Project

General

Profile

Download (25.5 KB) Statistics
| Branch: | Tag: | Revision:
1
(********************************************************************)
2
(*                                                                  *)
3
(*  The LustreC compiler toolset   /  The LustreC Development Team  *)
4
(*  Copyright 2012 -    --   ONERA - CNRS - INPT - LIFL             *)
5
(*                                                                  *)
6
(*  LustreC is free software, distributed WITHOUT ANY WARRANTY      *)
7
(*  under the terms of the GNU Lesser General Public License        *)
8
(*  version 2.1.                                                    *)
9
(*                                                                  *) 
10
(*  This file was originally from the Prelude compiler              *)
11
(*                                                                  *) 
12
(********************************************************************)
13

    
14

    
15
(** Simple modular syntactic causality analysis. Can reject correct
16
    programs, especially if the program is not flattened first. *)
17
open Utils
18
open Lustre_types
19
open Corelang
20
open Graph
21

    
22

    
23
type identified_call = eq * tag
24
type error =
25
  | DataCycle of ident list list (* multiple failed partitions at once *) 
26
  | NodeCycle of ident list
27

    
28
exception Error of error
29

    
30

    
31
  
32
(* Dependency of mem variables on mem variables is cut off 
33
   by duplication of some mem vars into local node vars.
34
   Thus, cylic dependency errors may only arise between no-mem vars.
35
   non-mem variables are:
36
   - constants/inputs: not needed for causality/scheduling, needed only for detecting useless vars
37
   - read mems (fake vars): same remark as above.
38
   - outputs: decoupled from mems, if necessary
39
   - locals
40
   - instance vars (fake vars): simplify causality analysis
41
   
42
   global constants are not part of the dependency graph.
43
   
44
   no_mem' = combinational(no_mem, mem);
45
   => (mem -> no_mem' -> no_mem)
46

    
47
   mem' = pre(no_mem, mem);
48
   => (mem' -> no_mem), (mem -> mem')
49
   
50
   Global roadmap:
51
   - compute two dep graphs g (non-mem/non-mem&mem) and g' (mem/mem)
52
   - check cycles in g (a cycle means a dependency error)
53
   - break cycles in g' (it's legal !):
54
     - check cycles in g'
55
     - if any, introduce aux var to break cycle, then start afresh
56
   - insert g' into g
57
   - return g
58
*)
59

    
60
(* Tests whether [v] is a root of graph [g], i.e. a source *)
61
let is_graph_root v g =
62
  IdentDepGraph.in_degree g v = 0
63

    
64
(* Computes the set of graph roots, i.e. the sources of acyclic graph [g] *)
65
let graph_roots g =
66
  IdentDepGraph.fold_vertex
67
    (fun v roots -> if is_graph_root v g then v::roots else roots)
68
    g []
69

    
70
let add_edges src tgt g =
71
 (*List.iter (fun s -> List.iter (fun t -> Format.eprintf "add %s -> %s@." s t) tgt) src;*)
72
  List.iter
73
    (fun s ->
74
      List.iter
75
	(fun t -> IdentDepGraph.add_edge g s t)
76
	tgt)
77
    src;
78
  g
79

    
80
let add_vertices vtc g =
81
 (*List.iter (fun t -> Format.eprintf "add %s@." t) vtc;*)
82
  List.iter (fun v -> IdentDepGraph.add_vertex g v) vtc;
83
  g
84

    
85
let new_graph () =
86
  IdentDepGraph.create ()
87

    
88
(* keep subgraph of [gr] consisting of nodes accessible from node [v] *)
89
let slice_graph gr v =
90
  begin
91
    let gr' = new_graph () in
92
    IdentDepGraph.add_vertex gr' v;
93
    Bfs.iter_component (fun v -> IdentDepGraph.iter_succ (fun s -> IdentDepGraph.add_vertex gr' s; IdentDepGraph.add_edge gr' v s) gr v) gr v;
94
    gr'
95
  end
96

    
97
    
98
module ExprDep = struct
99
  let get_node_eqs nd =
100
    let eqs, auts = get_node_eqs nd in
101
    if auts != [] then assert false (* No call on causality on a Lustre model
102
				       with automaton. They should be expanded by now. *);
103
    eqs
104
      
