Project

General

Profile

Download (38.8 KB) Statistics
| Branch: | Tag: | Revision:
1
(********************************************************************)
2
(*                                                                  *)
3
(*  The LustreC compiler toolset   /  The LustreC Development Team  *)
4
(*  Copyright 2012 -    --   ONERA - CNRS - INPT                    *)
5
(*                                                                  *)
6
(*  LustreC is free software, distributed WITHOUT ANY WARRANTY      *)
7
(*  under the terms of the GNU Lesser General Public License        *)
8
(*  version 2.1.                                                    *)
9
(*                                                                  *)
10
(********************************************************************)
11

    
12
open Format
13
open LustreSpec
14
(*open Dimension*)
15

    
16

    
17
exception Error of Location.t * Error.error_kind
18

    
19
module VDeclModule =
20
struct (* Node module *)
21
  type t = var_decl
22
  let compare v1 v2 = compare v1.var_id v2.var_id
23
end
24

    
25
module VMap = Map.Make(VDeclModule)
26

    
27
module VSet = Set.Make(VDeclModule)
28

    
29
let dummy_type_dec = {ty_dec_desc=Tydec_any; ty_dec_loc=Location.dummy_loc}
30

    
31
let dummy_clock_dec = {ck_dec_desc=Ckdec_any; ck_dec_loc=Location.dummy_loc}
32

    
33

    
34

    
35
(************************************************************)
36
(* *)
37

    
38
let mktyp loc d =
39
  { ty_dec_desc = d; ty_dec_loc = loc }
40

    
41
let mkclock loc d =
42
  { ck_dec_desc = d; ck_dec_loc = loc }
43

    
44
let mkvar_decl loc ?(orig=false) (id, ty_dec, ck_dec, is_const, value) =
45
  assert (value = None || is_const);
46
  { var_id = id;
47
    var_orig = orig;
48
    var_dec_type = ty_dec;
49
    var_dec_clock = ck_dec;
50
    var_dec_const = is_const;
51
    var_dec_value = value;
52
    var_type = Types.new_var ();
53
    var_clock = Clocks.new_var true;
54
    var_loc = loc }
55

    
56
let mkexpr loc d =
57
  { expr_tag = Utils.new_tag ();
58
    expr_desc = d;
59
    expr_type = Types.new_var ();
60
    expr_clock = Clocks.new_var true;
61
    expr_delay = Delay.new_var ();
62
    expr_annot = None;
63
    expr_loc = loc }
64

    
65
let var_decl_of_const c =
66
  { var_id = c.const_id;
67
    var_orig = true;
68
    var_dec_type = { ty_dec_loc = c.const_loc; ty_dec_desc = Tydec_any };
69
    var_dec_clock = { ck_dec_loc = c.const_loc; ck_dec_desc = Ckdec_any };
70
    var_dec_const = true;
71
    var_dec_value = None;
72
    var_type = c.const_type;
73
    var_clock = Clocks.new_var false;
74
    var_loc = c.const_loc }
75

    
76
let mk_new_name used id =
77
  let rec new_name name cpt =
78
    if used name
79
    then new_name (sprintf "_%s_%i" id cpt) (cpt+1)
80
    else name
81
  in new_name id 1
82

    
83
let mkeq loc (lhs, rhs) =
84
  { eq_lhs = lhs;
85
    eq_rhs = rhs;
86
    eq_loc = loc }
87

    
88
let mkassert loc expr =
89
  { assert_loc = loc;
90
    assert_expr = expr
91
  }
92

    
93
let mktop_decl loc own itf d =
94
  { top_decl_desc = d; top_decl_loc = loc; top_decl_owner = own; top_decl_itf = itf }
95

    
96
let mkpredef_call loc funname args =
97
  mkexpr loc (Expr_appl (funname, mkexpr loc (Expr_tuple args), None))
98

    
99
let is_clock_dec_type cty =
100
  match cty with
101
  | Tydec_clock _ -> true
102
  | _             -> false
103

    
104
let const_of_top top_decl =
105
  match top_decl.top_decl_desc with
106
  | Const c -> c
107
  | _ -> assert false
108

    
109
let node_of_top top_decl =
110
  match top_decl.top_decl_desc with
111
  | Node nd -> nd
112
  | _ -> raise Not_found
113

    
114
let imported_node_of_top top_decl =
115
  match top_decl.top_decl_desc with
116
  | ImportedNode ind -> ind
117
  | _ -> assert false
118

    
119
let typedef_of_top top_decl =
120
  match top_decl.top_decl_desc with
121
  | TypeDef tdef -> tdef
122
  | _ -> assert false
123

    
124
let dependency_of_top top_decl =
125
  match top_decl.top_decl_desc with
126
  | Open (local, dep) -> (local, dep)
127
  | _ -> assert false
128

    
129
let consts_of_enum_type top_decl =
130
  match top_decl.top_decl_desc with
131
  | TypeDef tdef ->
132
    (match tdef.tydef_desc with
133
    | Tydec_enum tags ->
134
       List.map
135
	 (fun tag ->
136
	   let cdecl = {
137
	     const_id = tag;
138
	     const_loc = top_decl.top_decl_loc;
139
	     const_value = Const_tag tag;
140
	     const_type = Type_predef.type_const tdef.tydef_id
141
	   } in
142
	   { top_decl with top_decl_desc = Const cdecl })
143
	 tags
144
     | _               -> [])
145
  | _ -> assert false
146

    
147
(************************************************************)
148
(*   Eexpr functions *)
149
(************************************************************)
150

    
151
let merge_node_annot ann1 ann2 =
152
  { requires = ann1.requires @ ann2.requires;
153
    ensures = ann1.ensures @ ann2.ensures;
154
    behaviors = ann1.behaviors @ ann2.behaviors;
155
    spec_loc = ann1.spec_loc
156
  }
157

    
158
let mkeexpr loc expr =
159
  { eexpr_tag = Utils.new_tag ();
160
    eexpr_qfexpr = expr;
161
    eexpr_quantifiers = [];
162
    eexpr_type = Types.new_var ();
163
    eexpr_clock = Clocks.new_var true;
164
    eexpr_normalized = None;
165
    eexpr_loc = loc }
166

    
167
let extend_eexpr q e = { e with eexpr_quantifiers = q@e.eexpr_quantifiers }
168

    
169
(*
170
let mkepredef_call loc funname args =
171
  mkeexpr loc (EExpr_appl (funname, mkeexpr loc (EExpr_tuple args), None))
172

    
173
let mkepredef_unary_call loc funname arg =
174
  mkeexpr loc (EExpr_appl (funname, arg, None))
175
*)
176

    
177
let merge_expr_annot ann1 ann2 =
178
  match ann1, ann2 with
179
    | None, None -> assert false
180
    | Some _, None -> ann1
181
    | None, Some _ -> ann2
182
    | Some ann1, Some ann2 -> Some {
183
      annots = ann1.annots @ ann2.annots;
184
      annot_loc = ann1.annot_loc
185
    }
186

