Project

General

Profile

Download (26.6 KB) Statistics
| Branch: | Tag: | Revision:
1
(********************************************************************)
2
(*                                                                  *)
3
(*  The LustreC compiler toolset   /  The LustreC Development Team  *)
4
(*  Copyright 2012 -    --   ONERA - CNRS - INPT                    *)
5
(*                                                                  *)
6
(*  LustreC is free software, distributed WITHOUT ANY WARRANTY      *)
7
(*  under the terms of the GNU Lesser General Public License        *)
8
(*  version 2.1.                                                    *)
9
(*                                                                  *)
10
(********************************************************************)
11

    
12
(* The compilation presented here was first defined in Garoche, Gurfinkel,
13
   Kahsai, HCSV'14.
14

    
15
   This is a modified version that handle reset
16
*)
17

    
18
open Format
19
open Lustre_types
20
open Machine_code_types
21
open Corelang
22
open Machine_code_common
23

    
24
open Horn_backend_common
25
  
26
(********************************************************************************************)
27
(*                    Instruction Printing functions                                        *)
28
(********************************************************************************************)
29

    
30
let pp_horn_var m fmt id =
31
  (*if Types.is_array_type id.var_type
32
  then
33
    assert false (* no arrays in Horn output *)
34
  else*)
35
    fprintf fmt "%s" id.var_id
36

    
37
(* Used to print boolean constants *)
38
let pp_horn_tag fmt t =
39
  pp_print_string fmt (if t = tag_true then "true" else if t = tag_false then "false" else t)
40
    
41
(* Prints a constant value *)
42
let rec pp_horn_const fmt c =
43
  match c with
44
    | Const_int i    -> pp_print_int fmt i
45
    | Const_real (_,_,s)   -> pp_print_string fmt s
46
    | Const_tag t    -> pp_horn_tag fmt t
47
    | _              -> assert false
48

    
49
(* PL comment 2017/01/03: Useless code, the function existed before in typing.ml *)
50
(* let rec get_type_cst c = *)
51
(*   match c with *)
52
(*   | Const_int(n) -> new_ty Tint *)
53
(*   | Const_real _ -> new_ty Treal *)
54
(*   (\* | Const_float _ -> new_ty Treal *\) *)
55
(*   | Const_array(l) -> new_ty (Tarray(Dimension.mkdim_int (Location.dummy_loc) (List.length l), *)
56
(* 				     get_type_cst (List.hd l))) *)
57
(*   | Const_tag(tag) -> new_ty Tbool *)
58
(*   | Const_string(str) ->  assert false(\* used only for annotations *\) *)
59
(*   | Const_struct(l) -> new_ty (Tstruct(List.map (fun (label, t) -> (label, get_type_cst t)) l)) *)
60

    
61
(* PL comment 2017/01/03: the following function get_type seems useless to me: it looks like computing the type of a machine code expression v while v.value_type should contain this information. The code is kept for the moment in case I missed something *)
62

    
63
(*
64
let rec get_type v =
65
  match v with
66
  | Cst c -> Typing.type_const Location.dummy_loc c (* get_type_cst c*)
67
  | Access(tab, index) -> begin
68
      let rec remove_link ltype =
69
        match (dynamic_type ltype).tdesc with
70
        | Tlink t -> t
71
        | _ -> ltype
72
      in
73
      match (dynamic_type (remove_link (get_type tab))).tdesc with
74
      | Tarray(size, t) -> remove_link t
75
      | Tvar -> Format.eprintf "Type of access is a variable... "; assert false
76
      | Tunivar -> Format.eprintf "Type of access is a variable... "; assert false
77
      | _ -> Format.eprintf "Type of access is not an array "; assert false
78
                          end
79
  | Power(v, n) -> assert false
80
  | LocalVar v -> v.var_type
81
  | StateVar v -> v.var_type
82
  | Fun(n, vl) -> begin match n with
83
                  | "+"
84
                  | "-"
85
                  | "*" -> get_type (List.hd vl)
86
                  | _ -> Format.eprintf "Function undealt with : %s" n ;assert false
87
                  end
88
  | Array(l) -> new_ty (Tarray(Dimension.mkdim_int
89
                                 (Location.dummy_loc)
90
                                 (List.length l),
91
                               get_type (List.hd l)))
92
  | _ -> assert false
93
*)
94