105
  let instance_var_cpt = ref 0
106

    
107
(* read vars represent input/mem read-only vars,
108
   they are not part of the program/schedule,
109
   as they are not assigned,
110
   but used to compute useless inputs/mems.
111
   a mem read var represents a mem at the beginning of a cycle  *)
112
  let mk_read_var id =
113
    Format.sprintf "#%s" id
114

    
115
(* instance vars represent node instance calls,
116
   they are not part of the program/schedule,
117
   but used to simplify causality analysis
118
*)
119
  let mk_instance_var id =
120
    incr instance_var_cpt; Format.sprintf "!%s_%d" id !instance_var_cpt
121

    
122
  let is_read_var v = v.[0] = '#'
123

    
124
  let is_instance_var v = v.[0] = '!'
125

    
126
  let is_ghost_var v = is_instance_var v || is_read_var v
127

    
128
  let undo_read_var id =
129
    assert (is_read_var id);
130
    String.sub id 1 (String.length id - 1)
131

    
132
  let undo_instance_var id =
133
    assert (is_instance_var id);
134
    String.sub id 1 (String.length id - 1)
135

    
136
  let eq_memory_variables mems eq =
137
    let rec match_mem lhs rhs mems =
138
      match rhs.expr_desc with
139
      | Expr_fby _
140
      | Expr_pre _    -> List.fold_right ISet.add lhs mems
141
      | Expr_tuple tl -> 
142
	 let lhs' = (transpose_list [lhs]) in
143
	 List.fold_right2 match_mem lhs' tl mems
144
      | _             -> mems in
145
    match_mem eq.eq_lhs eq.eq_rhs mems
146

    
147
  let node_memory_variables nd =
148
    List.fold_left eq_memory_variables ISet.empty (get_node_eqs nd)
149

    
150
  let node_input_variables nd =
151
    List.fold_left (fun inputs v -> ISet.add v.var_id inputs) ISet.empty 
152
      (if nd.node_iscontract then
153
         nd.node_inputs@nd.node_outputs
154
       else
155
         nd.node_inputs)
156
    
157
  let node_output_variables nd =
158
    List.fold_left (fun outputs v -> ISet.add v.var_id outputs) ISet.empty
159
      (if nd.node_iscontract then [] else nd.node_outputs)
160

    
161
  let node_local_variables nd =
162
    List.fold_left (fun locals v -> ISet.add v.var_id locals) ISet.empty nd.node_locals
163

    
164
  let node_constant_variables nd =
165
    List.fold_left (fun locals v -> if v.var_dec_const then ISet.add v.var_id locals else locals) ISet.empty nd.node_locals
166

    
167
  let node_auxiliary_variables nd =
168
    ISet.diff (node_local_variables nd) (node_memory_variables nd)
169

    
170
  let node_variables nd =
171
    let inputs = node_input_variables nd in
172
    let inoutputs = List.fold_left (fun inoutputs v -> ISet.add v.var_id inoutputs) inputs nd.node_outputs in
173
    List.fold_left (fun vars v -> ISet.add v.var_id vars) inoutputs nd.node_locals
174

    
175
(* computes the equivalence relation relating variables 
176
   in the same equation lhs, under the form of a table 
177
   of class representatives *)
178
  let eqs_eq_equiv eqs =
179
    let eq_equiv = Hashtbl.create 23 in
180
    List.iter (fun eq ->
181
      let first = List.hd eq.eq_lhs in
182
      List.iter (fun v -> Hashtbl.add eq_equiv v first) eq.eq_lhs
183
    )
184
      eqs;
185
    eq_equiv
186
    
187
  let node_eq_equiv nd = eqs_eq_equiv  (get_node_eqs nd)
188
  
189
(* Create a tuple of right dimension, according to [expr] type, *)
190
(* filled with variable [v] *)
191
  let adjust_tuple v expr =
192
    match expr.expr_type.Types.tdesc with
193
    | Types.Ttuple tl -> duplicate v (List.length tl)
194
    | _         -> [v]
195

