7 |
7 |
|
8 |
8 |
let inout_vars = ref []
|
9 |
9 |
|
10 |
|
let print_tautology_var fmt v =
|
11 |
|
match (Types.repr v.var_type).Types.tdesc with
|
12 |
|
| Types.Tbool -> Format.fprintf fmt "(%s or not %s)" v.var_id v.var_id
|
13 |
|
| Types.Tint -> Format.fprintf fmt "(%s > 0 or %s <= 0)" v.var_id v.var_id
|
14 |
|
| Types.Treal -> Format.fprintf fmt "(%s > 0 or %s <= 0)" v.var_id v.var_id
|
15 |
|
| _ -> Format.fprintf fmt "(true)"
|
|
10 |
(* This was used to add inout variables in the final signature. May have to be
|
|
11 |
reactivated later *)
|
|
12 |
|
|
13 |
(* let print_tautology_var fmt v = *)
|
|
14 |
(* match (Types.repr v.var_type).Types.tdesc with *)
|
|
15 |
(* | Types.Tbool -> Format.fprintf fmt "(%s or not %s)" v.var_id v.var_id *)
|
|
16 |
(* | Types.Tint -> Format.fprintf fmt "(%s > 0 or %s <= 0)" v.var_id v.var_id *)
|
|
17 |
(* | Types.Treal -> Format.fprintf fmt "(%s > 0 or %s <= 0)" v.var_id v.var_id *)
|
|
18 |
(* | _ -> Format.fprintf fmt "(true)" *)
|
16 |
19 |
|
17 |
|
let print_path arg = match !inout_vars with
|
18 |
|
| [] -> Format.printf "%t@." arg
|
19 |
|
| l -> Format.printf "%t and %a@." arg (Utils.fprintf_list ~sep:" and " (fun fmt elem -> print_tautology_var fmt elem)) l
|
|
20 |
(* let print_path arg = match !inout_vars with *)
|
|
21 |
(* | [] -> Format.printf "%t@." arg *)
|
|
22 |
(* | l -> Format.printf "%t and %a@." arg (Utils.fprintf_list ~sep:" and " (fun fmt elem -> print_tautology_var fmt elem)) l *)
|
20 |
23 |
|
21 |
24 |
let rel_op = ["="; "!="; "<"; "<="; ">" ; ">=" ]
|
22 |
25 |
|
23 |
|
let rec print_pre fmt nb_pre =
|
24 |
|
if nb_pre <= 0 then ()
|
25 |
|
else (
|
26 |
|
Format.fprintf fmt "pre ";
|
27 |
|
print_pre fmt (nb_pre-1)
|
28 |
|
)
|
|
26 |
(* Used when we were printing the expression directly. Now we are constructing
|
|
27 |
them as regular expressions.
|
|
28 |
|
|
29 |
let rec print_pre fmt nb_pre = if nb_pre <= 0 then () else ( Format.fprintf
|
|
30 |
fmt "pre "; print_pre fmt (nb_pre-1) )
|
|
31 |
*)
|
|
32 |
|
|
33 |
let rec mk_pre n e =
|
|
34 |
if n <= 0 then
|
|
35 |
e
|
|
36 |
else
|
|
37 |
mkexpr e.expr_loc (Expr_pre e)
|
|
38 |
|
29 |
39 |
(*
|
30 |
|
let combine2 f sub1 sub2 =
|
31 |
|
let elem_e1 = List.fold_right IdSet.add (List.map fst sub1) IdSet.empty in
|
32 |
|
let elem_e2 = List.fold_right IdSet.add (List.map fst sub2) IdSet.empty in
|
33 |
|
let common = IdSet.inter elem_e1 elem_e2 in
|
34 |
|
let sub1_filtered = List.filter (fun (v, _) -> not (IdSet.mem v common)) sub1 in
|
35 |
|
let sub2_filtered = List.filter (fun (v, _) -> not (IdSet.mem v common)) sub2 in
|