    
95
(* Default value for each type, used when building arrays. Eg integer array
96
   [2;7] is defined as (store (store (0) 1 7) 0 2) where 0 is this default value
97
   for the type integer (arrays).
98
*)
99
let rec pp_default_val fmt t =
100
  let t = Types.dynamic_type t in
101
  if Types.is_bool_type t  then fprintf fmt "true" else
102
  if Types.is_int_type t then fprintf fmt "0" else 
103
  if Types.is_real_type t then fprintf fmt "0" else 
104
  match (Types.dynamic_type t).Types.tdesc with
105
  | Types.Tarray(dim, l) -> (* TODO PL: this strange code has to be (heavily) checked *)
106
     let valt = Types.array_element_type t in
107
     fprintf fmt "((as const (Array Int %a)) %a)"
108
       pp_type valt 
109
       pp_default_val valt
110
  | Types.Tstruct(l) -> assert false
111
  | Types.Ttuple(l) -> assert false
112
  |_ -> assert false
113

    
114

    
115
(* Prints a value expression [v], with internal function calls only.
116
   [pp_var] is a printer for variables (typically [pp_c_var_read]),
117
   but an offset suffix may be added for array variables
118
*)
119
let rec pp_horn_val ?(is_lhs=false) self pp_var fmt v =
120
  match v.value_desc with
121
  | Cst c       -> pp_horn_const fmt c
122

    
123
  (* Code specific for arrays *)
124
  | Array il    ->
125
     (* An array definition: 
126
	(store (
127
	  ...
128
 	    (store (
129
	       store (
130
	          default_val
131
	       ) 
132
	       idx_n val_n
133
	    ) 
134
	    idx_n-1 val_n-1)
135
	  ... 
136
	  idx_1 val_1
137
	) *)
138
     let rec print fmt (tab, x) =
139
       match tab with
140
       | [] -> pp_default_val fmt v.value_type(* (get_type v) *)
141
       | h::t ->
142
	  fprintf fmt "(store %a %i %a)"
143
	    print (t, (x+1))
144
	    x
145
	    (pp_horn_val ~is_lhs:is_lhs self pp_var) h
146
     in
147
     print fmt (il, 0)
148
       
149
  | Access(tab,index) ->
150
     fprintf fmt "(select %a %a)"
151
       (pp_horn_val ~is_lhs:is_lhs self pp_var) tab
152
       (pp_horn_val ~is_lhs:is_lhs self pp_var) index
153

    
154
  (* Code specific for arrays *)
155
    
156
  | Power (v, n)  -> assert false
157
  | LocalVar v    -> pp_var fmt (rename_machine self v)
158
  | StateVar v    ->
159
     if Types.is_array_type v.var_type
160
     then assert false
161
     else pp_var fmt (rename_machine self ((if is_lhs then rename_next else rename_current) (* self *) v))
162
  | Fun (n, vl)   -> fprintf fmt "%a" (Basic_library.pp_horn n (pp_horn_val self pp_var)) vl
163

    
164
(* Prints a [value] indexed by the suffix list [loop_vars] *)
165
let rec pp_value_suffix self pp_value fmt value =
166
 match value.value_desc with
167
 | Fun (n, vl)  ->
168
   Basic_library.pp_horn n (pp_value_suffix self pp_value) fmt vl
169
 |  _            ->
170
   pp_horn_val self pp_value fmt value
171

    
172
(* type_directed assignment: array vs. statically sized type
173
   - [var_type]: type of variable to be assigned
174
   - [var_name]: name of variable to be assigned
175
   - [value]: assigned value
176
   - [pp_var]: printer for variables
177
*)
178
let pp_assign m pp_var fmt var_name value =
179
  let self = m.mname.node_id in
180
  fprintf fmt "(= %a %a)" 
181
    (pp_horn_val ~is_lhs:true self pp_var) var_name
182
    (pp_value_suffix self pp_var) value
183
    
184

    
185
(* In case of no reset call, we define mid_mem = current_mem *)
186
let pp_no_reset machines m fmt i =
187
  let (n,_) = List.assoc i m.minstances in
188
  let target_machine = List.find (fun m  -> m.mname.node_id = (node_name n)) machines in
189