    
196

    
197
  (* Add dependencies from lhs to rhs in [g, g'], *)
198
  (* no-mem/no-mem and mem/no-mem in g            *)
199
  (* mem/mem in g'                                *)
200
  (*     match (lhs_is_mem, ISet.mem x mems) with
201
	 | (false, true ) -> (add_edges [x] lhs g,
202
	 g')
203
	 | (false, false) -> (add_edges lhs [x] g,
204
	 g')
205
	 | (true , false) -> (add_edges lhs [x] g,
206
	 g')
207
	 | (true , true ) -> (g,
208
	 add_edges [x] lhs g')
209
  *)
210
  let add_eq_dependencies mems inputs node_vars eq (g, g') =
211
    let add_var lhs_is_mem lhs x (g, g') =
212
      if is_instance_var x || ISet.mem x node_vars then
213
	if ISet.mem x mems
214
	then
215
	  let g = add_edges lhs [mk_read_var x] g in
216
	  if lhs_is_mem
217
	  then
218
	    (g, add_edges [x] lhs g')
219
	  else
220
	    (add_edges [x] lhs g, g')
221
	else
222
	  let x = if ISet.mem x inputs then mk_read_var x else x in
223
	  (add_edges lhs [x] g, g')
224
      else (add_edges lhs [mk_read_var x] g, g') (* x is a global constant, treated as a read var *)
225
    in
226
  (* Add dependencies from [lhs] to rhs clock [ck]. *)
227
    let rec add_clock lhs_is_mem lhs ck g =
228
    (*Format.eprintf "add_clock %a@." Clocks.print_ck ck;*)
229
      match (Clocks.repr ck).Clocks.cdesc with
230
      | Clocks.Con (ck', cr, _)   -> add_var lhs_is_mem lhs (Clocks.const_of_carrier cr) (add_clock lhs_is_mem lhs ck' g)
231
      | Clocks.Ccarrying (_, ck') -> add_clock lhs_is_mem lhs ck' g
232
      | _                         -> g 
233
    in
234
    let rec add_dep lhs_is_mem lhs rhs g =
235
    (* Add mashup dependencies for a user-defined node instance [lhs] = [f]([e]) *)
236
    (* i.e every input is connected to every output, through a ghost var *)
237
      let mashup_appl_dependencies f e g =
238
	let f_var = mk_instance_var (Format.sprintf "%s_%d" f eq.eq_loc.Location.loc_start.Lexing.pos_lnum) in
239
	List.fold_right (fun rhs -> add_dep lhs_is_mem (adjust_tuple f_var rhs) rhs)
240
	  (expr_list_of_expr e) (add_var lhs_is_mem lhs f_var g) 
241
      in
242
      match rhs.expr_desc with
243
      | Expr_const _    -> g
244
      | Expr_fby (e1, e2)  -> add_dep true lhs e2 (add_dep false lhs e1 g)
245
      | Expr_pre e      -> add_dep true lhs e g
246
      | Expr_ident x -> add_var lhs_is_mem lhs x (add_clock lhs_is_mem lhs rhs.expr_clock g)
247
      | Expr_access (e1, d)
248
      | Expr_power (e1, d) -> add_dep lhs_is_mem lhs e1 (add_dep lhs_is_mem lhs (expr_of_dimension d) g)
249
      | Expr_array a -> List.fold_right (add_dep lhs_is_mem lhs) a g
250
      | Expr_tuple t -> List.fold_right2 (fun l r -> add_dep lhs_is_mem [l] r) lhs t g
251
      | Expr_merge (c, hl) -> add_var lhs_is_mem lhs c (List.fold_right (fun (_, h) -> add_dep lhs_is_mem lhs h) hl g)
252
      | Expr_ite   (c, t, e) -> add_dep lhs_is_mem lhs c (add_dep lhs_is_mem lhs t (add_dep lhs_is_mem lhs e g))
253
      | Expr_arrow (e1, e2)  -> add_dep lhs_is_mem lhs e2 (add_dep lhs_is_mem lhs e1 g)
254
      | Expr_when  (e, c, _)  -> add_dep lhs_is_mem lhs e (add_var lhs_is_mem lhs c g)
255
      | Expr_appl (f, e, None) ->
256
	 if Basic_library.is_expr_internal_fun rhs
257
      (* tuple component-wise dependency for internal operators *)
258
	 then
259
	   List.fold_right (add_dep lhs_is_mem lhs) (expr_list_of_expr e) g
260
      (* mashed up dependency for user-defined operators *)
261
	 else
262
	   mashup_appl_dependencies f e g
263
      | Expr_appl (f, e, Some c) ->
264
	 mashup_appl_dependencies f e (add_dep lhs_is_mem lhs c g)
265
    in
266
    let g =
267
      List.fold_left
268
	(fun g lhs ->
269
	  if ISet.mem lhs mems then
270
	    add_vertices [lhs; mk_read_var lhs] g
271
	  else
272
	    add_vertices [lhs] g
273
	)
274
	g eq.eq_lhs
275
    in
276
    add_dep false eq.eq_lhs eq.eq_rhs (g, g')
277
      