36 |
|
(List.map (fun (v, negv) -> (v, f negv e2)) sub1_filtered) @
|
37 |
|
(List.map (fun (v, negv) -> (v, f e1 negv)) sub2_filtered) @
|
38 |
|
(List.map (fun v -> (v, {expr with expr_desc = Expr_arrow(List.assoc v sub1, List.assoc v sub2)}) (IdSet.elements common)) )
|
|
40 |
let combine2 f sub1 sub2 =
|
|
41 |
let elem_e1 = List.fold_right IdSet.add (List.map fst sub1) IdSet.empty in
|
|
42 |
let elem_e2 = List.fold_right IdSet.add (List.map fst sub2) IdSet.empty in
|
|
43 |
let common = IdSet.inter elem_e1 elem_e2 in
|
|
44 |
let sub1_filtered = List.filter (fun (v, _) -> not (IdSet.mem v common)) sub1 in
|
|
45 |
let sub2_filtered = List.filter (fun (v, _) -> not (IdSet.mem v common)) sub2 in
|
|
46 |
(List.map (fun (v, negv) -> (v, f negv e2)) sub1_filtered) @
|
|
47 |
(List.map (fun (v, negv) -> (v, f e1 negv)) sub2_filtered) @
|
|
48 |
(List.map (fun v -> (v, {expr with expr_desc = Expr_arrow(List.assoc v sub1, List.assoc v sub2)}) (IdSet.elements common)) )
|
39 |
49 |
*)
|
40 |
50 |
|
41 |
51 |
let rec select (v: expr * int) (active: bool list) (modified: ((expr * int) * expr) list list) (orig: expr list) =
|
... | ... | |
53 |
63 |
v, f (select v active_subs subs orig)
|
54 |
64 |
) (IdSet.elements all)
|
55 |
65 |
|
56 |
|
let rec compute_neg_expr cpt_pre expr =
|
|
66 |
|
|
67 |
(* In a previous version, the printer was introducing fake description, ie
|
|
68 |
tautologies, over inout variables to make sure they were not suppresed by
|
|
69 |
some other algorithms *)
|
|
70 |
|
|
71 |
(* Takes the variable on which these coverage criteria will apply, as well as
|
|
72 |
the expression and its negated version. Returns the expr and the variable
|
|
73 |
expression, as well as the two new boolean expressions descibing the two
|
|
74 |
associated modes. *)
|
|
75 |
let mcdc_var vi_as_expr expr expr_neg_vi =
|
|
76 |
let loc = expr.expr_loc in
|
|
77 |
let changed_expr = mkpredef_call loc "!=" [expr; expr_neg_vi] in
|
|
78 |
let not_vi_as_expr = mkpredef_call loc "not" [vi_as_expr] in
|
|
79 |
let expr1 = mkpredef_call loc "&&" [vi_as_expr; changed_expr] in
|
|
80 |
let expr2 = mkpredef_call loc "&&" [not_vi_as_expr; changed_expr] in
|
|
81 |
((expr,vi_as_expr),[expr1;expr2])
|
|
82 |
|
|
83 |
(* Format.printf "%a@." Printers.pp_expr expr1; *)
|
|
84 |
(* print_path (fun fmt -> Format.fprintf fmt "%a and (%a != %a)" *)
|
|
85 |
(* Printers.pp_expr vi_as_expr *)
|
|
86 |
(* Printers.pp_expr expr (\*v*\) *)
|
|
87 |
(* Printers.pp_expr expr_neg_vi); *)
|
|
88 |
(* Format.printf "%a@." Printers.pp_expr expr2; *)
|
|
89 |