    
190
  let m_list = 
191
    rename_machine_list
192
      (concat m.mname.node_id i)
193
      (rename_mid_list (full_memory_vars machines target_machine))
194
  in
195
  let c_list =
196
    rename_machine_list
197
      (concat m.mname.node_id i)
198
      (rename_current_list (full_memory_vars machines target_machine))
199
  in
200
  match c_list, m_list with
201
  | [chd], [mhd] ->
202
    fprintf fmt "(= %a %a)"
203
      (pp_horn_var m) mhd
204
      (pp_horn_var m) chd
205
  
206
  | _ -> (
207
    fprintf fmt "@[<v 0>(and @[<v 0>";
208
    List.iter2 (fun mhd chd -> 
209
      fprintf fmt "(= %a %a)@ "
210
      (pp_horn_var m) mhd
211
      (pp_horn_var m) chd
212
    )
213
      m_list
214
      c_list      ;
215
    fprintf fmt ")@]@ @]"
216
  )
217

    
218
let pp_instance_reset machines m fmt i =
219
  let (n,_) = List.assoc i m.minstances in
220
  let target_machine = List.find (fun m  -> m.mname.node_id = (node_name n)) machines in
221
  
222
  fprintf fmt "(%a @[<v 0>%a)@]"
223
    pp_machine_reset_name (node_name n)
224
    (Utils.fprintf_list ~sep:"@ " (pp_horn_var m)) 
225
    (
226
      (rename_machine_list
227
	 (concat m.mname.node_id i)
228
	 (rename_current_list (full_memory_vars machines target_machine))
229
      ) 
230
      @
231
	(rename_machine_list
232
	   (concat m.mname.node_id i)
233
	   (rename_mid_list (full_memory_vars machines target_machine))
234
	)
235
    )
236

    
237
let pp_instance_call machines reset_instances m fmt i inputs outputs =
238
  let self = m.mname.node_id in
239
  try (* stateful node instance *)
240
    begin
241
      let (n,_) = List.assoc i m.minstances in
242
      let target_machine = List.find (fun m  -> m.mname.node_id = node_name n) machines in
243
      (* Checking whether this specific instances has been reset yet *)
244
      if not (List.mem i reset_instances) then
245
	(* If not, declare mem_m = mem_c *)
246
	pp_no_reset machines m fmt i;
247
      
248
      let mems = full_memory_vars machines target_machine in
249
      let rename_mems f = rename_machine_list (concat m.mname.node_id i) (f mems) in
250
      let mid_mems = rename_mems rename_mid_list in
251
      let next_mems = rename_mems rename_next_list in
252

    
253
      match node_name n, inputs, outputs, mid_mems, next_mems with
254
      | "_arrow", [i1; i2], [o], [mem_m], [mem_x] -> begin
255
	fprintf fmt "@[<v 5>(and ";
256
	fprintf fmt "(= %a (ite %a %a %a))"
257
	  (pp_horn_val ~is_lhs:true self (pp_horn_var m)) (mk_val (LocalVar o) o.var_type) (* output var *)
258
	  (pp_horn_var m) mem_m 
259
	  (pp_horn_val self (pp_horn_var m)) i1
260
	  (pp_horn_val self (pp_horn_var m)) i2
261
	;
262
	fprintf fmt "@ ";
263
	fprintf fmt "(= %a false)" (pp_horn_var m) mem_x;
264
	fprintf fmt ")@]"
265
      end
266

    
267
      | node_name_n -> begin
268
	fprintf fmt "(%a @[<v 0>%a%t%a%t%a)@]"
269
	  pp_machine_step_name (node_name n)
270
	  (Utils.fprintf_list ~sep:"@ " (pp_horn_val self (pp_horn_var m))) inputs
271
	  (Utils.pp_final_char_if_non_empty "@ " inputs)
272
	  (Utils.fprintf_list ~sep:"@ " (pp_horn_val self (pp_horn_var m)))
273
	  (List.map (fun v -> mk_val (LocalVar v) v.var_type) outputs)
274
	  (Utils.pp_final_char_if_non_empty "@ " outputs)
275
	  (Utils.fprintf_list ~sep:"@ " (pp_horn_var m)) (mid_mems@next_mems)
276
	