278

    
279
  (* Returns the dependence graph for node [n] *)
280
  let dependence_graph mems inputs node_vars n =
281
    instance_var_cpt := 0;
282
    let g = new_graph (), new_graph () in
283
    (* Basic dependencies *)
284
    let g = List.fold_right (add_eq_dependencies mems inputs node_vars) (get_node_eqs n) g in
285
    (* TODO Xavier: un essai ci dessous. Ca n'a pas l'air de résoudre le pb. Il
286
       faut imposer que les outputs dépendent des asserts pour identifier que les
287
       fcn calls des asserts sont évalués avant le noeuds *)
288
    
289
    (* (\* In order to introduce dependencies between assert expressions and the node, *)
290
    (*    we build an artificial dependency between node output and each assert *)
291
    (*    expr. While these are not valid equations, they should properly propage in *)
292
    (*    function add_eq_dependencies *\) *)
293
    (* let g = *)
294
    (*   let output_vars_as_lhs = ISet.elements (node_output_variables n) in *)
295
    (*   List.fold_left (fun g ae -> *)
296
    (*     let fake_eq = mkeq Location.dummy_loc (output_vars_as_lhs, ae.assert_expr) in *)
297
    (*   add_eq_dependencies mems inputs node_vars fake_eq g *)
298
    (* ) g n.node_asserts in  *)
299
    g
300

    
301
end
302

    
303
module NodeDep = struct
304

    
305
  module ExprModule =
306
  struct
307
    type t = expr
308
    let compare = compare
309
    let hash n = Hashtbl.hash n
310
    let equal n1 n2 = n1 = n2
311
  end
312

    
313
  module ESet = Set.Make(ExprModule)
314

    
315
  let rec get_expr_calls prednode expr = 
316
    match expr.expr_desc with
317
    | Expr_const _ 
318
    | Expr_ident _ -> ESet.empty
319
    | Expr_access (e, _)
320
    | Expr_power (e, _) -> get_expr_calls prednode e
321
    | Expr_array t
322
    | Expr_tuple t -> List.fold_right (fun x set -> ESet.union (get_expr_calls prednode x) set) t ESet.empty
323
    | Expr_merge (_,hl) -> List.fold_right (fun (_,h) set -> ESet.union (get_expr_calls prednode h) set) hl ESet.empty
324
    | Expr_fby (e1,e2)
325
    | Expr_arrow (e1,e2) -> ESet.union (get_expr_calls prednode e1) (get_expr_calls prednode e2)
326
    | Expr_ite   (c, t, e) -> ESet.union (get_expr_calls prednode c) (ESet.union (get_expr_calls prednode t) (get_expr_calls prednode e))
327
    | Expr_pre e 
328
    | Expr_when (e,_,_) -> get_expr_calls prednode e
329
    | Expr_appl (id,e, _) ->
330
       if not (Basic_library.is_expr_internal_fun expr) && prednode id
331
       then ESet.add expr (get_expr_calls prednode e)
332
       else (get_expr_calls prednode e)
333

    
334
  let get_eexpr_calls prednode ee =
335
    get_expr_calls prednode ee.eexpr_qfexpr
336
    
337
  let get_callee expr =
338
    match expr.expr_desc with
339
    | Expr_appl (id, args, _) -> Some (id, expr_list_of_expr args)
340
    | _ -> None
341

    
342
  let accu f init objl = List.fold_left (fun accu o -> ESet.union accu (f o)) init objl 
343