(* print_path (fun fmt -> Format.fprintf fmt "(not %a) and (%a != %a)" *)
|
|
90 |
(* Printers.pp_expr vi_as_expr *)
|
|
91 |
(* Printers.pp_expr expr (\*v*\) *)
|
|
92 |
(* Printers.pp_expr expr_neg_vi) *)
|
|
93 |
|
|
94 |
let rec compute_neg_expr cpt_pre (expr: LustreSpec.expr) =
|
|
95 |
let neg_list l =
|
|
96 |
List.fold_right (fun e (vl,el) -> let vl', e' = compute_neg_expr cpt_pre e in (vl'@vl), e'::el) l ([], [])
|
|
97 |
in
|
57 |
98 |
match expr.expr_desc with
|
58 |
99 |
| Expr_tuple l ->
|
59 |
|
let neg = List.map (compute_neg_expr cpt_pre) l in
|
60 |
|
combine (fun l' -> {expr with expr_desc = Expr_tuple l'}) neg l
|
61 |
|
|
|
100 |
let vl, neg = neg_list l in
|
|
101 |
vl, combine (fun l' -> {expr with expr_desc = Expr_tuple l'}) neg l
|
|
102 |
|
62 |
103 |
| Expr_ite (i,t,e) when (Types.repr t.expr_type).Types.tdesc = Types.Tbool -> (
|
63 |
104 |
let list = [i; t; e] in
|
64 |
|
let neg = List.map (compute_neg_expr cpt_pre) list in
|
65 |
|
combine (fun l ->
|
|
105 |
let vl, neg = neg_list list in
|
|
106 |
vl, combine (fun l ->
|
66 |
107 |
match l with
|
67 |
108 |
| [i'; t'; e'] -> {expr with expr_desc = Expr_ite(i', t', e')}
|
68 |
109 |
| _ -> assert false
|
69 |
110 |
) neg list
|
70 |
111 |
)
|
71 |
112 |
| Expr_ite (i,t,e) -> ( (* We return the guard as a new guard *)
|
72 |
|
gen_mcdc_cond_guard i;
|
|
113 |
let vl = gen_mcdc_cond_guard i in
|
73 |
114 |
let list = [i; t; e] in
|
74 |
|
let neg = List.map (compute_neg_expr cpt_pre) list in
|
75 |
|
combine (fun l ->
|
|
115 |
let vl', neg = neg_list list in
|
|
116 |
vl@vl', combine (fun l ->
|
76 |
117 |
match l with
|
77 |
118 |
| [i'; t'; e'] -> {expr with expr_desc = Expr_ite(i', t', e')}
|
78 |
119 |
| _ -> assert false
|
79 |
120 |
) neg list
|
80 |
121 |
)
|
81 |
122 |
| Expr_arrow (e1, e2) ->
|
82 |
|
let e1' = compute_neg_expr cpt_pre e1 in
|
83 |
|
let e2' = compute_neg_expr cpt_pre e2 in
|
84 |
|
combine (fun l -> match l with
|
85 |
|
| [x;y] -> { expr with expr_desc = Expr_arrow (x, y) }
|
86 |
|
| _ -> assert false
|
87 |
|
) [e1'; e2'] [e1; e2]
|
88 |
|
| Expr_pre e ->
|
89 |
|
List.map
|
90 |
|
(fun (v, negv) -> (v, { expr with expr_desc = Expr_pre negv } ))
|
91 |
|
(compute_neg_expr (cpt_pre+1) e)
|
|
123 |
let vl1, e1' = compute_neg_expr cpt_pre e1 in
|
|
124 |
let vl2, e2' = compute_neg_expr cpt_pre e2 in
|
|
125 |
vl1@vl2, combine (fun l -> match l with
|
|
126 |
| [x;y] -> { expr with expr_desc = Expr_arrow (x, y) }
|
|
127 |
| _ -> assert false
|
|
128 |
) [e1'; e2'] [e1; e2]
|
|
129 |
|
|
130 |
| Expr_pre e ->
|
|
131 |
let vl, e' = compute_neg_expr (cpt_pre+1) e in
|
|
132 |
