Project

General

Profile

Download (17.7 KB) Statistics
| Branch: | Tag: | Revision:
1
(********************************************************************)
2
(*                                                                  *)
3
(*  The LustreC compiler toolset   /  The LustreC Development Team  *)
4
(*  Copyright 2012 -    --   ONERA - CNRS - INPT                    *)
5
(*                                                                  *)
6
(*  LustreC is free software, distributed WITHOUT ANY WARRANTY      *)
7
(*  under the terms of the GNU Lesser General Public License        *)
8
(*  version 2.1.                                                    *)
9
(*                                                                  *)
10
(********************************************************************)
11

    
12
open Utils
13
open LustreSpec
14
open Corelang
15
open Format
16

    
17
let expr_true loc ck =
18
{ expr_tag = Utils.new_tag ();
19
  expr_desc = Expr_const (Const_tag tag_true);
20
  expr_type = Type_predef.type_bool;
21
  expr_clock = ck;
22
  expr_delay = Delay.new_var ();
23
  expr_annot = None;
24
  expr_loc = loc }
25

    
26
let expr_false loc ck =
27
{ expr_tag = Utils.new_tag ();
28
  expr_desc = Expr_const (Const_tag tag_false);
29
  expr_type = Type_predef.type_bool;
30
  expr_clock = ck;
31
  expr_delay = Delay.new_var ();
32
  expr_annot = None;
33
  expr_loc = loc }
34

    
35
let expr_once loc ck =
36
 { expr_tag = Utils.new_tag ();
37
  expr_desc = Expr_arrow (expr_true loc ck, expr_false loc ck);
38
  expr_type = Type_predef.type_bool;
39
  expr_clock = ck;
40
  expr_delay = Delay.new_var ();
41
  expr_annot = None;
42
  expr_loc = loc }
43

    
44
let is_expr_once =
45
  let dummy_expr_once = expr_once Location.dummy_loc (Clocks.new_var true) in
46
  fun expr -> Corelang.is_eq_expr expr dummy_expr_once
47

    
48
let unfold_arrow expr =
49
 match expr.expr_desc with
50
 | Expr_arrow (e1, e2) ->
51
    let loc = expr.expr_loc in
52
    let ck = List.hd (Clocks.clock_list_of_clock expr.expr_clock) in
53
    { expr with expr_desc = Expr_ite (expr_once loc ck, e1, e2) }
54
 | _                   -> assert false
55

    
56
let unfold_arrow_active = ref true
57
let cpt_fresh = ref 0
58

    
59
(* Generate a new local [node] variable *)
60
let mk_fresh_var node loc ty ck =
61
  let vars = get_node_vars node in
62
  let rec aux () =
63
  incr cpt_fresh;
64
  let s = Printf.sprintf "__%s_%d" node.node_id !cpt_fresh in
65
  if List.exists (fun v -> v.var_id = s) vars then aux () else
66
  {
67
    var_id = s;
68
    var_orig = false;
69
    var_dec_type = dummy_type_dec;
70
    var_dec_clock = dummy_clock_dec;
71
    var_dec_const = false;
72
    var_dec_value = None;
73
    var_type = ty;
74
    var_clock = ck;
75
    var_loc = loc
76
  }
77
  in aux ()
78

    
79
(* Get the equation in [defs] with [expr] as rhs, if any *)
80
let get_expr_alias defs expr =
81
 try Some (List.find (fun eq -> is_eq_expr eq.eq_rhs expr) defs)
82
 with
83
   Not_found -> None
84

    
85
(* Replace [expr] with (tuple of) [locals] *)
86
let replace_expr locals expr =
87
 match locals with
88
 | []  -> assert false
89
 | [v] -> { expr with
90
   expr_tag = Utils.new_tag ();
91
   expr_desc = Expr_ident v.var_id }
92
 | _   -> { expr with
93
   expr_tag = Utils.new_tag ();
94
   expr_desc = Expr_tuple (List.map expr_of_vdecl locals) }
95