    
344
  let get_eq_calls prednode eq = get_expr_calls prednode eq.eq_rhs
345
                      
346
  let rec get_stmt_calls prednode s =
347
    match s with Eq eq -> get_eq_calls prednode eq | Aut aut -> get_aut_calls prednode aut 
348
  and get_aut_calls prednode aut =
349
    let get_handler_calls prednode h =
350
      let get_cond_calls c = accu (fun (_,e,_,_) -> get_expr_calls prednode e) ESet.empty c in
351
      let until = get_cond_calls h.hand_until in
352
      let unless = get_cond_calls h.hand_unless in
353
      let calls = ESet.union until unless in 
354
      let calls = accu (get_stmt_calls prednode) calls h.hand_stmts in
355
      let calls = accu (fun a -> get_expr_calls prednode a.assert_expr) calls h.hand_asserts in
356
      (* let calls = accu xx calls h.hand_annots in *) (* TODO: search for calls in eexpr *)
357
      calls
358
    in
359
    accu (get_handler_calls prednode) ESet.empty aut.aut_handlers
360
    
361
  let get_calls prednode nd =
362
    let eqs, auts = get_node_eqs nd in
363
    let deps = accu (get_eq_calls prednode) ESet.empty eqs in
364
    let deps = accu (get_aut_calls prednode) deps auts in
365
    ESet.elements deps
366

    
367
  let get_contract_calls prednode c =
368
    let deps = accu (get_stmt_calls prednode) ESet.empty c.stmts in
369
    let deps = accu (get_eexpr_calls prednode) deps ( c.assume @ c.guarantees @ (List.fold_left (fun accu m -> accu @ m.require @ m.ensure ) [] c.modes)) in
370
    let id_deps = List.map (fun e -> fst (desome (get_callee e))) (ESet.elements deps) in  
371
    let id_deps = (List.fold_left (fun accu imp -> imp.import_nodeid::accu) [] c.imports) @ id_deps in  
372
    id_deps
373
    
374
  let dependence_graph prog =
375
    let g = new_graph () in
376
    let g = List.fold_right 
377
      (fun td accu -> (* for each node we add its dependencies *)
378
	match td.top_decl_desc with 
379
	| Node nd ->
380
	  (*Format.eprintf "Computing deps of node %s@.@?" nd.node_id; *)
381
	   let accu = add_vertices [nd.node_id] accu in
382
	   let deps = List.map
383
	     (fun e -> fst (desome (get_callee e)))
384
	     (get_calls (fun _ -> true) nd) 
385
	   in
386
	     (* Adding assert expressions deps *)
387
	   let deps_asserts =
388
	     let prednode = (fun _ -> true) in (* what is this about? *)
389
	     List.map
390
	       (fun e -> fst (desome (get_callee e)))
391
 	       (ESet.elements
392
		  (List.fold_left
393
		     (fun accu assert_expr -> ESet.union accu (get_expr_calls prednode assert_expr))
394
		     ESet.empty
395
		     (List.map (fun _assert -> _assert.assert_expr) nd.node_asserts)
396
		  )
397
	       )
398
      	   in
399
           let deps_spec = match nd.node_spec with
400
             | None -> []
401
             | Some (NodeSpec id) -> [id]
402
             | Some (Contract c) -> get_contract_calls (fun _ -> true) c
403
                                  
404
           in
405
	   (*Format.eprintf "%a@.@?" (Utils.fprintf_list ~sep:"@." Format.pp_print_string) deps; *)
406
	   add_edges [nd.node_id] (deps@deps_asserts@deps_spec) accu
407
	| _ -> assert false (* should not happen *)
408
	   
409
      ) prog g in
410
    g   
411
      
412
  let rec filter_static_inputs inputs args =
413
    match inputs, args with
414
    | []   , [] -> []
415
    | v::vq, a::aq -> if v.var_dec_const && Types.is_dimension_type v.var_type then (dimension_of_expr a) :: filter_static_inputs vq aq else filter_static_inputs vq aq
416
    | _ -> assert false
417

    
418
  let compute_generic_calls prog =
419
    List.iter
420
      (fun td ->
421
	match td.top_decl_desc with 
422
	| Node nd ->
423
	   let prednode n = is_generic_node (node_from_name n) in
424
	   nd.node_gencalls <- get_calls prednode nd
425
	| _ -> ()
426
	   
427
      ) prog
428

    
429
end
430

    
431

    
432
module CycleDetection = struct
433

    
434
  (* ---- Look for cycles in a dependency graph *)
435
  module Cycles = Graph.Components.Make (IdentDepGraph)
436