277
      end
278
    end
279
  with Not_found -> ( (* stateless node instance *)
280
    let (n,_) = List.assoc i m.mcalls in
281
    fprintf fmt "(%a @[<v 0>%a%t%a)@]"
282
      pp_machine_stateless_name (node_name n)
283
      (Utils.fprintf_list ~sep:"@ " (pp_horn_val self (pp_horn_var m)))
284
      inputs
285
      (Utils.pp_final_char_if_non_empty "@ " inputs)
286
      (Utils.fprintf_list ~sep:"@ " (pp_horn_val self (pp_horn_var m)))
287
      (List.map (fun v -> mk_val (LocalVar v) v.var_type) outputs)
288
  )
289
    
290
    
291
(* Print the instruction and update the set of reset instances *)
292
let rec pp_machine_instr machines reset_instances (m: machine_t) fmt instr : ident list =
293
  match get_instr_desc instr with
294
  | MComment _ -> reset_instances
295
  | MNoReset i -> (* we assign middle_mem with mem_m. And declare i as reset *)
296
    pp_no_reset machines m fmt i;
297
    i::reset_instances
298
  | MReset i -> (* we assign middle_mem with reset: reset(mem_m) *)
299
    pp_instance_reset machines m fmt i;
300
    i::reset_instances
301
  | MLocalAssign (i,v) ->
302
    pp_assign
303
      m (pp_horn_var m) fmt
304
      (mk_val (LocalVar i) i.var_type) v;
305
    reset_instances
306
  | MStateAssign (i,v) ->
307
    pp_assign
308
      m (pp_horn_var m) fmt
309
      (mk_val (StateVar i) i.var_type) v;
310
    reset_instances
311
  | MStep ([i0], i, vl) when Basic_library.is_internal_fun i (List.map (fun v -> v.value_type) vl) ->
312
    assert false (* This should not happen anymore *)
313
  | MStep (il, i, vl) ->
314
    (* if reset instance, just print the call over mem_m , otherwise declare mem_m =
315
       mem_c and print the call to mem_m *)
316
    pp_instance_call machines reset_instances m fmt i vl il;
317
    reset_instances (* Since this instance call will only happen once, we
318
		       don't have to update reset_instances *)
319

    
320
  | MBranch (g,hl) -> (* (g = tag1 => expr1) and (g = tag2 => expr2) ...
321
			 should not be produced yet. Later, we will have to
322
			 compare the reset_instances of each branch and
323
			 introduced the mem_m = mem_c for branches to do not
324
			 address it while other did. Am I clear ? *)
325
    (* For each branch we obtain the logical encoding, and the information
326
       whether a sub node has been reset or not. If a node has been reset in one
327
       of the branch, then all others have to have the mem_m = mem_c
328
       statement. *)
329
    let self = m.mname.node_id in
330
    let pp_branch fmt (tag, instrs) =
331
      fprintf fmt 
332
	"@[<v 3>(or (not (= %a %a))@ " 
333
	(*"@[<v 3>(=> (= %a %s)@ "*)  (* Issues with some versions of Z3. It
334
					  seems that => within Horn predicate
335
					  may cause trouble. I have hard time
336
					  producing a MWE, so I'll just keep the
337
					  fix here as (not a) or b *)
338
	(pp_horn_val self (pp_horn_var m)) g
339
	pp_horn_tag tag;
340
      let _ (* rs *) = pp_machine_instrs machines reset_instances m fmt instrs in 
341
      fprintf fmt "@])";
342
      () (* rs *)
343
    in
344
    pp_conj pp_branch fmt hl;
345
    reset_instances 
346

    
347
and pp_machine_instrs machines reset_instances m fmt instrs = 
348
  let ppi rs fmt i = pp_machine_instr machines rs m fmt i in
349
  match instrs with
350
  | [x] -> ppi reset_instances fmt x 
351
  | _::_ ->
352
    fprintf fmt "(and @[<v 0>";
353
    let rs = List.fold_left (fun rs i -> 
354
      let rs = ppi rs fmt i in
355
      fprintf fmt "@ ";
356
      rs
357
    )
358
      reset_instances instrs 
359
    in
360
    fprintf fmt "@])";
361
    rs
362

    
363
  | [] -> fprintf fmt "true"; reset_instances
364

    
365
let pp_machine_reset machines fmt m =
366
  let locals = local_memory_vars machines m in
367
  fprintf fmt "@[<v 5>(and @ ";
368