    
96
let unfold_offsets e offsets =
97
  let add_offset e d =
98
(*Format.eprintf "add_offset %a(%a) %a @." Printers.pp_expr e Types.print_ty e.expr_type Dimension.pp_dimension d;
99
    let res = *)
100
    { e with
101
      expr_tag = Utils.new_tag ();
102
      expr_loc = d.Dimension.dim_loc;
103
      expr_type = Types.array_element_type e.expr_type;
104
      expr_desc = Expr_access (e, d) }
105
(*in (Format.eprintf "= %a @." Printers.pp_expr res; res) *)
106
  in
107
 List.fold_left add_offset e offsets
108

    
109
(* Create an alias for [expr], if none exists yet *)
110
let mk_expr_alias node (defs, vars) expr =
111
(*Format.eprintf "mk_expr_alias %a %a %a@." Printers.pp_expr expr Types.print_ty expr.expr_type Clocks.print_ck expr.expr_clock;*)
112
  match get_expr_alias defs expr with
113
  | Some eq ->
114
    let aliases = List.map (fun id -> List.find (fun v -> v.var_id = id) vars) eq.eq_lhs in
115
    (defs, vars), replace_expr aliases expr
116
  | None    ->
117
    let new_aliases =
118
      List.map2
119
	(mk_fresh_var node expr.expr_loc)
120
	(Types.type_list_of_type expr.expr_type)
121
	(Clocks.clock_list_of_clock expr.expr_clock) in
122
    let new_def =
123
      mkeq expr.expr_loc (List.map (fun v -> v.var_id) new_aliases, expr)
124
    in
125
    (* Format.eprintf "Checking def of alias: %a -> %a@." (fprintf_list ~sep:", " (fun fmt v -> Format.pp_print_string fmt v.var_id)) new_aliases Printers.pp_expr expr; *)
126
    (new_def::defs, new_aliases@vars), replace_expr new_aliases expr
127

    
128
(* Create an alias for [expr], if [expr] is not already an alias (i.e. an ident)
129
   and [opt] is true *)
130
let mk_expr_alias_opt opt node (defs, vars) expr =
131
(*Format.eprintf "mk_expr_alias_opt %B %a %a %a@." opt Printers.pp_expr expr Types.print_ty expr.expr_type Clocks.print_ck expr.expr_clock;*)
132
  match expr.expr_desc with
133
  | Expr_ident alias ->
134
    (defs, vars), expr
135
  | _                ->
136
    match get_expr_alias defs expr with
137
    | Some eq ->
138
      let aliases = List.map (fun id -> List.find (fun v -> v.var_id = id) vars) eq.eq_lhs in
139
      (defs, vars), replace_expr aliases expr
140
    | None    ->
141
      if opt
142
      then
143
	let new_aliases =
144
	  List.map2
145
	    (mk_fresh_var node expr.expr_loc)
146
	    (Types.type_list_of_type expr.expr_type)
147
	    (Clocks.clock_list_of_clock expr.expr_clock) in
148
	let new_def =
149
	  mkeq expr.expr_loc (List.map (fun v -> v.var_id) new_aliases, expr)
150
	in (new_def::defs, new_aliases@vars), replace_expr new_aliases expr
151
      else
152
	(defs, vars), expr
153

    
154
(* Create a (normalized) expression from [ref_e],
155
   replacing description with [norm_d],
156
   taking propagated [offsets] into account
157
   in order to change expression type *)
158
let mk_norm_expr offsets ref_e norm_d =
159
(*Format.eprintf "mk_norm_expr %a %a @." Printers.pp_expr ref_e Printers.pp_expr { ref_e with expr_desc = norm_d};*)
160
  let drop_array_type ty =
161
    Types.map_tuple_type Types.array_element_type ty in
162
  { ref_e with
163
    expr_desc = norm_d;
164
    expr_type = Utils.repeat (List.length offsets) drop_array_type ref_e.expr_type }
165