    
187
let update_expr_annot node_id e annot =
188
  List.iter (fun (key, _) -> 
189
    Annotations.add_expr_ann node_id e.expr_tag key
190
  ) annot.annots;
191
  e.expr_annot <- merge_expr_annot e.expr_annot (Some annot);
192
  e
193

    
194

    
195
let mkinstr ?lustre_expr ?lustre_eq i =
196
  {
197
    instr_desc = i;
198
    (* lustre_expr = lustre_expr; *)
199
    lustre_eq = lustre_eq;
200
  }
201

    
202
let get_instr_desc i = i.instr_desc
203
let update_instr_desc i id = { i with instr_desc = id }
204

    
205
(***********************************************************)
206
(* Fast access to nodes, by name *)
207
let (node_table : (ident, top_decl) Hashtbl.t) = Hashtbl.create 30
208
let consts_table = Hashtbl.create 30
209

    
210
let print_node_table fmt () =
211
  begin
212
    Format.fprintf fmt "{ /* node table */@.";
213
    Hashtbl.iter (fun id nd ->
214
      Format.fprintf fmt "%s |-> %a"
215
	id
216
	Printers.pp_short_decl nd
217
    ) node_table;
218
    Format.fprintf fmt "}@."
219
  end
220

    
221
let print_consts_table fmt () =
222
  begin
223
    Format.fprintf fmt "{ /* consts table */@.";
224
    Hashtbl.iter (fun id const ->
225
      Format.fprintf fmt "%s |-> %a"
226
	id
227
	Printers.pp_const_decl (const_of_top const)
228
    ) consts_table;
229
    Format.fprintf fmt "}@."
230
  end
231

    
232
let node_name td =
233
    match td.top_decl_desc with 
234
    | Node nd         -> nd.node_id
235
    | ImportedNode nd -> nd.nodei_id
236
    | _ -> assert false
237

    
238
let is_generic_node td =
239
  match td.top_decl_desc with 
240
  | Node nd         -> List.exists (fun v -> v.var_dec_const) nd.node_inputs
241
  | ImportedNode nd -> List.exists (fun v -> v.var_dec_const) nd.nodei_inputs
242
  | _ -> assert false
243

    
244
let node_inputs td =
245
  match td.top_decl_desc with 
246
  | Node nd         -> nd.node_inputs
247
  | ImportedNode nd -> nd.nodei_inputs
248
  | _ -> assert false
249

    
250
let node_from_name id =
251
  try
252
    Hashtbl.find node_table id
253
  with Not_found -> (Format.eprintf "Unable to find any node named %s@ @?" id;
254
		     assert false)
255

    
256
let is_imported_node td =
257
  match td.top_decl_desc with 
258
  | Node nd         -> false
259
  | ImportedNode nd -> true
260
  | _ -> assert false
261

    
262

    
263
(* alias and type definition table *)
264

    
265
let mktop = mktop_decl Location.dummy_loc !Options.dest_dir false
266

    
267
let top_int_type = mktop (TypeDef {tydef_id = "int"; tydef_desc = Tydec_int})
268
let top_bool_type = mktop (TypeDef {tydef_id = "bool"; tydef_desc = Tydec_bool})
269
(* let top_float_type = mktop (TypeDef {tydef_id = "float"; tydef_desc = Tydec_float}) *)
270
let top_real_type = mktop (TypeDef {tydef_id = "real"; tydef_desc = Tydec_real})
271

    
272
let type_table =
273
  Utils.create_hashtable 20 [
274
    Tydec_int  , top_int_type;
275
    Tydec_bool , top_bool_type;
276
    (* Tydec_float, top_float_type; *)
277
    Tydec_real , top_real_type
278
  ]
279

    
280
let print_type_table fmt () =
281
  begin
282
    Format.fprintf fmt "{ /* type table */@.";
283
    Hashtbl.iter (fun tydec tdef ->
284
      Format.fprintf fmt "%a |-> %a"
285
	Printers.pp_var_type_dec_desc tydec
286
	Printers.pp_typedef (typedef_of_top tdef)
287
    ) type_table;
288
    Format.fprintf fmt "}@."
289
  end
290

    
291
let rec is_user_type typ =
292
  match typ with
293
  | Tydec_int | Tydec_bool | Tydec_real 
294
  (* | Tydec_float *) | Tydec_any | Tydec_const _ -> false
295
  | Tydec_clock typ' -> is_user_type typ'
296
  | _ -> true
297

    
298
let get_repr_type typ =
299
  let typ_def = (typedef_of_top (Hashtbl.find type_table typ)).tydef_desc in
300
  if is_user_type typ_def then typ else typ_def
301

    
302
let rec coretype_equal ty1 ty2 =
303
  let res =
304
  match ty1, ty2 with
305
  | Tydec_any           , _
306
  | _                   , Tydec_any             -> assert false
307
  | Tydec_const _       , Tydec_const _         -> get_repr_type ty1 = get_repr_type ty2
308
  | Tydec_const _       , _                     -> let ty1' = (typedef_of_top (Hashtbl.find type_table ty1)).tydef_desc
309
	       					   in (not (is_user_type ty1')) && coretype_equal ty1' ty2
310
  | _                   , Tydec_const _         -> coretype_equal ty2 ty1
311
  | Tydec_int           , Tydec_int
312
  | Tydec_real          , Tydec_real
313
  (* | Tydec_float         , Tydec_float *)
314
  | Tydec_bool          , Tydec_bool            -> true
315
  | Tydec_clock ty1     , Tydec_clock ty2       -> coretype_equal ty1 ty2
316
  | Tydec_array (d1,ty1), Tydec_array (d2, ty2) -> Dimension.is_eq_dimension d1 d2 && coretype_equal ty1 ty2
317
  | Tydec_enum tl1      , Tydec_enum tl2        -> List.sort compare tl1 = List.sort compare tl2
318
  | Tydec_struct fl1    , Tydec_struct fl2      ->
319
       List.length fl1 = List.length fl2
320
    && List.for_all2 (fun (f1, t1) (f2, t2) -> f1 = f2 && coretype_equal t1 t2)
321
      (List.sort (fun (f1,_) (f2,_) -> compare f1 f2) fl1)
322
      (List.sort (fun (f1,_) (f2,_) -> compare f1 f2) fl2)
323
  | _                                  -> false
324
  in ((*Format.eprintf "coretype_equal %a %a = %B@." Printers.pp_var_type_dec_desc ty1 Printers.pp_var_type_dec_desc ty2 res;*) res)
325

    
326
let tag_true = "true"
327
let tag_false = "false"
328
let tag_default = "default"
329

    
330
let const_is_bool c =
331
 match c with
332
 | Const_tag t -> t = tag_true || t = tag_false
333
 | _           -> false
334

    
335
(* Computes the negation of a boolean constant *)
336
let const_negation c =
337
  assert (const_is_bool c);
338
  match c with
339
  | Const_tag t when t = tag_true  -> Const_tag tag_false
340
  | _                              -> Const_tag tag_true
341

