
269
(* The following typing functions take as parameter an environment [env]
270
   and whether the element being typed is expected to be constant [const]. 
271
   [env] is a pair composed of:
272
  - a map from ident to type, associating to each ident, i.e. 
273
    variables, constants and (imported) nodes, its type including whether
274
    it is constant or not. This latter information helps in checking constant 
275
    propagation policy in Lustre.
276
  - a vdecl list, in order to modify types of declared variables that are
277
    later discovered to be clocks during the typing process.
278
*)
279
let check_constant loc const_expected const_real =
280
  if const_expected && not const_real
281
  then raise (Error (loc, Not_a_constant))
282

    
283
let rec type_standard_args env in_main const expr_list =
284
  let ty_list = List.map (fun e -> dynamic_type (type_expr env in_main const e)) expr_list in
285
  let ty_res = new_var () in
286
  List.iter2 (fun e ty -> try_unify ty_res ty e.expr_loc) expr_list ty_list;
287
  ty_res
288

    
289
(* emulates a subtyping relation between types t and (d : t),
290
   used during node applications and assignments *)
291
and type_subtyping_arg env in_main ?(sub=true) const real_arg formal_type =
292
  let loc = real_arg.expr_loc in
293
  let const = const || (Types.get_static_value formal_type <> None) in
294
  let real_type = type_expr env in_main const real_arg in
295
  let real_type =
296
    if const
297
    then let d =
298
	   if is_dimension_type real_type
299
	   then dimension_of_expr real_arg
300
	   else Dimension.mkdim_var () in
301
	 let eval_const id = Types.get_static_value (Env.lookup_value (fst env) id) in
302
	 Dimension.eval Basic_library.eval_env eval_const d;
303
	 let real_static_type = Type_predef.type_static d (Types.dynamic_type real_type) in
304
	 (match Types.get_static_value real_type with
305
	 | None    -> ()
306
	 | Some d' -> try_unify real_type real_static_type loc);
307
	 real_static_type
308
    else real_type in
309
(*Format.eprintf "subtyping const %B real %a:%a vs formal %a@." const Printers.pp_expr real_arg Types.print_ty real_type Types.print_ty formal_type;*)
310
  match (repr real_type).tdesc, (repr formal_type).tdesc with
311
  | Tstatic _          , Tstatic _ when sub -> try_unify formal_type real_type loc
312
  | Tstatic (r_d, r_ty), _         when sub -> try_unify formal_type r_ty loc
313
  | _                                       -> try_unify formal_type real_type loc
314

    
315
and type_ident env in_main loc const id =
316
  type_expr env in_main const (expr_of_ident id loc)
317

    
318
(* typing an application implies:
319
   - checking that const formal parameters match real const (maybe symbolic) arguments
320
   - checking type adequation between formal and real arguments
321
*)
322
and type_appl env in_main loc const f args =
323
  let tfun = type_ident env in_main loc const f in
324
  let tins, touts = split_arrow tfun in
325
  let tins = type_list_of_type tins in
326
  let args = expr_list_of_expr args in
327
  List.iter2 (type_subtyping_arg env in_main const) args tins;
328
  touts
329