    
369
  (* print "x_m = x_c" for each local memory *)
370
  (Utils.fprintf_list ~sep:"@ " (fun fmt v -> 
371
    fprintf fmt "(= %a %a)"
372
      (pp_horn_var m) (rename_mid v)
373
      (pp_horn_var m) (rename_current v)
374
   )) fmt locals;
375
  fprintf fmt "@ ";
376

    
377
  (* print "child_reset ( associated vars _ {c,m} )" for each subnode.
378
     Special treatment for _arrow: _first = true
379
  *)
380
  (Utils.fprintf_list ~sep:"@ " (fun fmt (id, (n, _)) ->
381
    let name = node_name n in
382
    if name = "_arrow" then ( 
383
      fprintf fmt "(= %s._arrow._first_m true)"
384
	(concat m.mname.node_id id)  
385
    ) else (
386
      let machine_n = get_machine machines name in 
387
      fprintf fmt "(%s_reset @[<hov 0>%a@])" 
388
	name
389
	(Utils.fprintf_list ~sep:"@ " (pp_horn_var m)) 
390
	(rename_machine_list (concat m.mname.node_id id) (reset_vars machines machine_n))
391
    )
392
   )) fmt m.minstances;
393

    
394
  fprintf fmt "@]@ )"
395

    
396

    
397

    
398
(**************************************************************)
399

    
400
let is_stateless m = m.minstances = [] && m.mmemory = []
401

    
402
(* Print the machine m:
403
   two functions: m_init and m_step
404
   - m_init is a predicate over m memories
405
   - m_step is a predicate over old_memories, inputs, new_memories, outputs
406
   We first declare all variables then the two /rules/.
407
*)
408
let print_machine machines fmt m =
409
  if m.mname.node_id = Arrow.arrow_id then
410
    (* We don't print arrow function *)
411
    ()
412
  else
413
    begin
414
      fprintf fmt "; %s@." m.mname.node_id;
415
      
416
      (* Printing variables *)
417
      Utils.fprintf_list ~sep:"@." pp_decl_var fmt
418
	(
419
	  (inout_vars machines m)@
420
	    (rename_current_list (full_memory_vars machines m)) @
421
	    (rename_mid_list (full_memory_vars machines m)) @
422
	    (rename_next_list (full_memory_vars machines m)) @
423
	    (rename_machine_list m.mname.node_id m.mstep.step_locals)
424
	);
425
      pp_print_newline fmt ();
426

    
427
      if is_stateless m then
428
	begin
429
	  (* Declaring single predicate *)
430
	  fprintf fmt "(declare-rel %a (%a))@."
431
	    pp_machine_stateless_name m.mname.node_id
432
	    (Utils.fprintf_list ~sep:" " pp_type)
433
	    (List.map (fun v -> v.var_type) (inout_vars machines m));
434

    
435
          match m.mstep.step_asserts with
436
	  | [] ->
437
	     begin
438

    
439
	       (* Rule for single predicate *)
440
	       fprintf fmt "; Stateless step rule @.";
441
	       fprintf fmt "@[<v 2>(rule (=> @ ";
442
	       ignore (pp_machine_instrs machines ([] (* No reset info for stateless nodes *) )  m fmt m.mstep.step_instrs);
443
	       fprintf fmt "@ (%a @[<v 0>%a)@]@]@.))@.@."
444
		 pp_machine_stateless_name m.mname.node_id
445
		 (Utils.fprintf_list ~sep:" " (pp_horn_var m)) (inout_vars machines m);
446
	     end
447
	  | assertsl ->
448
	     begin
449
	       let pp_val = pp_horn_val ~is_lhs:true m.mname.node_id (pp_horn_var m) in
450
	       
451
	       fprintf fmt "; Stateless step rule with Assertions @.";
452
	       (*Rule for step*)
453
	       fprintf fmt "@[<v 2>(rule (=> @ (and @ ";
454
	       ignore (pp_machine_instrs machines [] m fmt m.mstep.step_instrs);
455
	       fprintf fmt "@. %a)@ (%a @[<v 0>%a)@]@]@.))@.@." (pp_conj pp_val) assertsl
456
		 pp_machine_stateless_name m.mname.node_id
457
		 (Utils.fprintf_list ~sep:" " (pp_horn_var m)) (step_vars machines m);
458
	  