    
342
let const_or c1 c2 =
343
  assert (const_is_bool c1 && const_is_bool c2);
344
  match c1, c2 with
345
  | Const_tag t1, _            when t1 = tag_true -> c1
346
  | _           , Const_tag t2 when t2 = tag_true -> c2
347
  | _                                             -> Const_tag tag_false
348

    
349
let const_and c1 c2 =
350
  assert (const_is_bool c1 && const_is_bool c2);
351
  match c1, c2 with
352
  | Const_tag t1, _            when t1 = tag_false -> c1
353
  | _           , Const_tag t2 when t2 = tag_false -> c2
354
  | _                                              -> Const_tag tag_true
355

    
356
let const_xor c1 c2 =
357
  assert (const_is_bool c1 && const_is_bool c2);
358
   match c1, c2 with
359
  | Const_tag t1, Const_tag t2 when t1 <> t2  -> Const_tag tag_true
360
  | _                                         -> Const_tag tag_false
361

    
362
let const_impl c1 c2 =
363
  assert (const_is_bool c1 && const_is_bool c2);
364
  match c1, c2 with
365
  | Const_tag t1, _ when t1 = tag_false           -> Const_tag tag_true
366
  | _           , Const_tag t2 when t2 = tag_true -> Const_tag tag_true
367
  | _                                             -> Const_tag tag_false
368

    
369
(* To guarantee uniqueness of tags in enum types *)
370
let tag_table =
371
  Utils.create_hashtable 20 [
372
   tag_true, top_bool_type;
373
   tag_false, top_bool_type
374
  ]
375

    
376
(* To guarantee uniqueness of fields in struct types *)
377
let field_table =
378
  Utils.create_hashtable 20 [
379
  ]
380

    
381
let get_enum_type_tags cty =
382
(*Format.eprintf "get_enum_type_tags %a@." Printers.pp_var_type_dec_desc cty;*)
383
 match cty with
384
 | Tydec_bool    -> [tag_true; tag_false]
385
 | Tydec_const _ -> (match (typedef_of_top (Hashtbl.find type_table cty)).tydef_desc with
386
                     | Tydec_enum tl -> tl
387
                     | _             -> assert false)
388
 | _            -> assert false
389

    
390
let get_struct_type_fields cty =
391
 match cty with
392
 | Tydec_const _ -> (match (typedef_of_top (Hashtbl.find type_table cty)).tydef_desc with
393
                     | Tydec_struct fl -> fl
394
                     | _               -> assert false)
395
 | _            -> assert false
396

    
397
let const_of_bool b =
398
 Const_tag (if b then tag_true else tag_false)
399

    
400
(* let get_const c = snd (Hashtbl.find consts_table c) *)
401

    
402
let ident_of_expr expr =
403
 match expr.expr_desc with
404
 | Expr_ident id -> id
405
 | _             -> assert false
406

    
407
(* Generate a new ident expression from a declared variable *)
408
let expr_of_vdecl v =
409
  { expr_tag = Utils.new_tag ();
410
    expr_desc = Expr_ident v.var_id;
411
    expr_type = v.var_type;
412
    expr_clock = v.var_clock;
413
    expr_delay = Delay.new_var ();
414
    expr_annot = None;
415
    expr_loc = v.var_loc }
416

    
417
(* Caution, returns an untyped and unclocked expression *)
418
let expr_of_ident id loc =
419
  {expr_tag = Utils.new_tag ();
420
   expr_desc = Expr_ident id;
421
   expr_type = Types.new_var ();
422
   expr_clock = Clocks.new_var true;
423
   expr_delay = Delay.new_var ();
424
   expr_loc = loc;
425
   expr_annot = None}
426

    
427
let is_tuple_expr expr =
428
 match expr.expr_desc with
429
  | Expr_tuple _ -> true
430
  | _            -> false
431

    
432
let expr_list_of_expr expr =
433
  match expr.expr_desc with
434
  | Expr_tuple elist -> elist
435
  | _                -> [expr]
436

    
437
let expr_of_expr_list loc elist =
438
 match elist with
439
 | [t]  -> { t with expr_loc = loc }
440
 | t::_ ->
441
    let tlist = List.map (fun e -> e.expr_type) elist in
442
    let clist = List.map (fun e -> e.expr_clock) elist in
443
    { t with expr_desc = Expr_tuple elist;
444
	     expr_type = Type_predef.type_tuple tlist;
445
	     expr_clock = Clock_predef.ck_tuple clist;
446
	     expr_tag = Utils.new_tag ();
447
	     expr_loc = loc }
448
 | _    -> assert false
449

    
450
let call_of_expr expr =
451
 match expr.expr_desc with
452
 | Expr_appl (f, args, r) -> (f, expr_list_of_expr args, r)
453
 | _                      -> assert false
454

    
455
    
456
(* Conversion from dimension expr to standard expr, for the purpose of printing, typing, etc... *)
457
let rec expr_of_dimension dim =
458
  let open Dimension in
459
  match dim.dim_desc with
460
 | Dbool b        ->
461
     mkexpr dim.dim_loc (Expr_const (const_of_bool b))
462
 | Dint i         ->
463
     mkexpr dim.dim_loc (Expr_const (Const_int i))
464
 | Dident id      ->
465
     mkexpr dim.dim_loc (Expr_ident id)
466
 | Dite (c, t, e) ->
467
     mkexpr dim.dim_loc (Expr_ite (expr_of_dimension c, expr_of_dimension t, expr_of_dimension e))
468
 | Dappl (id, args) ->
469
     mkexpr dim.dim_loc (Expr_appl (id, expr_of_expr_list dim.dim_loc (List.map expr_of_dimension args), None))
470
 | Dlink dim'       -> expr_of_dimension dim'
471
 | Dvar
472
 | Dunivar          -> (Format.eprintf "internal error: Corelang.expr_of_dimension %a@." Dimension.pp_dimension dim;
473
			assert false)
474

    
475
let dimension_of_const loc const =
476
  let open Dimension in
477
 match const with
478
 | Const_int i                                    -> mkdim_int loc i
479
 | Const_tag t when t = tag_true || t = tag_false -> mkdim_bool loc (t = tag_true)
480
 | _                                              -> raise InvalidDimension
481

    
482
(* Conversion from standard expr to dimension expr, for the purpose of injecting static call arguments 
483
   into dimension expressions *)
484
let rec dimension_of_expr expr =
485
  let open Dimension in
486
  match expr.expr_desc with
487
  | Expr_const c  -> dimension_of_const expr.expr_loc c
488
  | Expr_ident id -> mkdim_ident expr.expr_loc id
489
  | Expr_appl (f, args, None) when Basic_library.is_expr_internal_fun expr ->
490
      let k = Types.get_static_value (Env.lookup_value Basic_library.type_env f) in
491
      if k = None then raise InvalidDimension;
492
      mkdim_appl expr.expr_loc f (List.map dimension_of_expr (expr_list_of_expr args))
493
  | Expr_ite (i, t, e)        ->
494
      mkdim_ite expr.expr_loc (dimension_of_expr i) (dimension_of_expr t) (dimension_of_expr e)
495
  | _ -> raise InvalidDimension (* not a simple dimension expression *)
496