    
330
(** [type_expr env in_main expr] types expression [expr] in environment
331
    [env], expecting it to be [const] or not. *)
332
and type_expr env in_main const expr =
333
  let res = 
334
  match expr.expr_desc with
335
  | Expr_const c ->
336
    let ty = type_const expr.expr_loc c in
337
    let ty = Type_predef.type_static (Dimension.mkdim_var ()) ty in
338
    expr.expr_type <- ty;
339
    ty
340
  | Expr_ident v ->
341
    let tyv =
342
      try
343
        Env.lookup_value (fst env) v
344
      with Not_found ->
345
	Format.eprintf "Failure in typing expr %a@." Printers.pp_expr expr;
346
        raise (Error (expr.expr_loc, Unbound_value ("identifier " ^ v)))
347
    in
348
    let ty = instantiate (ref []) (ref []) tyv in
349
    let ty' =
350
      if const
351
      then Type_predef.type_static (Dimension.mkdim_var ()) (new_var ())
352
      else new_var () in
353
    try_unify ty ty' expr.expr_loc;
354
    expr.expr_type <- ty;
355
    ty 
356
  | Expr_array elist ->
357
    let ty_elt = type_standard_args env in_main const elist in
358
    let d = Dimension.mkdim_int expr.expr_loc (List.length elist) in
359
    let ty = Type_predef.type_array d ty_elt in
360
    expr.expr_type <- ty;
361
    ty
362
  | Expr_access (e1, d) ->
363
    type_subtyping_arg env in_main true (expr_of_dimension d) Type_predef.type_int;
364
    let ty_elt = new_var () in
365
    let d = Dimension.mkdim_var () in
366
    type_subtyping_arg env in_main const e1 (Type_predef.type_array d ty_elt);
367
    expr.expr_type <- ty_elt;
368
    ty_elt
369
  | Expr_power (e1, d) ->
370
    let eval_const id = Types.get_static_value (Env.lookup_value (fst env) id) in
371
    type_subtyping_arg env in_main true (expr_of_dimension d) Type_predef.type_int;
372
    Dimension.eval Basic_library.eval_env eval_const d;
373
    let ty_elt = type_standard_args env in_main const [e1] in
374
    let ty = Type_predef.type_array d ty_elt in
375
    expr.expr_type <- ty;
376
    ty
377
  | Expr_tuple elist ->
378
    let ty = new_ty (Ttuple (List.map (type_expr env in_main const) elist)) in
379
    expr.expr_type <- ty;
380
    ty
381
  | Expr_ite (c, t, e) ->
382
    type_subtyping_arg env in_main const c Type_predef.type_bool;
383
    let ty = type_standard_args env in_main const [t; e] in
384
    expr.expr_type <- ty;
385
    ty
386
  | Expr_appl (id, args, r) ->
387
    (* application of non internal function is not legal in a constant
388
       expression *)
389
    (match r with
390
    | None        -> ()
391
    | Some (x, l) -> 
392
      check_constant expr.expr_loc const false;
393
      let expr_x = expr_of_ident x expr.expr_loc in	
394
      let typ_l = 
395
	Type_predef.type_clock 
396
	  (type_const expr.expr_loc (Const_tag l)) in
397
      type_subtyping_arg env in_main ~sub:false const expr_x typ_l);
398
    let touts = type_appl env in_main expr.expr_loc const id args in
399
    expr.expr_type <- touts;
400
    touts
401
  | Expr_fby (e1,e2)
402
  | Expr_arrow (e1,e2) ->
403
    (* fby/arrow is not legal in a constant expression *)
404
    check_constant expr.expr_loc const false;
405
    let ty = type_standard_args env in_main const [e1; e2] in
406
    expr.expr_type <- ty;
407
    ty
408
  | Expr_pre e ->
409
    (* pre is not legal in a constant expression *)
410
    check_constant expr.expr_loc const false;
411
    let ty = type_standard_args env in_main const [e] in
412
    expr.expr_type <- ty;
413
    ty
414
  | Expr_when (e1,c,l) ->
415
    (* when is not legal in a constant expression *)
416
    check_constant expr.expr_loc const false;
417
    let typ_l = Type_predef.type_clock (type_const expr.expr_loc (Const_tag l)) in
418
    let expr_c = expr_of_ident c expr.expr_loc in
419
    type_subtyping_arg env in_main ~sub:false const expr_c typ_l;
420
    update_clock env in_main c expr.expr_loc typ_l;
421
    let ty = type_standard_args env in_main const [e1] in
422
    expr.expr_type <- ty;
423
    ty
424
  | Expr_merge (c,hl) ->
425
    (* merge is not legal in a constant expression *)
426
    check_constant expr.expr_loc const false;
427
    let typ_in, typ_out = type_branches env in_main expr.expr_loc const hl in
428
    let expr_c = expr_of_ident c expr.expr_loc in
429
    let typ_l = Type_predef.type_clock typ_in in
430
    type_subtyping_arg env in_main ~sub:false const expr_c typ_l;
431
    update_clock env in_main c expr.expr_loc typ_l;
432
    expr.expr_type <- typ_out;
433
    typ_out
434
  | Expr_uclock (e,k) | Expr_dclock (e,k) ->
435
      let ty = type_expr env in_main const e in
436
      expr.expr_type <- ty;
437
      ty
438
  | Expr_phclock (e,q) ->
439
      let ty = type_expr env in_main const e in
440
      expr.expr_type <- ty;
441
      ty
442
  in (*Format.eprintf "typing %B %a at %a = %a@." const Printers.pp_expr expr Location.pp_loc expr.expr_loc Types.print_ty res;*) res
443