459
	     end
460
	       
461
	end
462
      else
463
	begin
464
	  (* Declaring predicate *)
465
	  fprintf fmt "(declare-rel %a (%a))@."
466
	    pp_machine_reset_name m.mname.node_id
467
	    (Utils.fprintf_list ~sep:" " pp_type)
468
	    (List.map (fun v -> v.var_type) (reset_vars machines m));
469

    
470
	  fprintf fmt "(declare-rel %a (%a))@."
471
	    pp_machine_step_name m.mname.node_id
472
	    (Utils.fprintf_list ~sep:" " pp_type)
473
	    (List.map (fun v -> v.var_type) (step_vars machines m));
474

    
475
	  pp_print_newline fmt ();
476

    
477
	  (* Rule for reset *)
478
	  fprintf fmt "@[<v 2>(rule (=> @ %a@ (%a @[<v 0>%a)@]@]@.))@.@."
479
	    (pp_machine_reset machines) m 
480
	    pp_machine_reset_name m.mname.node_id
481
	    (Utils.fprintf_list ~sep:"@ " (pp_horn_var m)) (reset_vars machines m);
482

    
483
          match m.mstep.step_asserts with
484
	  | [] ->
485
	     begin
486
	       fprintf fmt "; Step rule @.";
487
	       (* Rule for step*)
488
	       fprintf fmt "@[<v 2>(rule (=> @ ";
489
	       ignore (pp_machine_instrs machines [] m fmt m.mstep.step_instrs);
490
	       fprintf fmt "@ (%a @[<v 0>%a)@]@]@.))@.@."
491
		 pp_machine_step_name m.mname.node_id
492
		 (Utils.fprintf_list ~sep:"@ " (pp_horn_var m)) (step_vars machines m);
493
	     end
494
	  | assertsl -> 
495
	     begin
496
	       let pp_val = pp_horn_val ~is_lhs:true m.mname.node_id (pp_horn_var m) in
497
	       (* print_string pp_val; *)
498
	       fprintf fmt "; Step rule with Assertions @.";
499
	       
500
	       (*Rule for step*)
501
	       fprintf fmt "@[<v 2>(rule (=> @ (and @ ";
502
	       ignore (pp_machine_instrs machines [] m fmt m.mstep.step_instrs);
503
	       fprintf fmt "@. %a)@ (%a @[<v 0>%a)@]@]@.))@.@." (pp_conj pp_val) assertsl
504
		 pp_machine_step_name m.mname.node_id
505
		 (Utils.fprintf_list ~sep:" " (pp_horn_var m)) (step_vars machines m);
506
	     end
507
	       
508
	       
509
	end
510
    end
511

    
512

    
513
let mk_flags arity =
514
  let b_range =
515
   let rec range i j =
516
     if i > arity then [] else i :: (range (i+1) j) in
517
   range 2 arity;
518
 in
519
 List.fold_left (fun acc x -> acc ^ " false") "true" b_range
520

    
521

    
522
  (*Get sfunction infos from command line*)
523
let get_sf_info() =
524
  let splitted = Str.split (Str.regexp "@") !Options.sfunction in
525
  Log.report ~level:1 (fun fmt -> fprintf fmt ".. sfunction name: %s@," !Options.sfunction);
526
  let sf_name, flags, arity = match splitted with
527
      [h;flg;par] -> h, flg, par
528
    | _ -> failwith "Wrong Sfunction info"
529

    
530
  in
531
  Log.report ~level:1 (fun fmt -> fprintf fmt "... sf_name: %s@, .. flags: %s@ .. arity: %s@," sf_name flags arity);
532
  sf_name, flags, arity
533

    
534

    
535
    (*a function to print the rules in case we have an s-function*)
536
  let print_sfunction machines fmt m =
537
      if m.mname.node_id = Arrow.arrow_id then
538
        (* We don't print arrow function *)
539
        ()
540
      else
541
        begin
542
          Format.fprintf fmt "; SFUNCTION@.";
543
          Format.fprintf fmt "; %s@." m.mname.node_id;
544
          Format.fprintf fmt "; EndPoint Predicate %s." !Options.sfunction;
545

    
546
          (* Check if there is annotation for s-function *)
547
          if m.mannot != [] then(
548
              Format.fprintf fmt "; @[%a@]@]@\n" (Utils.fprintf_list ~sep:"@ " Printers.pp_s_function) m.mannot;
549
            );
550