    
437
  let mk_copy_var n id =
438
    let used name =
439
      (List.exists (fun v -> v.var_id = name) n.node_locals)
440
      || (List.exists (fun v -> v.var_id = name) n.node_inputs)
441
      || (List.exists (fun v -> v.var_id = name) n.node_outputs)
442
    in mk_new_name used id
443

    
444
  let mk_copy_eq n var =
445
    let var_decl = get_node_var var n in
446
    let cp_var = mk_copy_var n var in
447
    let expr =
448
      { expr_tag = Utils.new_tag ();
449
	expr_desc = Expr_ident var;
450
	expr_type = var_decl.var_type;
451
	expr_clock = var_decl.var_clock;
452
	expr_delay = Delay.new_var ();
453
	expr_annot = None;
454
	expr_loc = var_decl.var_loc } in
455
    { var_decl with var_id = cp_var; var_orig = false },
456
    mkeq var_decl.var_loc ([cp_var], expr)
457

    
458
  let wrong_partition g partition =
459
    match partition with
460
    | [id]    -> IdentDepGraph.mem_edge g id id
461
    | _::_::_ -> true
462
    | []      -> assert false
463

    
464
  (* Checks that the dependency graph [g] does not contain a cycle. Raises
465
     [Cycle partition] if the succession of dependencies [partition] forms a cycle *)
466
  let check_cycles g =
467
    let scc_l = Cycles.scc_list g in
468
    let algebraic_loops = List.filter (wrong_partition g) scc_l in
469
    if List.length algebraic_loops > 0 then
470
      raise (Error (DataCycle algebraic_loops))
471
	(* We extract a hint to resolve the cycle: for each variable in the cycle
472
	   which is defined by a call, we return the name of the node call and
473
	   its specific id *)
474

    
475
  (* Creates the sub-graph of [g] restricted to vertices and edges in partition *)
476
  let copy_partition g partition =
477
    let copy_g = IdentDepGraph.create () in
478
    IdentDepGraph.iter_edges
479
      (fun src tgt ->
480
	if List.mem src partition && List.mem tgt partition
481
	then IdentDepGraph.add_edge copy_g src tgt)
482
      g
483

    
484
      
485
  (* Breaks dependency cycles in a graph [g] by inserting aux variables.
486
     [head] is a head of a non-trivial scc of [g]. 
487
     In Lustre, this is legal only for mem/mem cycles *)
488
  let break_cycle head cp_head g =
489
    let succs = IdentDepGraph.succ g head in
490
    IdentDepGraph.add_edge g head cp_head;
491
    IdentDepGraph.add_edge g cp_head (ExprDep.mk_read_var head);
492
    List.iter
493
      (fun s ->
494
	IdentDepGraph.remove_edge g head s;
495
	IdentDepGraph.add_edge    g s cp_head)
496
      succs
497

    
498
  (* Breaks cycles of the dependency graph [g] of memory variables [mems]
499
     belonging in node [node]. Returns:
500
     - a list of new auxiliary variable declarations
501
     - a list of new equations
502
     - a modified acyclic version of [g]
503
  *)
504
  let break_cycles node mems g =
505
    let eqs , auts = get_node_eqs node in
506
    assert (auts = []); (* TODO: check: For the moment we assume that auts are expanded by now *)
507
    let (mem_eqs, non_mem_eqs) = List.partition (fun eq -> List.exists (fun v -> ISet.mem v mems) eq.eq_lhs) eqs in
508
    let rec break vdecls mem_eqs g =
509
      let scc_l = Cycles.scc_list g in
510
      let wrong = List.filter (wrong_partition g) scc_l in
511
      match wrong with
512
      | []              -> (vdecls, non_mem_eqs@mem_eqs, g)
513
      | [head]::_       ->
514
	 begin
515
	   IdentDepGraph.remove_edge g head head;
516
	   break vdecls mem_eqs g
517
	 end
518
      | (head::part)::_ -> 
519
	 begin
520
	   let vdecl_cp_head, cp_eq = mk_copy_eq node head in
521
	   let pvar v = List.mem v part in
522
	   let fvar v = if v = head then vdecl_cp_head.var_id else v in
523
	   let mem_eqs' = List.map (eq_replace_rhs_var pvar fvar) mem_eqs in
524
	   break_cycle head vdecl_cp_head.var_id g;
525
	   break (vdecl_cp_head::vdecls) (cp_eq::mem_eqs') g
526
	 end
527
      | _               -> assert false
528
    in break [] mem_eqs g
529