    
166
(* normalize_<foo> : defs * used vars -> <foo> -> (updated defs * updated vars) * normalized <foo> *)
167
let rec normalize_list alias node offsets norm_element defvars elist =
168
  List.fold_right
169
    (fun t (defvars, qlist) ->
170
      let defvars, norm_t = norm_element alias node offsets defvars t in
171
      (defvars, norm_t :: qlist)
172
    ) elist (defvars, [])
173

    
174
let rec normalize_expr ?(alias=true) node offsets defvars expr =
175
(*Format.eprintf "normalize %B %a:%a [%a]@." alias Printers.pp_expr expr Types.print_ty expr.expr_type (Utils.fprintf_list ~sep:"," Dimension.pp_dimension) offsets;*)
176
  match expr.expr_desc with
177
  | Expr_const _
178
  | Expr_ident _ -> defvars, unfold_offsets expr offsets
179
  | Expr_array elist ->
180
    let defvars, norm_elist = normalize_list alias node offsets (fun _ -> normalize_array_expr ~alias:true) defvars elist in
181
    let norm_expr = mk_norm_expr offsets expr (Expr_array norm_elist) in
182
    mk_expr_alias_opt alias node defvars norm_expr
183
  | Expr_power (e1, d) when offsets = [] ->
184
    let defvars, norm_e1 = normalize_expr node offsets defvars e1 in
185
    let norm_expr = mk_norm_expr offsets expr (Expr_power (norm_e1, d)) in
186
    mk_expr_alias_opt alias node defvars norm_expr
187
  | Expr_power (e1, d) ->
188
    normalize_expr ~alias:alias node (List.tl offsets) defvars e1
189
  | Expr_access (e1, d) ->
190
    normalize_expr ~alias:alias node (d::offsets) defvars e1
191
  | Expr_tuple elist ->
192
    let defvars, norm_elist =
193
      normalize_list alias node offsets (fun alias -> normalize_expr ~alias:alias) defvars elist in
194
    defvars, mk_norm_expr offsets expr (Expr_tuple norm_elist)
195
  | Expr_appl (id, args, None)
196
      when Basic_library.is_homomorphic_fun id 
197
	&& Types.is_array_type expr.expr_type ->
198
    let defvars, norm_args =
199
      normalize_list
200
	alias
201
	node
202
	offsets
203
	(fun _ -> normalize_array_expr ~alias:true)
204
	defvars
205
	(expr_list_of_expr args)
206
    in
207
    defvars, mk_norm_expr offsets expr (Expr_appl (id, expr_of_expr_list args.expr_loc norm_args, None))
208
  | Expr_appl (id, args, None) when Basic_library.is_expr_internal_fun expr ->
209
    let defvars, norm_args = normalize_expr ~alias:true node offsets defvars args in
210
    defvars, mk_norm_expr offsets expr (Expr_appl (id, norm_args, None))
211
  | Expr_appl (id, args, r) ->
212
    let defvars, norm_args = normalize_expr node [] defvars args in
213
    let norm_expr = mk_norm_expr [] expr (Expr_appl (id, norm_args, r)) in
214
    if offsets <> []
215
    then
216
      let defvars, norm_expr = normalize_expr node [] defvars norm_expr in
217
      normalize_expr ~alias:alias node offsets defvars norm_expr
218
    else
219
      mk_expr_alias_opt (alias && not (Basic_library.is_expr_internal_fun expr)) node defvars norm_expr
220
  | Expr_arrow (e1,e2) when !unfold_arrow_active && not (is_expr_once expr) -> (* Here we differ from Colaco paper: arrows are pushed to the top *)
221
    normalize_expr ~alias:alias node offsets defvars (unfold_arrow expr)
222
  | Expr_arrow (e1,e2) ->
223
    let defvars, norm_e1 = normalize_expr node offsets defvars e1 in
224
    let defvars, norm_e2 = normalize_expr node offsets defvars e2 in
225
    let norm_expr = mk_norm_expr offsets expr (Expr_arrow (norm_e1, norm_e2)) in
226
    mk_expr_alias_opt alias node defvars norm_expr
227
  | Expr_pre e ->
228
    let defvars, norm_e = normalize_expr node offsets defvars e in
229
    let norm_expr = mk_norm_expr offsets expr (Expr_pre norm_e) in
230
    mk_expr_alias_opt alias node defvars norm_expr
231
  | Expr_fby (e1, e2) ->
232
    let defvars, norm_e1 = normalize_expr node offsets defvars e1 in
233
    let defvars, norm_e2 = normalize_expr node offsets defvars e2 in
234
    let norm_expr = mk_norm_expr offsets expr (Expr_fby (norm_e1, norm_e2)) in
235
    mk_expr_alias_opt alias node defvars norm_expr
236
  | Expr_when (e, c, l) ->
237
    let defvars, norm_e = normalize_expr node offsets defvars e in
238
    defvars, mk_norm_expr offsets expr (Expr_when (norm_e, c, l))
239
  | Expr_ite (c, t, e) ->
240
    let defvars, norm_c = normalize_guard node defvars c in
241
    let defvars, norm_t = normalize_cond_expr  node offsets defvars t in
242
    let defvars, norm_e = normalize_cond_expr  node offsets defvars e in
243
    let norm_expr = mk_norm_expr offsets expr (Expr_ite (norm_c, norm_t, norm_e)) in
244
    mk_expr_alias_opt alias node defvars norm_expr
245
  | Expr_merge (c, hl) ->
246
    let defvars, norm_hl = normalize_branches node offsets defvars hl in
247
    let norm_expr = mk_norm_expr offsets expr (Expr_merge (c, norm_hl)) in
248
    mk_expr_alias_opt alias node defvars norm_expr
249