    
497

    
498
let sort_handlers hl =
499
 List.sort (fun (t, _) (t', _) -> compare t t') hl
500

    
501
let num_10 = Num.num_of_int 10
502
  
503
let rec is_eq_const c1 c2 =
504
  match c1, c2 with
505
  | Const_real (n1, i1, _), Const_real (n2, i2, _)
506
    -> Num.(let n1 = n1 // (num_10 **/ (num_of_int i1)) in
507
	    let n2 = n2 // (num_10 **/ (num_of_int i2)) in
508
	    eq_num n1 n2)
509
  | Const_struct lcl1, Const_struct lcl2
510
    -> List.length lcl1 = List.length lcl2
511
    && List.for_all2 (fun (l1, c1) (l2, c2) -> l1 = l2 && is_eq_const c1 c2) lcl1 lcl2
512
  | _  -> c1 = c2
513

    
514
let rec is_eq_expr e1 e2 = match e1.expr_desc, e2.expr_desc with
515
  | Expr_const c1, Expr_const c2 -> is_eq_const c1 c2
516
  | Expr_ident i1, Expr_ident i2 -> i1 = i2
517
  | Expr_array el1, Expr_array el2 
518
  | Expr_tuple el1, Expr_tuple el2 -> 
519
    List.length el1 = List.length el2 && List.for_all2 is_eq_expr el1 el2 
520
  | Expr_arrow (e1, e2), Expr_arrow (e1', e2') -> is_eq_expr e1 e1' && is_eq_expr e2 e2'
521
  | Expr_fby (e1,e2), Expr_fby (e1',e2') -> is_eq_expr e1 e1' && is_eq_expr e2 e2'
522
  | Expr_ite (i1, t1, e1), Expr_ite (i2, t2, e2) -> is_eq_expr i1 i2 && is_eq_expr t1 t2 && is_eq_expr e1 e2
523
  (* | Expr_concat (e1,e2), Expr_concat (e1',e2') -> is_eq_expr e1 e1' && is_eq_expr e2 e2' *)
524
  (* | Expr_tail e, Expr_tail e' -> is_eq_expr e e' *)
525
  | Expr_pre e, Expr_pre e' -> is_eq_expr e e'
526
  | Expr_when (e, i, l), Expr_when (e', i', l') -> l=l' && i=i' && is_eq_expr e e'
527
  | Expr_merge(i, hl), Expr_merge(i', hl') -> i=i' && List.for_all2 (fun (t, h) (t', h') -> t=t' && is_eq_expr h h') (sort_handlers hl) (sort_handlers hl')
528
  | Expr_appl (i, e, r), Expr_appl (i', e', r') -> i=i' && r=r' && is_eq_expr e e'
529
  | Expr_power (e1, i1), Expr_power (e2, i2)
530
  | Expr_access (e1, i1), Expr_access (e2, i2) -> is_eq_expr e1 e2 && is_eq_expr (expr_of_dimension i1) (expr_of_dimension i2)
531
  | _ -> false
532

    
533
let get_node_vars nd =
534
  nd.node_inputs @ nd.node_locals @ nd.node_outputs
535

    
536
let mk_new_node_name nd id =
537
  let used_vars = get_node_vars nd in
538
  let used v = List.exists (fun vdecl -> vdecl.var_id = v) used_vars in
539
  mk_new_name used id
540

    
541
let get_var id var_list =
542
  List.find (fun v -> v.var_id = id) var_list
543

    
544
let get_node_var id node =
545
  try
546
    get_var id (get_node_vars node)
547
  with Not_found -> begin
548
    (* Format.eprintf "Unable to find variable %s in node %s@.@?" id node.node_id; *)
549
    raise Not_found
550
  end
551

    
552

    
553
let get_node_eqs =
554
  let get_eqs stmts =
555
    List.fold_right
556
      (fun stmt (res_eq, res_aut) ->
557
	match stmt with
558
	| Eq eq -> eq :: res_eq, res_aut
559
	| Aut aut -> res_eq, aut::res_aut)
560
      stmts
561
      ([], []) in
562
  let table_eqs = Hashtbl.create 23 in
563
  (fun nd ->
564
    try
565
      let (old, res) = Hashtbl.find table_eqs nd.node_id
566
      in if old == nd.node_stmts then res else raise Not_found
567
    with Not_found -> 
568
      let res = get_eqs nd.node_stmts in
569
      begin
570
	Hashtbl.replace table_eqs nd.node_id (nd.node_stmts, res);
571
	res
572
      end)
573

    
574
let get_node_eq id node =
575
  let eqs, auts = get_node_eqs node in
576
  try
577
    List.find (fun eq -> List.mem id eq.eq_lhs) eqs
578
  with
579
    Not_found -> (* Shall be defined in automata auts *) raise Not_found
580
      
581
let get_nodes prog = 
582
  List.fold_left (
583
    fun nodes decl ->
584
      match decl.top_decl_desc with
585
	| Node _ -> decl::nodes
586
	| Const _ | ImportedNode _ | Open _ | TypeDef _ -> nodes  
587
  ) [] prog
588

    
589
let get_imported_nodes prog = 
590
  List.fold_left (
591
    fun nodes decl ->
592
      match decl.top_decl_desc with
593
	| ImportedNode _ -> decl::nodes
594
	| Const _ | Node _ | Open _ | TypeDef _-> nodes  
595
  ) [] prog
596

    
597
let get_consts prog = 
598
  List.fold_right (
599
    fun decl consts ->
600
      match decl.top_decl_desc with
601
	| Const _ -> decl::consts
602
	| Node _ | ImportedNode _ | Open _ | TypeDef _ -> consts  
603
  ) prog []
604

    
605
let get_typedefs prog = 
606
  List.fold_right (
607
    fun decl types ->
608
      match decl.top_decl_desc with
609
	| TypeDef _ -> decl::types
610
	| Node _ | ImportedNode _ | Open _ | Const _ -> types  
611
  ) prog []
612

    
613
let get_dependencies prog =
614
  List.fold_right (
615
    fun decl deps ->
616
      match decl.top_decl_desc with
617
	| Open _ -> decl::deps
618
	| Node _ | ImportedNode _ | TypeDef _ | Const _ -> deps  
619
  ) prog []
620

    
621
let get_node_interface nd =
622
 {nodei_id = nd.node_id;
623
  nodei_type = nd.node_type;
624
  nodei_clock = nd.node_clock;
625
  nodei_inputs = nd.node_inputs;
626
  nodei_outputs = nd.node_outputs;
627
  nodei_stateless = nd.node_dec_stateless;
628
  nodei_spec = nd.node_spec;
629
  nodei_prototype = None;
630
  nodei_in_lib = [];
631
 }
632