    
444
and type_branches env in_main loc const hl =
445
  let typ_in = new_var () in
446
  let typ_out = new_var () in
447
  try
448
    let used_labels =
449
      List.fold_left (fun accu (t, h) ->
450
	unify typ_in (type_const loc (Const_tag t));
451
	type_subtyping_arg env in_main const h typ_out;
452
	if List.mem t accu
453
	then raise (Error (loc, Already_bound t))
454
	else t :: accu) [] hl in
455
    let type_labels = get_enum_type_tags (coretype_type typ_in) in
456
    if List.sort compare used_labels <> List.sort compare type_labels
457
    then let unbound_tag = List.find (fun t -> not (List.mem t used_labels)) type_labels in
458
	 raise (Error (loc, Unbound_value ("branching tag " ^ unbound_tag)))
459
    else (typ_in, typ_out)
460
  with Unify (t1, t2) ->
461
    raise (Error (loc, Type_clash (t1,t2)))
462

    
463
and update_clock env in_main id loc typ =
464
 (*Log.report ~level:1 (fun fmt -> Format.fprintf fmt "update_clock %s with %a@ " id print_ty typ);*)
465
 try
466
   let vdecl = List.find (fun v -> v.var_id = id) (snd env)
467
   in vdecl.var_type <- typ
468
 with
469
   Not_found ->
470
   raise (Error (loc, Unbound_value ("clock " ^ id)))
471

    
472
(** [type_eq env eq] types equation [eq] in environment [env] *)
473
let type_eq env in_main undefined_vars eq =
474
  (* Check undefined variables, type lhs *)
475
  let expr_lhs = expr_of_expr_list eq.eq_loc (List.map (fun v -> expr_of_ident v eq.eq_loc) eq.eq_lhs) in
476
  let ty_lhs = type_expr env in_main false expr_lhs in
477
  (* Check multiple variable definitions *)
478
  let define_var id uvars =
479
    try
480
      ignore(IMap.find id uvars);
481
      IMap.remove id uvars
482
    with Not_found ->
483
      raise (Error (eq.eq_loc, Already_defined id))
484
  in
485
  let undefined_vars =
486
    List.fold_left (fun uvars v -> define_var v uvars) undefined_vars eq.eq_lhs in
487
  (* Type rhs wrt to lhs type with subtyping, i.e. a constant rhs value may be assigned
488
     to a (always non-constant) lhs variable *)
489
  type_subtyping_arg env in_main true eq.eq_rhs ty_lhs;
490
  undefined_vars
491

    
492

    
493
(* [type_coreclock env ck id loc] types the type clock declaration [ck]
494
   in environment [env] *)
495
let type_coreclock env ck id loc =
496
  match ck.ck_dec_desc with
497
  | Ckdec_any | Ckdec_pclock (_,_) -> ()
498
  | Ckdec_bool cl ->
499
      let dummy_id_expr = expr_of_ident id loc in
500
      let when_expr =
501
        List.fold_left
502
          (fun expr (x, l) ->
503
                {expr_tag = new_tag ();
504
                 expr_desc= Expr_when (expr,x,l);
505
                 expr_type = new_var ();
506
                 expr_clock = Clocks.new_var true;
507
                 expr_delay = Delay.new_var ();
508
                 expr_loc=loc;
509
		 expr_annot = None})
510
          dummy_id_expr cl
511
      in
512
Format.eprintf "yiihii@.";
513
      ignore (type_expr env false false when_expr)
514

    
515
let rec check_type_declaration loc cty =
516
 match cty with
517
 | Tydec_clock ty
518
 | Tydec_array (_, ty) -> check_type_declaration loc ty
519
 | Tydec_const tname   ->
520
   if not (Hashtbl.mem type_table cty)
521
   then raise (Error (loc, Unbound_type tname));
522
 | _                   -> ()
523