    
250
(* Creates a conditional with a merge construct, which is more lazy *)
251
(*
252
let norm_conditional_as_merge alias node norm_expr offsets defvars expr =
253
 match expr.expr_desc with
254
 | Expr_ite (c, t, e) ->
255
   let defvars, norm_t = norm_expr (alias node offsets defvars t in
256
 | _ -> assert false
257
*)
258
and normalize_branches node offsets defvars hl =
259
 List.fold_right
260
   (fun (t, h) (defvars, norm_q) ->
261
     let (defvars, norm_h) = normalize_cond_expr node offsets defvars h in
262
     defvars, (t, norm_h) :: norm_q
263
   )
264
   hl (defvars, [])
265

    
266
and normalize_array_expr ?(alias=true) node offsets defvars expr =
267
  (*Format.eprintf "normalize_array %B %a [%a]@." alias Printers.pp_expr expr (Utils.fprintf_list ~sep:"," Dimension.pp_dimension) offsets;*)
268
  match expr.expr_desc with
269
  | Expr_power (e1, d) when offsets = [] ->
270
    let defvars, norm_e1 = normalize_expr node offsets defvars e1 in
271
    defvars, mk_norm_expr offsets expr (Expr_power (norm_e1, d))
272
  | Expr_power (e1, d) ->
273
    normalize_array_expr ~alias:alias node (List.tl offsets) defvars e1
274
  | Expr_access (e1, d) -> normalize_array_expr ~alias:alias node (d::offsets) defvars e1
275
  | Expr_array elist when offsets = [] ->
276
    let defvars, norm_elist = normalize_list alias node offsets (fun _ -> normalize_array_expr ~alias:true) defvars elist in
277
    defvars, mk_norm_expr offsets expr (Expr_array norm_elist)
278
  | Expr_appl (id, args, None) when Basic_library.is_expr_internal_fun expr ->
279
    let defvars, norm_args = normalize_list alias node offsets (fun _ -> normalize_array_expr ~alias:true) defvars (expr_list_of_expr args) in
280
    defvars, mk_norm_expr offsets expr (Expr_appl (id, expr_of_expr_list args.expr_loc norm_args, None))
281
  |  _ -> normalize_expr ~alias:alias node offsets defvars expr
282