    
633
(************************************************************************)
634
(*        Renaming                                                      *)
635

    
636
let rec rename_static rename cty =
637
 match cty with
638
 | Tydec_array (d, cty') -> Tydec_array (Dimension.expr_replace_expr rename d, rename_static rename cty')
639
 | Tydec_clock cty       -> Tydec_clock (rename_static rename cty)
640
 | Tydec_struct fl       -> Tydec_struct (List.map (fun (f, cty) -> f, rename_static rename cty) fl)
641
 | _                      -> cty
642

    
643
let rec rename_carrier rename cck =
644
 match cck with
645
 | Ckdec_bool cl -> Ckdec_bool (List.map (fun (c, l) -> rename c, l) cl)
646
 | _             -> cck
647

    
648
 (*Format.eprintf "Types.rename_static %a = %a@." print_ty ty print_ty res; res*)
649

    
650
(* applies the renaming function [fvar] to all variables of expression [expr] *)
651
 (* let rec expr_replace_var fvar expr = *)
652
 (*  { expr with expr_desc = expr_desc_replace_var fvar expr.expr_desc } *)
653

    
654
 (* and expr_desc_replace_var fvar expr_desc = *)
655
 (*   match expr_desc with *)
656
 (*   | Expr_const _ -> expr_desc *)
657
 (*   | Expr_ident i -> Expr_ident (fvar i) *)
658
 (*   | Expr_array el -> Expr_array (List.map (expr_replace_var fvar) el) *)
659
 (*   | Expr_access (e1, d) -> Expr_access (expr_replace_var fvar e1, d) *)
660
 (*   | Expr_power (e1, d) -> Expr_power (expr_replace_var fvar e1, d) *)
661
 (*   | Expr_tuple el -> Expr_tuple (List.map (expr_replace_var fvar) el) *)
662
 (*   | Expr_ite (c, t, e) -> Expr_ite (expr_replace_var fvar c, expr_replace_var fvar t, expr_replace_var fvar e) *)
663
 (*   | Expr_arrow (e1, e2)-> Expr_arrow (expr_replace_var fvar e1, expr_replace_var fvar e2)  *)
664
 (*   | Expr_fby (e1, e2) -> Expr_fby (expr_replace_var fvar e1, expr_replace_var fvar e2) *)
665
 (*   | Expr_pre e' -> Expr_pre (expr_replace_var fvar e') *)
666
 (*   | Expr_when (e', i, l)-> Expr_when (expr_replace_var fvar e', fvar i, l) *)
667
 (*   | Expr_merge (i, hl) -> Expr_merge (fvar i, List.map (fun (t, h) -> (t, expr_replace_var fvar h)) hl) *)
668
 (*   | Expr_appl (i, e', i') -> Expr_appl (i, expr_replace_var fvar e', Utils.option_map (expr_replace_var fvar) i') *)
669

    
670

    
671

    
672
 let rec rename_expr  f_node f_var expr =
673
   { expr with expr_desc = rename_expr_desc f_node f_var expr.expr_desc }
674
 and rename_expr_desc f_node f_var expr_desc =
675
   let re = rename_expr  f_node f_var in
676
   match expr_desc with
677
   | Expr_const _ -> expr_desc
678
   | Expr_ident i -> Expr_ident (f_var i)
679
   | Expr_array el -> Expr_array (List.map re el)
680
   | Expr_access (e1, d) -> Expr_access (re e1, d)
681
   | Expr_power (e1, d) -> Expr_power (re e1, d)
682
   | Expr_tuple el -> Expr_tuple (List.map re el)
683
   | Expr_ite (c, t, e) -> Expr_ite (re c, re t, re e)
684
   | Expr_arrow (e1, e2)-> Expr_arrow (re e1, re e2) 
685
   | Expr_fby (e1, e2) -> Expr_fby (re e1, re e2)
686
   | Expr_pre e' -> Expr_pre (re e')
687
   | Expr_when (e', i, l)-> Expr_when (re e', f_var i, l)
688
   | Expr_merge (i, hl) -> 
689
     Expr_merge (f_var i, List.map (fun (t, h) -> (t, re h)) hl)
690
   | Expr_appl (i, e', i') -> 
691
     Expr_appl (f_node i, re e', Utils.option_map re i')
692

    
693
 let rename_dec_type f_node f_var t = assert false (*
694
						     Types.rename_dim_type (Dimension.rename f_node f_var) t*)
695

    
696
 let rename_dec_clock f_node f_var c = assert false (* 
697
					  Clocks.rename_clock_expr f_var c*)
698
   
699
 let rename_var f_node f_var v = {
700
   v with
701
     var_id = f_var v.var_id;
702
     var_dec_type = rename_dec_type f_node f_var v.var_type;
703
     var_dec_clock = rename_dec_clock f_node f_var v.var_clock
704
 } 
705

    
706
 let rename_vars f_node f_var = List.map (rename_var f_node f_var) 
707

    
708
 let rec rename_eq f_node f_var eq = { eq with
709
   eq_lhs = List.map f_var eq.eq_lhs; 
710
   eq_rhs = rename_expr f_node f_var eq.eq_rhs
711
 } 
712
 and rename_handler f_node f_var  h = {h with
713
   hand_state = f_var h.hand_state;
714
   hand_unless = List.map (
715
     fun (l,e,b,id) -> l, rename_expr f_node f_var e, b, f_var id
716
   ) h.hand_unless;
717
   hand_until = List.map (
718
     fun (l,e,b,id) -> l, rename_expr f_node f_var e, b, f_var id
719
   ) h.hand_until;
720
   hand_locals = rename_vars f_node f_var h.hand_locals;
721
   hand_stmts = rename_stmts f_node f_var h.hand_stmts;
722
   hand_annots = rename_annots f_node f_var h.hand_annots;
723
   
724
 } 
725
 and rename_aut f_node f_var  aut = { aut with
726
   aut_id = f_var aut.aut_id;
727
   aut_handlers = List.map (rename_handler f_node f_var) aut.aut_handlers;
728
 }
729
 and rename_stmts f_node f_var stmts = List.map (fun stmt -> match stmt with
730
   | Eq eq -> Eq (rename_eq f_node f_var eq)
731
   | Aut at -> Aut (rename_aut f_node f_var at))
732
   stmts
733
 and rename_annotl f_node f_var  annots = 
734
   List.map 
735
     (fun (key, value) -> key, rename_eexpr f_node f_var value) 
736
     annots
737
 and rename_annot f_node f_var annot =
738
   { annot with annots = rename_annotl f_node f_var annot.annots }
739
 and rename_annots f_node f_var annots =
740
   List.map (rename_annot f_node f_var) annots
741
and rename_eexpr f_node f_var ee =
742
   { ee with
743
     eexpr_tag = Utils.new_tag ();
744
     eexpr_qfexpr = rename_expr f_node f_var ee.eexpr_qfexpr;
745
     eexpr_quantifiers = List.map (fun (typ,vdecls) -> typ, rename_vars f_node f_var vdecls) ee.eexpr_quantifiers;
746
     eexpr_normalized = Utils.option_map 
747
       (fun (vdecl, eqs, vdecls) ->
748
	 rename_var f_node f_var vdecl,
749
	 List.map (rename_eq f_node f_var) eqs,
750
	 rename_vars f_node f_var vdecls
751
       ) ee.eexpr_normalized;
752
     