    
530
end
531

    
532
(* Module used to compute static disjunction of variables based upon their clocks. *)
533
module Disjunction =
534
struct
535
  module ClockedIdentModule =
536
  struct
537
    type t = var_decl
538
    let root_branch vdecl = Clocks.root vdecl.var_clock, Clocks.branch vdecl.var_clock
539
    let compare v1 v2 = compare (root_branch v2, v2.var_id) (root_branch v1, v1.var_id)
540
  end
541

    
542
  module CISet = Set.Make(ClockedIdentModule)
543

    
544
  (* map: var |-> list of disjoint vars, sorted in increasing branch length order,
545
     maybe removing shorter branches *)
546
  type disjoint_map = (ident, CISet.t) Hashtbl.t
547

    
548
  let pp_ciset fmt t =
549
    begin
550
      Format.fprintf fmt "{@ ";
551
      CISet.iter (fun s -> Format.fprintf fmt "%a@ " Printers.pp_var_name s) t;
552
      Format.fprintf fmt "}@."
553
    end
554

    
555
  let clock_disjoint_map vdecls =
556
    let map = Hashtbl.create 23 in
557
    begin
558
      List.iter
559
	(fun v1 -> let disj_v1 =
560
		     List.fold_left
561
		       (fun res v2 -> if Clocks.disjoint v1.var_clock v2.var_clock then CISet.add v2 res else res)
562
		       CISet.empty
563
		       vdecls in
564
		   (* disjoint vdecls are stored in increasing branch length order *)
565
		   Hashtbl.add map v1.var_id disj_v1)
566
	vdecls;
567
      (map : disjoint_map)
568
    end
569

    
570
  (* merge variables [v] and [v'] in disjunction [map]. Then:
571
     - the mapping v' becomes v' |-> (map v) inter (map v')
572
     - the mapping v |-> ... then disappears
573
     - other mappings become x |-> (map x) \ (if v in x then v else v')
574
  *)
575
  let merge_in_disjoint_map map v v' =
576
    begin
577
      Hashtbl.replace map v'.var_id (CISet.inter (Hashtbl.find map v.var_id) (Hashtbl.find map v'.var_id));
578
      Hashtbl.remove map v.var_id;
579
      Hashtbl.iter (fun x map_x -> Hashtbl.replace map x (CISet.remove (if CISet.mem v map_x then v else v') map_x)) map;
580
    end
581

    
582
  (* replace variable [v] by [v'] in disjunction [map].
583
     [v'] is a dead variable. Then:
584
     - the mapping v' becomes v' |-> (map v)
585
     - the mapping v |-> ... then disappears
586
     - all mappings become x |-> ((map x) \ { v}) union ({v'} if v in map x)
587
  *)
588
  let replace_in_disjoint_map map v v' =
589
    begin
590
      Hashtbl.replace map v'.var_id (Hashtbl.find map v.var_id);
591
      Hashtbl.remove  map v.var_id;
592
      Hashtbl.iter (fun x mapx -> Hashtbl.replace map x (if CISet.mem v mapx then CISet.add v' (CISet.remove v mapx) else CISet.remove v' mapx)) map;
593
    end
594

    
595
  (* remove variable [v] in disjunction [map]. Then:
596
     - the mapping v |-> ... then disappears
597
     - all mappings become x |-> (map x) \ { v}
598
  *)
599
  let remove_in_disjoint_map map v =
600
    begin
601
      Hashtbl.remove map v.var_id;
602
      Hashtbl.iter (fun x mapx -> Hashtbl.replace map x (CISet.remove v mapx)) map;
603
    end
604

    
605
  let pp_disjoint_map fmt map =
606
    begin
607
      Format.fprintf fmt "{ /* disjoint map */@.";
608
      Hashtbl.iter (fun k v -> Format.fprintf fmt "%s # { %a }@." k (Utils.fprintf_list ~sep:", " Printers.pp_var_name) (CISet.elements v)) map;
609
      Format.fprintf fmt "}@."
610
    end
611
end
612

    
613
  
614
let pp_dep_graph fmt g =
615
  begin
616
    Format.fprintf fmt "{ /* graph */@.";
617
    IdentDepGraph.iter_edges (fun s t -> Format.fprintf fmt "%s -> %s@." s t) g;
618
    Format.fprintf fmt "}@."
619
  end
620