    
283
and normalize_cond_expr ?(alias=true) node offsets defvars expr =
284
  (*Format.eprintf "normalize_cond %B %a [%a]@." alias Printers.pp_expr expr (Utils.fprintf_list ~sep:"," Dimension.pp_dimension) offsets;*)
285
  match expr.expr_desc with
286
  | Expr_access (e1, d) ->
287
    normalize_cond_expr ~alias:alias node (d::offsets) defvars e1
288
  | Expr_ite (c, t, e) ->
289
    let defvars, norm_c = normalize_guard node defvars c in
290
    let defvars, norm_t = normalize_cond_expr node offsets defvars t in
291
    let defvars, norm_e = normalize_cond_expr node offsets defvars e in
292
    defvars, mk_norm_expr offsets expr (Expr_ite (norm_c, norm_t, norm_e))
293
  | Expr_merge (c, hl) ->
294
    let defvars, norm_hl = normalize_branches node offsets defvars hl in
295
    defvars, mk_norm_expr offsets expr (Expr_merge (c, norm_hl))
296
  | _ -> normalize_expr ~alias:alias node offsets defvars expr
297

    
298
and normalize_guard node defvars expr =
299
  let defvars, norm_expr = normalize_expr node [] defvars expr in
300
  mk_expr_alias_opt true node defvars norm_expr
301

    
302
(* outputs cannot be memories as well. If so, introduce new local variable.
303
*)
304
let decouple_outputs node defvars eq =
305
  let rec fold_lhs defvars lhs tys cks =
306
   match lhs, tys, cks with
307
   | [], [], []          -> defvars, []
308
   | v::qv, t::qt, c::qc -> let (defs_q, vars_q), lhs_q = fold_lhs defvars qv qt qc in
309
			    if List.exists (fun o -> o.var_id = v) node.node_outputs
310
			    then
311
			      let newvar = mk_fresh_var node eq.eq_loc t c in
312
			      let neweq  = mkeq eq.eq_loc ([v], expr_of_vdecl newvar) in
313
			      (neweq :: defs_q, newvar :: vars_q), newvar.var_id :: lhs_q
314
			    else
315
			      (defs_q, vars_q), v::lhs_q
316
   | _                   -> assert false in
317
  let defvars', lhs' =
318
    fold_lhs
319
      defvars
320
      eq.eq_lhs
321
      (Types.type_list_of_type eq.eq_rhs.expr_type)
322
      (Clocks.clock_list_of_clock eq.eq_rhs.expr_clock) in
323
  defvars', {eq with eq_lhs = lhs' }
324

    
325
let rec normalize_eq node defvars eq =
326
(*Format.eprintf "normalize_eq %a@." Types.print_ty eq.eq_rhs.expr_type;*)
327
  match eq.eq_rhs.expr_desc with
328
  | Expr_pre _
329
  | Expr_fby _  ->
330
    let (defvars', eq') = decouple_outputs node defvars eq in
331
    let (defs', vars'), norm_rhs = normalize_expr ~alias:false node [] defvars' eq'.eq_rhs in
332
    let norm_eq = { eq' with eq_rhs = norm_rhs } in
333
    (norm_eq::defs', vars')
334
  | Expr_array _ ->
335
    let (defs', vars'), norm_rhs = normalize_array_expr ~alias:false node [] defvars eq.eq_rhs in
336
    let norm_eq = { eq with eq_rhs = norm_rhs } in
337
    (norm_eq::defs', vars')
338
  | Expr_appl (id, _, None) when Basic_library.is_homomorphic_fun id && Types.is_array_type eq.eq_rhs.expr_type ->
339
    let (defs', vars'), norm_rhs = normalize_array_expr ~alias:false node [] defvars eq.eq_rhs in
340
    let norm_eq = { eq with eq_rhs = norm_rhs } in
341
    (norm_eq::defs', vars')
342
  | Expr_appl _ ->
343
    let (defs', vars'), norm_rhs = normalize_expr ~alias:false node [] defvars eq.eq_rhs in
344
    let norm_eq = { eq with eq_rhs = norm_rhs } in
345
    (norm_eq::defs', vars')
346
  | _ ->
347
    let (defs', vars'), norm_rhs = normalize_cond_expr ~alias:false node [] defvars eq.eq_rhs in
348
    let norm_eq = { eq with eq_rhs = norm_rhs } in
349
    norm_eq::defs', vars'
350