    
524
let type_var_decl vd_env env vdecl =
525
  check_type_declaration vdecl.var_loc vdecl.var_dec_type.ty_dec_desc;
526
  let eval_const id = Types.get_static_value (Env.lookup_value env id) in
527
  let type_dim d =
528
    begin
529
      type_subtyping_arg (env, vd_env) false true (expr_of_dimension d) Type_predef.type_int;
530
      Dimension.eval Basic_library.eval_env eval_const d;
531
    end in
532
  let ty = type_coretype type_dim vdecl.var_dec_type.ty_dec_desc in
533
  let ty_status =
534
    if vdecl.var_dec_const
535
    then Type_predef.type_static (Dimension.mkdim_var ()) ty
536
    else ty in
537
  let new_env = Env.add_value env vdecl.var_id ty_status in
538
  type_coreclock (new_env,vd_env) vdecl.var_dec_clock vdecl.var_id vdecl.var_loc;
539
  vdecl.var_type <- ty_status;
540
  new_env
541

    
542
let type_var_decl_list vd_env env l =
543
  List.fold_left (type_var_decl vd_env) env l
544

    
545
let type_of_vlist vars =
546
  let tyl = List.map (fun v -> v.var_type) vars in
547
  type_of_type_list tyl
548

    
549
let add_vdecl vd_env vdecl =
550
 if List.exists (fun v -> v.var_id = vdecl.var_id) vd_env
551
 then raise (Error (vdecl.var_loc, Already_bound vdecl.var_id))
552
 else vdecl::vd_env
553

    
554
let check_vd_env vd_env =
555
  ignore (List.fold_left add_vdecl [] vd_env)
556

    
557
(** [type_node env nd loc] types node [nd] in environment env. The
558
    location is used for error reports. *)
559
let type_node env nd loc =
560
  let is_main = nd.node_id = !Options.main_node in
561
  let vd_env_ol = nd.node_outputs@nd.node_locals in
562
  let vd_env =  nd.node_inputs@vd_env_ol in
563
  check_vd_env vd_env;
564
  let init_env = env in
565
  let delta_env = type_var_decl_list vd_env init_env nd.node_inputs in
566
  let delta_env = type_var_decl_list vd_env delta_env nd.node_outputs in
567
  let delta_env = type_var_decl_list vd_env delta_env nd.node_locals in
568
  let new_env = Env.overwrite env delta_env in
569
  let undefined_vars_init =
570
    List.fold_left
571
      (fun uvs v -> IMap.add v.var_id () uvs)
572
      IMap.empty vd_env_ol in
573
  let undefined_vars =
574
    List.fold_left (type_eq (new_env, vd_env) is_main) undefined_vars_init nd.node_eqs
575
  in
576
  (* check that table is empty *)
577
  if (not (IMap.is_empty undefined_vars)) then
578
    raise (Error (loc, Undefined_var undefined_vars));
579
  let ty_ins = type_of_vlist nd.node_inputs in
580
  let ty_outs = type_of_vlist nd.node_outputs in
581
  let ty_node = new_ty (Tarrow (ty_ins,ty_outs)) in
582
  generalize ty_node;
583
  (* TODO ? Check that no node in the hierarchy remains polymorphic ? *)
584
  nd.node_type <- ty_node;
585
  Env.add_value env nd.node_id ty_node
586

    
587
let type_imported_node env nd loc =
588
  let new_env = type_var_decl_list nd.nodei_inputs env nd.nodei_inputs in
589
  let vd_env = nd.nodei_inputs@nd.nodei_outputs in
590
  check_vd_env vd_env;
591
  ignore(type_var_decl_list vd_env new_env nd.nodei_outputs);
592
  let ty_ins = type_of_vlist nd.nodei_inputs in
593
  let ty_outs = type_of_vlist nd.nodei_outputs in
594
  let ty_node = new_ty (Tarrow (ty_ins,ty_outs)) in
595
  generalize ty_node;
596
(*
597
  if (is_polymorphic ty_node) then
598
    raise (Error (loc, Poly_imported_node nd.nodei_id));
599
*)
600
  let new_env = Env.add_value env nd.nodei_id ty_node in
601
  nd.nodei_type <- ty_node;
602
  new_env
603