753
   }
754
 
755
     
756
     
757
   
758
 let rename_node f_node f_var nd =
759
   let rename_var = rename_var f_node f_var in
760
   let rename_expr = rename_expr f_node f_var in
761
   let rename_stmts = rename_stmts f_node f_var in
762
   let inputs = List.map rename_var nd.node_inputs in
763
   let outputs = List.map rename_var nd.node_outputs in
764
   let locals = List.map rename_var nd.node_locals in
765
   let gen_calls = List.map rename_expr nd.node_gencalls in
766
   let node_checks = List.map (Dimension.rename f_node f_var)  nd.node_checks in
767
   let node_asserts = List.map 
768
     (fun a -> 
769
       {a with assert_expr = 
770
	   let expr = a.assert_expr in
771
	   rename_expr expr})
772
     nd.node_asserts
773
   in
774
   let node_stmts = rename_stmts nd.node_stmts
775

    
776
     
777
   in
778
   let spec = 
779
     Utils.option_map 
780
       (fun s -> assert false; (*rename_node_annot f_node f_var s*) ) (* TODO: implement! *) 
781
       nd.node_spec 
782
   in
783
   let annot = rename_annots f_node f_var nd.node_annot in
784
   {
785
     node_id = f_node nd.node_id;
786
     node_type = nd.node_type;
787
     node_clock = nd.node_clock;
788
     node_inputs = inputs;
789
     node_outputs = outputs;
790
     node_locals = locals;
791
     node_gencalls = gen_calls;
792
     node_checks = node_checks;
793
     node_asserts = node_asserts;
794
     node_stmts = node_stmts;
795
     node_dec_stateless = nd.node_dec_stateless;
796
     node_stateless = nd.node_stateless;
797
     node_spec = spec;
798
     node_annot = annot;
799
   }
800

    
801

    
802
let rename_const f_const c =
803
  { c with const_id = f_const c.const_id }
804

    
805
let rename_typedef f_var t =
806
  match t.tydef_desc with
807
  | Tydec_enum tags -> { t with tydef_desc = Tydec_enum (List.map f_var tags) }
808
  | _               -> t
809

    
810
let rename_prog f_node f_var f_const prog =
811
  List.rev (
812
    List.fold_left (fun accu top ->
813
      (match top.top_decl_desc with
814
      | Node nd -> 
815
	 { top with top_decl_desc = Node (rename_node f_node f_var nd) }
816
      | Const c -> 
817
	 { top with top_decl_desc = Const (rename_const f_const c) }
818
      | TypeDef tdef ->
819
	 { top with top_decl_desc = TypeDef (rename_typedef f_var tdef) }
820
      | ImportedNode _
821
      | Open _       -> top)
822
      ::accu
823
) [] prog
824
		   )
825

    
826
(* Applies the renaming function [fvar] to every rhs
827
   only when the corresponding lhs satisfies predicate [pvar] *)
828
 let eq_replace_rhs_var pvar fvar eq =
829
   let pvar l = List.exists pvar l in
830
   let rec replace lhs rhs =
831
     { rhs with expr_desc =
832
     match lhs with
833
     | []  -> assert false
834
     | [_] -> if pvar lhs then rename_expr_desc (fun x -> x) fvar rhs.expr_desc else rhs.expr_desc
835
     | _   ->
836
       (match rhs.expr_desc with
837
       | Expr_tuple tl ->
838
	 Expr_tuple (List.map2 (fun v e -> replace [v] e) lhs tl)
839
       | Expr_appl (f, arg, None) when Basic_library.is_expr_internal_fun rhs ->
840
	 let args = expr_list_of_expr arg in
841
	 Expr_appl (f, expr_of_expr_list arg.expr_loc (List.map (replace lhs) args), None)
842
       | Expr_array _
843
       | Expr_access _
844
       | Expr_power _
845
       | Expr_const _
846
       | Expr_ident _
847
       | Expr_appl _   ->
848
	 if pvar lhs
849
	 then rename_expr_desc (fun x -> x) fvar rhs.expr_desc
850
	 else rhs.expr_desc
851
       | Expr_ite (c, t, e)   -> Expr_ite (replace lhs c, replace lhs t, replace lhs e)
852
       | Expr_arrow (e1, e2)  -> Expr_arrow (replace lhs e1, replace lhs e2) 
853
       | Expr_fby (e1, e2)    -> Expr_fby (replace lhs e1, replace lhs e2)
854
       | Expr_pre e'          -> Expr_pre (replace lhs e')
855
       | Expr_when (e', i, l) -> let i' = if pvar lhs then fvar i else i
856
				 in Expr_when (replace lhs e', i', l)
857
       | Expr_merge (i, hl)   -> let i' = if pvar lhs then fvar i else i
858
				 in Expr_merge (i', List.map (fun (t, h) -> (t, replace lhs h)) hl)
859
       )
860
     }
861
   in { eq with eq_rhs = replace eq.eq_lhs eq.eq_rhs }
862

    
863
    
864
(**********************************************************************)
865
(* Pretty printers *)
866

    
867
let pp_decl_type fmt tdecl =
868
  match tdecl.top_decl_desc with
869
  | Node nd ->
870
    fprintf fmt "%s: " nd.node_id;
871
    Utils.reset_names ();
872
    fprintf fmt "%a@ " Types.print_ty nd.node_type
873
  | ImportedNode ind ->
874
    fprintf fmt "%s: " ind.nodei_id;
875
    Utils.reset_names ();
876
    fprintf fmt "%a@ " Types.print_ty ind.nodei_type
877
  | Const _ | Open _ | TypeDef _ -> ()
878

    
879
let pp_prog_type fmt tdecl_list =
880
  Utils.fprintf_list ~sep:"" pp_decl_type fmt tdecl_list
881

    
882
let pp_decl_clock fmt cdecl =
883
  match cdecl.top_decl_desc with
884
  | Node nd ->
885
    fprintf fmt "%s: " nd.node_id;
886
    Utils.reset_names ();
887
    fprintf fmt "%a@ " Clocks.print_ck nd.node_clock
888
  | ImportedNode ind ->
889
    fprintf fmt "%s: " ind.nodei_id;
890
    Utils.reset_names ();
891
    fprintf fmt "%a@ " Clocks.print_ck ind.nodei_clock
892
  | Const _ | Open _ | TypeDef _ -> ()
893

    
894
let pp_prog_clock fmt prog =
895
  Utils.fprintf_list ~sep:"" pp_decl_clock fmt prog
896