    
621
let pp_error fmt err =
622
  match err with
623
  | NodeCycle trace ->
624
     Format.fprintf fmt "Causality error, cyclic node calls:@   @[<v 0>%a@]@ "
625
       (fprintf_list ~sep:",@ " Format.pp_print_string) trace
626
  | DataCycle traces -> (
627
     Format.fprintf fmt "Causality error, cyclic data dependencies:@   @[<v 0>%a@]@ "
628
       (fprintf_list ~sep:";@ "
629
       (fun fmt trace ->
630
	 Format.fprintf fmt "@[<v 0>{%a}@]"
631
	   (fprintf_list ~sep:",@ " Format.pp_print_string)
632
	   trace
633
       )) traces
634
  )
635
     
636
(* Merges elements of graph [g2] into graph [g1] *)
637
let merge_with g1 g2 =
638
  begin
639
    IdentDepGraph.iter_vertex (fun v -> IdentDepGraph.add_vertex g1 v) g2;
640
    IdentDepGraph.iter_edges (fun s t -> IdentDepGraph.add_edge g1 s t) g2
641
  end
642

    
643
let world = "!!_world"
644

    
645
let add_external_dependency outputs mems g =
646
  begin
647
    IdentDepGraph.add_vertex g world;
648
    ISet.iter (fun o -> IdentDepGraph.add_edge g world o) outputs;
649
    ISet.iter (fun m -> IdentDepGraph.add_edge g world m) mems;
650
  end
651

    
652
(* Takes a node and return a pair (node', graph) where node' is node
653
   rebuilt with the equations enriched with new ones introduced to
654
   "break cycles" *)
655
let global_dependency node =
656
  let mems = ExprDep.node_memory_variables node in
657
  let inputs =
658
    ISet.union
659
      (ExprDep.node_input_variables node)
660
      (ExprDep.node_constant_variables node) in
661
  let outputs = ExprDep.node_output_variables node in
662
  let node_vars = ExprDep.node_variables node in
663
  let (g_non_mems, g_mems) = ExprDep.dependence_graph mems inputs node_vars node in
664
  (*Format.eprintf "g_non_mems: %a" pp_dep_graph g_non_mems;
665
    Format.eprintf "g_mems: %a" pp_dep_graph g_mems;*)
666
  try
667
    CycleDetection.check_cycles g_non_mems;
668
    let (vdecls', eqs', g_mems') = CycleDetection.break_cycles node mems g_mems in
669
    (*Format.eprintf "g_mems': %a" pp_dep_graph g_mems';*)
670
    begin
671
      merge_with g_non_mems g_mems';
672
      add_external_dependency outputs mems g_non_mems;
673
      { node with node_stmts = List.map (fun eq -> Eq eq) eqs'; node_locals = vdecls'@node.node_locals }, 
674
      g_non_mems
675
    end
676
  with Error (DataCycle _ as exc) -> (
677
      raise (Error (exc))
678
  )
679

    
680
(* A module to sort dependencies among local variables when relying on clocked declarations *)
681
module VarClockDep =
682
struct
683
  let rec get_clock_dep ck =
684
    match ck.Clocks.cdesc with
685
    | Clocks.Con (ck ,c ,l) -> l::(get_clock_dep ck)
686
    | Clocks.Clink ck' 
687
    | Clocks.Ccarrying (_, ck') -> get_clock_dep ck'
688
    | _ -> []
689
      
690
  let sort locals =
691
    let g = new_graph () in
692
    let g = List.fold_left (
693
      fun g var_decl ->
694
	let deps = get_clock_dep var_decl.var_clock in
695
	add_edges [var_decl.var_id] deps g
696
    ) g locals
697
    in
698
    let sorted, no_deps =
699
      TopologicalDepGraph.fold (fun vid (accu, remaining) -> (
700
	let select v = v.var_id = vid in
701
	let selected, not_selected = List.partition select remaining in
702
	selected@accu, not_selected
703
      )) g ([],locals)
704
    in
705
    no_deps @ sorted
706
    
707
end
708
  
709
(* Local Variables: *)
710
(* compile-command:"make -C .." *)
711
(* End: *)
(10-10/66)