vl, List.map
|
|
133 |
(fun (v, negv) -> (v, { expr with expr_desc = Expr_pre negv } )) e'
|
92 |
134 |
|
93 |
135 |
| Expr_appl (op_name, args, r) when List.mem op_name rel_op ->
|
94 |
|
[(expr, cpt_pre), mkpredef_call expr.expr_loc "not" [expr]]
|
|
136 |
[], [(expr, cpt_pre), mkpredef_call expr.expr_loc "not" [expr]]
|
95 |
137 |
|
96 |
|
| Expr_appl (op_name, args, r) ->
|
97 |
|
List.map
|
98 |
|
(fun (v, negv) -> (v, { expr with expr_desc = Expr_appl (op_name, negv, r) } ))
|
99 |
|
(compute_neg_expr cpt_pre args)
|
|
138 |
| Expr_appl (op_name, args, r) ->
|
|
139 |
let vl, args' = compute_neg_expr cpt_pre args in
|
|
140 |
vl, List.map
|
|
141 |
(fun (v, negv) -> (v, { expr with expr_desc = Expr_appl (op_name, negv, r) } ))
|
|
142 |
args'
|
100 |
143 |
|
101 |
144 |
| Expr_ident _ when (Types.repr expr.expr_type).Types.tdesc = Types.Tbool ->
|
102 |
|
[(expr, cpt_pre), mkpredef_call expr.expr_loc "not" [expr]]
|
103 |
|
| _ -> []
|
104 |
|
|
105 |
|
and
|
106 |
|
gen_mcdc_cond_var v expr =
|
107 |
|
report ~level:1 (fun fmt -> Format.fprintf fmt ".. Generating MC/DC cond for boolean flow %s and expression %a@." v Printers.pp_expr expr);
|
108 |
|
let leafs_n_neg_expr = compute_neg_expr 0 expr in
|
|
145 |
[], [(expr, cpt_pre), mkpredef_call expr.expr_loc "not" [expr]]
|
|
146 |
| _ -> [] (* empty vars *) , []
|
|
147 |
and gen_mcdc_cond_var v expr =
|
|
148 |
report ~level:1 (fun fmt ->
|
|
149 |
Format.fprintf fmt ".. Generating MC/DC cond for boolean flow %s and expression %a@."
|
|
150 |
v
|
|
151 |
Printers.pp_expr expr);
|
|
152 |
let vl, leafs_n_neg_expr = compute_neg_expr 0 expr in
|
109 |
153 |
if List.length leafs_n_neg_expr > 1 then (
|
110 |
|
List.iter (fun ((vi, nb_pre), expr_neg_vi) ->
|
111 |
|
print_path (fun fmt -> Format.fprintf fmt "%a%a and (%s != %a)" print_pre nb_pre Printers.pp_expr vi v Printers.pp_expr expr_neg_vi);
|
112 |
|
print_path (fun fmt -> Format.fprintf fmt "(not %a%a) and (%s != %a)" print_pre nb_pre Printers.pp_expr vi v Printers.pp_expr expr_neg_vi)
|
113 |
|
) leafs_n_neg_expr
|
|
154 |
List.fold_left (fun accu ((vi, nb_pre), expr_neg_vi) ->
|
|
155 |
(mcdc_var (mk_pre nb_pre vi) expr expr_neg_vi)::accu
|
|
156 |
) vl leafs_n_neg_expr
|
114 |
157 |
)
|
|
158 |
else vl
|
115 |
159 |
|
116 |
160 |
and gen_mcdc_cond_guard expr =
|
117 |
|
report ~level:1 (fun fmt -> Format.fprintf fmt".. Generating MC/DC cond for guard %a@." Printers.pp_expr expr);
|
118 |
|
let leafs_n_neg_expr = compute_neg_expr 0 expr in
|
|
161 |
report ~level:1 (fun fmt ->
|
|
162 |
Format.fprintf fmt".. Generating MC/DC cond for guard %a@."