    
897

    
898
(* filling node table with internal functions *)
899
let vdecls_of_typ_ck cpt ty =
900
  let loc = Location.dummy_loc in
901
  List.map
902
    (fun _ -> incr cpt;
903
              let name = sprintf "_var_%d" !cpt in
904
              mkvar_decl loc (name, mktyp loc Tydec_any, mkclock loc Ckdec_any, false, None))
905
    (Types.type_list_of_type ty)
906

    
907
let mk_internal_node id =
908
  let spec = None in
909
  let ty = Env.lookup_value Basic_library.type_env id in
910
  let ck = Env.lookup_value Basic_library.clock_env id in
911
  let (tin, tout) = Types.split_arrow ty in
912
  (*eprintf "internal fun %s: %d -> %d@." id (List.length (Types.type_list_of_type tin)) (List.length (Types.type_list_of_type tout));*)
913
  let cpt = ref (-1) in
914
  mktop
915
    (ImportedNode
916
       {nodei_id = id;
917
	nodei_type = ty;
918
	nodei_clock = ck;
919
	nodei_inputs = vdecls_of_typ_ck cpt tin;
920
	nodei_outputs = vdecls_of_typ_ck cpt tout;
921
	nodei_stateless = Types.get_static_value ty <> None;
922
	nodei_spec = spec;
923
	nodei_prototype = None;
924
       	nodei_in_lib = [];
925
       })
926

    
927
let add_internal_funs () =
928
  List.iter
929
    (fun id -> let nd = mk_internal_node id in Hashtbl.add node_table id nd)
930
    Basic_library.internal_funs
931

    
932

    
933

    
934
(* Replace any occurence of a var in vars_to_replace by its associated
935
   expression in defs until e does not contain any such variables *)
936
let rec substitute_expr vars_to_replace defs e =
937
  let se = substitute_expr vars_to_replace defs in
938
  { e with expr_desc = 
939
      let ed = e.expr_desc in
940
      match ed with
941
      | Expr_const _ -> ed
942
      | Expr_array el -> Expr_array (List.map se el)
943
      | Expr_access (e1, d) -> Expr_access (se e1, d)
944
      | Expr_power (e1, d) -> Expr_power (se e1, d)
945
      | Expr_tuple el -> Expr_tuple (List.map se el)
946
      | Expr_ite (c, t, e) -> Expr_ite (se c, se t, se e)
947
      | Expr_arrow (e1, e2)-> Expr_arrow (se e1, se e2) 
948
      | Expr_fby (e1, e2) -> Expr_fby (se e1, se e2)
949
      | Expr_pre e' -> Expr_pre (se e')
950
      | Expr_when (e', i, l)-> Expr_when (se e', i, l)
951
      | Expr_merge (i, hl) -> Expr_merge (i, List.map (fun (t, h) -> (t, se h)) hl)
952
      | Expr_appl (i, e', i') -> Expr_appl (i, se e', i')
953
      | Expr_ident i -> 
954
	if List.exists (fun v -> v.var_id = i) vars_to_replace then (
955
	  let eq_i eq = eq.eq_lhs = [i] in
956
	  if List.exists eq_i defs then
957
	    let sub = List.find eq_i defs in
958
	    let sub' = se sub.eq_rhs in
959
	    sub'.expr_desc
960
	  else 
961
	    assert false
962
	)
963
	else
964
	  ed
965

    
966
  }
967
  
968
 let rec expr_to_eexpr  expr =
969
   { eexpr_tag = expr.expr_tag;
970
     eexpr_qfexpr = expr;
971
     eexpr_quantifiers = [];
972
     eexpr_type = expr.expr_type;
973
     eexpr_clock = expr.expr_clock;
974
     eexpr_loc = expr.expr_loc;
975
     eexpr_normalized = None
976
   }
977
 (* and expr_desc_to_eexpr_desc expr_desc = *)
978
 (*   let conv = expr_to_eexpr in *)
979
 (*   match expr_desc with *)
980
 (*   | Expr_const c -> EExpr_const (match c with *)
981
 (*     | Const_int x -> EConst_int x  *)
982
 (*     | Const_real x -> EConst_real x  *)
983
 (*     | Const_float x -> EConst_float x  *)
984
 (*     | Const_tag x -> EConst_tag x  *)
985
 (*     | _ -> assert false *)
986

    
987
 (*   ) *)
988
 (*   | Expr_ident i -> EExpr_ident i *)
989
 (*   | Expr_tuple el -> EExpr_tuple (List.map conv el) *)
990

    
991
 (*   | Expr_arrow (e1, e2)-> EExpr_arrow (conv e1, conv e2)  *)
992
 (*   | Expr_fby (e1, e2) -> EExpr_fby (conv e1, conv e2) *)
993
 (*   | Expr_pre e' -> EExpr_pre (conv e') *)
994
 (*   | Expr_appl (i, e', i') ->  *)
995
 (*     EExpr_appl  *)
996
 (*       (i, conv e', match i' with None -> None | Some(id, _) -> Some id) *)
997

    
998
 (*   | Expr_when _ *)
999
 (*   | Expr_merge _ -> assert false *)
1000
 (*   | Expr_array _  *)
1001
 (*   | Expr_access _  *)
1002
 (*   | Expr_power _  -> assert false *)
1003
 (*   | Expr_ite (c, t, e) -> assert false  *)
1004
 (*   | _ -> assert false *)
1005
      
1006
     
1007
let rec get_expr_calls nodes e =
1008
  let get_calls = get_expr_calls nodes in
1009
  match e.expr_desc with
1010
  | Expr_const _ 
1011
   | Expr_ident _ -> Utils.ISet.empty
1012
   | Expr_tuple el
1013
   | Expr_array el -> List.fold_left (fun accu e -> Utils.ISet.union accu (get_calls e)) Utils.ISet.empty el
1014
   | Expr_pre e1 
1015
   | Expr_when (e1, _, _) 
1016
   | Expr_access (e1, _) 
1017
   | Expr_power (e1, _) -> get_calls e1
1018
   | Expr_ite (c, t, e) -> Utils.ISet.union (Utils.ISet.union (get_calls c) (get_calls t)) (get_calls e) 
1019
   | Expr_arrow (e1, e2) 
1020
   | Expr_fby (e1, e2) -> Utils.ISet.union (get_calls e1) (get_calls e2)
1021
   | Expr_merge (_, hl) -> List.fold_left (fun accu (_, h) -> Utils.ISet.union accu (get_calls h)) Utils.ISet.empty  hl
1022
   | Expr_appl (i, e', i') -> 
1023
     if Basic_library.is_expr_internal_fun e then 
1024
       (get_calls e') 
1025
     else
1026
       let calls =  Utils.ISet.add i (get_calls e') in
1027
       let test = (fun n -> match n.top_decl_desc with Node nd -> nd.node_id = i | _ -> false) in
1028
       if List.exists test nodes then
1029
	 match (List.find test nodes).top_decl_desc with
1030
	 | Node nd -> Utils.ISet.union (get_node_calls nodes nd) calls
1031
	 | _ -> assert false
1032
       else 
1033
	 calls
1034