    
604
let type_imported_fun env nd loc =
605
  let new_env = type_var_decl_list nd.fun_inputs env nd.fun_inputs in
606
  let vd_env =  nd.fun_inputs@nd.fun_outputs in
607
  check_vd_env vd_env;
608
  ignore(type_var_decl_list vd_env new_env nd.fun_outputs);
609
  let ty_ins = type_of_vlist nd.fun_inputs in
610
  let ty_outs = type_of_vlist nd.fun_outputs in
611
  let ty_node = new_ty (Tarrow (ty_ins,ty_outs)) in
612
  generalize ty_node;
613
(*
614
  if (is_polymorphic ty_node) then
615
    raise (Error (loc, Poly_imported_node nd.fun_id));
616
*)
617
  let new_env = Env.add_value env nd.fun_id ty_node in
618
  nd.fun_type <- ty_node;
619
  new_env
620

    
621
let type_top_consts env clist =
622
  List.fold_left (fun env cdecl ->
623
    let ty = type_const cdecl.const_loc cdecl.const_value in
624
    let d =
625
      if is_dimension_type ty
626
      then dimension_of_const cdecl.const_loc cdecl.const_value
627
      else Dimension.mkdim_var () in
628
    let ty = Type_predef.type_static d ty in
629
    let new_env = Env.add_value env cdecl.const_id ty in
630
    cdecl.const_type <- ty;
631
    new_env) env clist
632

    
633
let type_top_decl env decl =
634
  match decl.top_decl_desc with
635
  | Node nd ->
636
      type_node env nd decl.top_decl_loc
637
  | ImportedNode nd ->
638
      type_imported_node env nd decl.top_decl_loc
639
  | ImportedFun nd ->
640
      type_imported_fun env nd decl.top_decl_loc
641
  | Consts clist ->
642
      type_top_consts env clist
643
  | Open _  -> env
644

    
645
let type_prog env decls =
646
try
647
  List.fold_left type_top_decl env decls
648
with Failure _ as exc -> raise exc
649

    
650
(* Once the Lustre program is fully typed,
651
   we must get back to the original description of dimensions,
652
   with constant parameters, instead of unifiable internal variables. *)
653

    
654
(* The following functions aims at 'unevaluating' dimension expressions occuring in array types,
655
   i.e. replacing unifiable second_order variables with the original static parameters.
656
   Once restored in this formulation, dimensions may be meaningfully printed.
657
*)
658
(*
659
let uneval_vdecl_generics vdecl ty =
660
 if vdecl.var_dec_const
661
 then
662
   match get_static_value ty with
663
   | None   -> (Format.eprintf "internal error: %a@." Types.print_ty vdecl.var_type; assert false)
664
   | Some d -> Dimension.unify d (Dimension.mkdim_ident vdecl.var_loc vdecl.var_id)
665

    
666
let uneval_node_generics vdecls =
667
  let inst_typ_vars = ref [] in
668
  let inst_dim_vars = ref [] in
669
  let inst_ty_list = List.map (fun v -> instantiate inst_typ_vars inst_dim_vars v.var_type) vdecls in
670
  List.iter2 (fun v ty -> uneval_vdecl_generics v ty) vdecls inst_ty_list;
671
  List.iter2 (fun v ty -> generalize ty; v.var_type <- ty) vdecls inst_ty_list
672
*)
673
let uneval_vdecl_generics vdecl =
674
 if vdecl.var_dec_const
675
 then
676
   match get_static_value vdecl.var_type with
677
   | None   -> (Format.eprintf "internal error: %a@." Types.print_ty vdecl.var_type; assert false)
678
   | Some d -> Dimension.uneval vdecl.var_id d
679

    
680
let uneval_node_generics vdecls =
681
  List.iter uneval_vdecl_generics vdecls
682

    
683
let uneval_top_generics decl =
684
  match decl.top_decl_desc with
685
  | Node nd ->
686
      uneval_node_generics (nd.node_inputs @ nd.node_outputs)
687
  | ImportedNode nd ->
688
      uneval_node_generics (nd.nodei_inputs @ nd.nodei_outputs)
689
  | ImportedFun nd ->
690
      ()
691
  | Consts clist -> ()
692
  | Open _  -> ()
693

    
694
let uneval_prog_generics prog =
695
 List.iter uneval_top_generics prog
696

    
697
let check_env_compat declared computed =
698
  Env.iter declared (fun k decl_type_k -> 
699
    let computed_t = Env.lookup_value computed k in
700
    try_unify decl_type_k computed_t Location.dummy_loc
701
  ) 
702

    
703
(* Local Variables: *)
704
(* compile-command:"make -C .." *)
705
(* End: *)
(43-43/44)