|
|
163 |
Printers.pp_expr expr);
|
|
164 |
let vl, leafs_n_neg_expr = compute_neg_expr 0 expr in
|
119 |
165 |
if List.length leafs_n_neg_expr > 1 then (
|
120 |
|
List.iter (fun ((vi, nb_pre), expr_neg_vi) ->
|
121 |
|
print_path (fun fmt -> Format.fprintf fmt "%a%a and (%a != %a)" print_pre nb_pre Printers.pp_expr vi Printers.pp_expr expr Printers.pp_expr expr_neg_vi);
|
122 |
|
print_path (fun fmt -> Format.fprintf fmt "(not %a%a) and (%a != %a)" print_pre nb_pre Printers.pp_expr vi Printers.pp_expr expr Printers.pp_expr expr_neg_vi)
|
123 |
|
|
124 |
|
) leafs_n_neg_expr
|
125 |
|
)
|
|
166 |
List.fold_left (fun accu ((vi, nb_pre), expr_neg_vi) ->
|
|
167 |
(mcdc_var (mk_pre nb_pre vi) expr expr_neg_vi)::accu
|
|
168 |
) vl leafs_n_neg_expr)
|
|
169 |
else
|
|
170 |
vl
|
126 |
171 |
|
127 |
172 |
|
128 |
173 |
let rec mcdc_expr cpt_pre expr =
|
129 |
174 |
match expr.expr_desc with
|
130 |
|
| Expr_tuple l -> List.iter (mcdc_expr cpt_pre) l
|
131 |
|
| Expr_ite (i,t,e) -> (gen_mcdc_cond_guard i; List.iter (mcdc_expr cpt_pre) [t; e])
|
132 |
|
| Expr_arrow (e1, e2) -> List.iter (mcdc_expr cpt_pre) [e1; e2]
|
133 |
|
| Expr_pre e -> mcdc_expr (cpt_pre+1) e
|
134 |
|
| Expr_appl (_, args, _) -> mcdc_expr cpt_pre args
|
135 |
|
| _ -> ()
|
|
175 |
| Expr_tuple l ->
|
|
176 |
let vl =
|
|
177 |
List.fold_right (fun e accu_v ->
|
|
178 |
let vl = mcdc_expr cpt_pre e in
|
|
179 |
(vl@accu_v))
|
|
180 |
l
|
|
181 |
[]
|
|
182 |
in
|
|
183 |
vl
|
|
184 |
| Expr_ite (i,t,e) ->
|
|
185 |
let vl_i = gen_mcdc_cond_guard i in
|
|
186 |
let vl_t = mcdc_expr cpt_pre t in
|
|
187 |
let vl_e = mcdc_expr cpt_pre e in
|
|
188 |
vl_i@vl_t@vl_e
|
|
189 |
| Expr_arrow (e1, e2) ->
|
|
190 |
let vl1 = mcdc_expr cpt_pre e1 in
|
|
191 |
let vl2 = mcdc_expr cpt_pre e2 in
|
|
192 |
vl1@vl2
|
|
193 |
| Expr_pre e ->
|
|
194 |
let vl = mcdc_expr (cpt_pre+1) e in
|
|
195 |
vl
|
|
196 |
| Expr_appl (f, args, r) ->
|
|
197 |
let vl = mcdc_expr cpt_pre args in
|
|
198 |
vl
|
|
199 |
| _ -> []
|
136 |
200 |
|
137 |
201 |
let mcdc_var_def v expr =
|
138 |
202 |
match (Types.repr expr.expr_type).Types.tdesc with
|
139 |
|
| Types.Tbool -> gen_mcdc_cond_var v expr
|
140 |
|
| _ -> mcdc_expr 0 expr
|
|
203 |
| Types.Tbool ->
|
|
204 |
let vl = gen_mcdc_cond_var v expr in
|
|
205 |
vl
|
|
206 |
| _ -> let vl = mcdc_expr 0 expr in
|
|
207 |
vl
|
141 |
208 |
|
142 |
209 |
let mcdc_node_eq eq =
|
143 |
|
match eq.eq_lhs, (Types.repr eq.eq_rhs.expr_type).Types.tdesc, eq.eq_rhs.expr_desc with
|
144 |
|
| [lhs], Types.Tbool, _ -> gen_mcdc_cond_var lhs eq.eq_rhs
|
145 |
|
| _::_, Types.Ttuple tl, Expr_tuple rhs -> List.iter2 mcdc_var_def eq.eq_lhs rhs
|
146 |
|
| _ -> mcdc_expr 0 eq.eq_rhs
|
|
210 |
let vl =
|
|
211 |
match eq.eq_lhs, (Types.repr eq.eq_rhs.expr_type).Types.tdesc, eq.eq_rhs.expr_desc with
|
|
212 |
| [lhs], Types.Tbool, _ -> gen_mcdc_cond_var lhs eq.eq_rhs
|
|
213 |