    
1035
and get_eq_calls nodes eq =
1036
  get_expr_calls nodes eq.eq_rhs
1037
and get_aut_handler_calls nodes h =
1038
  List.fold_left (fun accu stmt -> match stmt with
1039
  | Eq eq -> Utils.ISet.union (get_eq_calls nodes eq) accu
1040
  | Aut aut' ->  Utils.ISet.union (get_aut_calls nodes aut') accu
1041
  ) Utils.ISet.empty h.hand_stmts 
1042
and get_aut_calls nodes aut =
1043
  List.fold_left (fun accu h -> Utils.ISet.union (get_aut_handler_calls nodes h) accu)
1044
    Utils.ISet.empty aut.aut_handlers
1045
and get_node_calls nodes node =
1046
  let eqs, auts = get_node_eqs node in
1047
  let aut_calls =
1048
    List.fold_left
1049
      (fun accu aut -> Utils.ISet.union (get_aut_calls nodes aut) accu)
1050
      Utils.ISet.empty auts
1051
  in
1052
  List.fold_left
1053
    (fun accu eq -> Utils.ISet.union (get_eq_calls nodes eq) accu)
1054
    aut_calls eqs
1055

    
1056
let get_expr_vars e =
1057
  let rec get_expr_vars vars e =
1058
    get_expr_desc_vars vars e.expr_desc
1059
  and get_expr_desc_vars vars expr_desc =
1060
    (*Format.eprintf "get_expr_desc_vars expr=%a@." Printers.pp_expr (mkexpr Location.dummy_loc expr_desc);*)
1061
  match expr_desc with
1062
  | Expr_const _ -> vars
1063
  | Expr_ident x -> Utils.ISet.add x vars
1064
  | Expr_tuple el
1065
  | Expr_array el -> List.fold_left get_expr_vars vars el
1066
  | Expr_pre e1 -> get_expr_vars vars e1
1067
  | Expr_when (e1, c, _) -> get_expr_vars (Utils.ISet.add c vars) e1 
1068
  | Expr_access (e1, d) 
1069
  | Expr_power (e1, d)   -> List.fold_left get_expr_vars vars [e1; expr_of_dimension d]
1070
  | Expr_ite (c, t, e) -> List.fold_left get_expr_vars vars [c; t; e]
1071
  | Expr_arrow (e1, e2) 
1072
  | Expr_fby (e1, e2) -> List.fold_left get_expr_vars vars [e1; e2]
1073
  | Expr_merge (c, hl) -> List.fold_left (fun vars (_, h) -> get_expr_vars vars h) (Utils.ISet.add c vars) hl
1074
  | Expr_appl (_, arg, None)   -> get_expr_vars vars arg
1075
  | Expr_appl (_, arg, Some r) -> List.fold_left get_expr_vars vars [arg; r]
1076
  in
1077
  get_expr_vars Utils.ISet.empty e 
1078

    
1079
let rec expr_has_arrows e =
1080
  expr_desc_has_arrows e.expr_desc
1081
and expr_desc_has_arrows expr_desc =
1082
  match expr_desc with
1083
  | Expr_const _ 
1084
  | Expr_ident _ -> false
1085
  | Expr_tuple el
1086
  | Expr_array el -> List.exists expr_has_arrows el
1087
  | Expr_pre e1 
1088
  | Expr_when (e1, _, _) 
1089
  | Expr_access (e1, _) 
1090
  | Expr_power (e1, _) -> expr_has_arrows e1
1091
  | Expr_ite (c, t, e) -> List.exists expr_has_arrows [c; t; e]
1092
  | Expr_arrow (e1, e2) 
1093
  | Expr_fby (e1, e2) -> true
1094
  | Expr_merge (_, hl) -> List.exists (fun (_, h) -> expr_has_arrows h) hl
1095
  | Expr_appl (i, e', i') -> expr_has_arrows e'
1096

    
1097
and eq_has_arrows eq =
1098
  expr_has_arrows eq.eq_rhs
1099
and aut_has_arrows aut = List.exists (fun h -> List.exists (fun stmt -> match stmt with Eq eq -> eq_has_arrows eq | Aut aut' -> aut_has_arrows aut') h.hand_stmts ) aut.aut_handlers 
1100
and node_has_arrows node =
1101
  let eqs, auts = get_node_eqs node in
1102
  List.exists (fun eq -> eq_has_arrows eq) eqs || List.exists (fun aut -> aut_has_arrows aut) auts
1103

    
1104

    
1105

    
1106
let copy_var_decl vdecl =
1107
  mkvar_decl vdecl.var_loc ~orig:vdecl.var_orig (vdecl.var_id, vdecl.var_dec_type, vdecl.var_dec_clock, vdecl.var_dec_const, vdecl.var_dec_value)
1108

    
1109
let copy_const cdecl =
1110
  { cdecl with const_type = Types.new_var () }
1111

    
1112
let copy_node nd =
1113
  { nd with
1114
    node_type     = Types.new_var ();
1115
    node_clock    = Clocks.new_var true;
1116
    node_inputs   = List.map copy_var_decl nd.node_inputs;
1117
    node_outputs  = List.map copy_var_decl nd.node_outputs;
1118
    node_locals   = List.map copy_var_decl nd.node_locals;
1119
    node_gencalls = [];
1120
    node_checks   = [];
1121
    node_stateless = None;
1122
  }
1123

    
1124
let copy_top top =
1125
  match top.top_decl_desc with
1126
  | Node nd -> { top with top_decl_desc = Node (copy_node nd)  }
1127
  | Const c -> { top with top_decl_desc = Const (copy_const c) }
1128
  | _       -> top
1129

    
1130
let copy_prog top_list =
1131
  List.map copy_top top_list
1132

    
1133

    
1134
let rec expr_contains_expr expr_tag expr  =
1135
  let search = expr_contains_expr expr_tag in
1136
  expr.expr_tag = expr_tag ||
1137
      (
1138
	match expr.expr_desc with
1139
	| Expr_const _ -> false
1140
	| Expr_array el -> List.exists search el
1141
	| Expr_access (e1, _) 
1142
	| Expr_power (e1, _) -> search e1
1143
	| Expr_tuple el -> List.exists search el
1144
	| Expr_ite (c, t, e) -> List.exists search [c;t;e]
1145
	| Expr_arrow (e1, e2)
1146
	| Expr_fby (e1, e2) -> List.exists search [e1; e2]
1147
	| Expr_pre e' 
1148
	| Expr_when (e', _, _) -> search e'
1149
	| Expr_merge (_, hl) -> List.exists (fun (_, h) -> search h) hl
1150
	| Expr_appl (_, e', None) -> search e' 
1151
	| Expr_appl (_, e', Some e'') -> List.exists search [e'; e''] 
1152
	| Expr_ident _ -> false
1153
      )
1154

    
1155
(* Local Variables: *)
1156
(* compile-command:"make -C .." *)
1157
(* End: *)
(15-15/66)