    
351
(** normalize_node node returns a normalized node,
352
    ie.
353
    - updated locals
354
    - new equations
355
    -
356
*)
357
let normalize_node node =
358
  cpt_fresh := 0;
359
  let inputs_outputs = node.node_inputs@node.node_outputs in
360
  let is_local v =
361
    List.for_all ((!=) v) inputs_outputs in
362
  let orig_vars = inputs_outputs@node.node_locals in
363
  let defs, vars =
364
    List.fold_left (normalize_eq node) ([], orig_vars) (get_node_eqs node) in
365
  (* Normalize the asserts *)
366
  let vars, assert_defs, asserts =
367
    List.fold_left (
368
    fun (vars, def_accu, assert_accu) assert_ ->
369
      let assert_expr = assert_.assert_expr in
370
      let (defs, vars'), expr = 
371
	normalize_expr 
372
	  ~alias:false 
373
	  node 
374
	  [] (* empty offset for arrays *)
375
	  ([], vars) (* defvar only contains vars *)
376
	  assert_expr
377
      in
378
      (*Format.eprintf "New assert vars: %a@.@?" (fprintf_list ~sep:", " Printers.pp_var) vars';*)
379
      vars', defs@def_accu, {assert_ with assert_expr = expr}::assert_accu
380
    ) (vars, [], []) node.node_asserts in
381
  let new_locals = List.filter is_local vars in
382
  (*Format.eprintf "New locals: %a@.@?" (fprintf_list ~sep:", " Printers.pp_var) new_locals;*)
383

    
384
  let new_annots =
385
    if !Options.traces then
386
      begin
387
	(* Compute traceability info:
388
	   - gather newly bound variables
389
	   - compute the associated expression without aliases
390
	*)
391
	let diff_vars = List.filter (fun v -> not (List.mem v node.node_locals) ) new_locals in
392
	let norm_traceability = {
393
	  annots = List.map (fun v ->
394
	    let eq =
395
	      try
396
		List.find (fun eq -> List.exists (fun v' -> v' = v.var_id ) eq.eq_lhs) (defs@assert_defs) 
397
	      with Not_found -> 
398
		(
399
		  Format.eprintf "Traceability annotation generation: var %s not found@." v.var_id; 
400
		  assert false
401
		) 
402
	    in
403
	    let expr = substitute_expr diff_vars (defs@assert_defs) eq.eq_rhs in
404
	    let pair = mkeexpr expr.expr_loc (mkexpr expr.expr_loc (Expr_tuple [expr_of_ident v.var_id expr.expr_loc; expr])) in
405
	    (["traceability"], pair)
406
	  ) diff_vars;
407
	  annot_loc = Location.dummy_loc
408
	}
409
	in
410
	norm_traceability::node.node_annot
411
      end
412
    else
413
      node.node_annot
414
  in
415

    
416
  let node =
417
  { node with
418
    node_locals = new_locals;
419
    node_stmts = List.map (fun eq -> Eq eq) (defs @ assert_defs);
420
    node_asserts = asserts;
421
    node_annot = new_annots;
422
  }
423
  in ((*Printers.pp_node Format.err_formatter node;*)
424
    node
425
)
426

    
427

    
428
let normalize_decl decl =
429
  match decl.top_decl_desc with
430
  | Node nd ->
431
    let decl' = {decl with top_decl_desc = Node (normalize_node nd)} in
432
    Hashtbl.replace Corelang.node_table nd.node_id decl';
433
    decl'
434
  | Open _ | ImportedNode _ | Const _ | TypeDef _ -> decl
435

    
436
let normalize_prog decls =
437
  List.map normalize_decl decls
438

    
439
(* Local Variables: *)
440
(* compile-command:"make -C .." *)
441
(* End: *)
(36-36/53)