| _::_, Types.Ttuple tl, Expr_tuple rhs ->
|
|
214 |
(* We iterate trough pairs, but accumulate variables aside. The resulting
|
|
215 |
expression shall remain a tuple defintion *)
|
|
216 |
let vl = List.fold_right2 (fun lhs rhs accu ->
|
|
217 |
let v = mcdc_var_def lhs rhs in
|
|
218 |
(* we don't care about the expression it. We focus on the coverage
|
|
219 |
expressions in v *)
|
|
220 |
v@accu
|
|
221 |
) eq.eq_lhs rhs []
|
|
222 |
in
|
|
223 |
vl
|
|
224 |
| _ -> mcdc_expr 0 eq.eq_rhs
|
|
225 |
in
|
|
226 |
vl
|
147 |
227 |
|
148 |
228 |
let mcdc_node_stmt stmt =
|
149 |
229 |
match stmt with
|
150 |
|
| Eq eq -> mcdc_node_eq eq
|
|
230 |
| Eq eq -> let vl = mcdc_node_eq eq in vl
|
151 |
231 |
| Aut aut -> assert false
|
152 |
232 |
|
153 |
233 |
let mcdc_top_decl td =
|
154 |
234 |
match td.top_decl_desc with
|
155 |
|
| Node nd -> List.iter mcdc_node_stmt nd.node_stmts
|
156 |
|
| _ -> ()
|
|
235 |
| Node nd ->
|
|
236 |
let new_coverage_exprs =
|
|
237 |
List.fold_right (
|
|
238 |
fun s accu_v ->
|
|
239 |
let vl' = mcdc_node_stmt s in
|
|
240 |
vl'@accu_v
|
|
241 |
) nd.node_stmts []
|
|
242 |
in
|
|
243 |
(* We add coverage vars as boolean internal flows. TODO *)
|
|
244 |
let fresh_cov_defs = List.flatten (List.map snd new_coverage_exprs) in
|
|
245 |
let nb_total = List.length fresh_cov_defs in
|
|
246 |
let fresh_cov_vars = List.mapi (fun i cov_expr ->
|
|
247 |
let loc = cov_expr.expr_loc in
|
|
248 |
Format.fprintf Format.str_formatter "__cov_%i_%i" i nb_total;
|
|
249 |
let cov_id = Format.flush_str_formatter () in
|
|
250 |
let cov_var = mkvar_decl loc
|
|
251 |
(cov_id, mktyp loc Tydec_bool, mkclock loc Ckdec_any, false, None) in
|
|
252 |
let cov_def = Eq (mkeq loc ([cov_id], cov_expr)) in
|
|
253 |
cov_var, cov_def
|
|
254 |
) fresh_cov_defs
|
|
255 |
in
|
|
256 |
let fresh_vars, fresh_eqs = List.split fresh_cov_vars in
|
|
257 |
let fresh_annots =
|
|
258 |
List.map
|
|
259 |
(fun v -> {annots = [["PROPERTY"], expr_to_eexpr (expr_of_vdecl v)]; annot_loc = td.top_decl_loc})
|
|
260 |
fresh_vars in
|
|
261 |
Format.printf "We have %i coverage criteria for node %s@." nb_total nd.node_id;
|
|
262 |
(* And add them as annotations --%PROPERTY: var TODO *)
|
|
263 |
{td with top_decl_desc = Node {nd with
|
|
264 |
node_locals = nd.node_locals@fresh_vars;
|
|
265 |
node_stmts = nd.node_stmts@fresh_eqs;
|
|
266 |
node_annot = nd.node_annot@fresh_annots
|
|
267 |
}}
|
|
268 |
| _ -> td
|
157 |
269 |
|
158 |
270 |
|
159 |
271 |
let mcdc prog =
|
... | ... | |
170 |
282 |
match top.top_decl_desc with
|
171 |
283 |
| Node nd -> nd.node_inputs @ nd.node_outputs
|
172 |
284 |
| _ -> assert false);
|
173 |
|
List.iter mcdc_top_decl prog
|
|
285 |
List.map mcdc_top_decl prog
|
174 |
286 |
|
175 |
287 |
(* Local Variables: *)
|
176 |
288 |
(* compile-command:"make -C .." *)
|
[MCDC] Solved some issues and transformed the code from iterators to fold