    
551
       (* Printing variables *)
552
          Utils.fprintf_list ~sep:"@." pp_decl_var fmt
553
                             ((step_vars machines m)@
554
    	                        (rename_machine_list m.mname.node_id m.mstep.step_locals));
555
          Format.pp_print_newline fmt ();
556
          let sf_name, flags, arity = get_sf_info() in
557

    
558
       if is_stateless m then
559
         begin
560
           (* Declaring single predicate *)
561
           Format.fprintf fmt "(declare-rel %a (%a))@."
562
    	                  pp_machine_stateless_name m.mname.node_id
563
    	                  (Utils.fprintf_list ~sep:" " pp_type)
564
    	                  (List.map (fun v -> v.var_type) (reset_vars machines m));
565
           Format.pp_print_newline fmt ();
566
           (* Rule for single predicate *)
567
           let str_flags = sf_name ^ " " ^ mk_flags (int_of_string flags) in
568
           Format.fprintf fmt "@[<v 2>(rule (=> @ (%s %a) (%a %a)@]@.))@.@."
569
                          str_flags
570
                          (Utils.fprintf_list ~sep:" " (pp_horn_var m)) (reset_vars machines m)
571
	                  pp_machine_stateless_name m.mname.node_id
572
	                  (Utils.fprintf_list ~sep:" " (pp_horn_var m)) (reset_vars machines m);
573
         end
574
      else
575
         begin
576
           (* Declaring predicate *)
577
           Format.fprintf fmt "(declare-rel %a (%a))@."
578
    	                  pp_machine_reset_name m.mname.node_id
579
    	                  (Utils.fprintf_list ~sep:" " pp_type)
580
    	                  (List.map (fun v -> v.var_type) (inout_vars machines m));
581

    
582
           Format.fprintf fmt "(declare-rel %a (%a))@."
583
    	                  pp_machine_step_name m.mname.node_id
584
    	                  (Utils.fprintf_list ~sep:" " pp_type)
585
    	                  (List.map (fun v -> v.var_type) (step_vars machines m));
586

    
587
           Format.pp_print_newline fmt ();
588
          (* Adding assertions *)
589
           match m.mstep.step_asserts with
590
	  | [] ->
591
	    begin
592

    
593
	      (* Rule for step*)
594
	      fprintf fmt "@[<v 2>(rule (=> @ ";
595
	      ignore (pp_machine_instrs machines [] m fmt m.mstep.step_instrs);
596
	      fprintf fmt "@ (%a @[<v 0>%a)@]@]@.))@.@."
597
		pp_machine_step_name m.mname.node_id
598
		(Utils.fprintf_list ~sep:"@ " (pp_horn_var m)) (step_vars machines m);
599
	    end
600
	  | assertsl ->
601
	    begin
602
	      let pp_val = pp_horn_val ~is_lhs:true m.mname.node_id (pp_horn_var m) in
603
	      (* print_string pp_val; *)
604
	      fprintf fmt "; with Assertions @.";
605

    
606
	      (*Rule for step*)
607
	      fprintf fmt "@[<v 2>(rule (=> @ (and @ ";
608
	      ignore (pp_machine_instrs machines [] m fmt m.mstep.step_instrs);
609
	      fprintf fmt "@. %a)(%a @[<v 0>%a)@]@]@.))@.@." (pp_conj pp_val) assertsl
610
		pp_machine_step_name m.mname.node_id
611
		(Utils.fprintf_list ~sep:" " (pp_horn_var m)) (step_vars machines m);
612
	    end
613

    
614
         end
615

    
616
        end
617

    
618

    
619
(**************** XML printing functions *************)
620

    
621
	  let rec pp_xml_expr fmt expr =
622
  (match expr.expr_annot with 
623
  | None -> fprintf fmt "%t" 
624
  | Some ann -> fprintf fmt "@[(%a %t)@]" pp_xml_expr_annot ann)
625
    (fun fmt -> 
626
      match expr.expr_desc with
627
    | Expr_const c -> Printers.pp_const fmt c
628
    | Expr_ident id -> fprintf fmt "%s" id
629
    | Expr_array a -> fprintf fmt "[%a]" pp_xml_tuple a
630
    | Expr_access (a, d) -> fprintf fmt "%a[%a]" pp_xml_expr a Dimension.pp_dimension d
631
    | Expr_power (a, d) -> fprintf fmt "(%a^%a)" pp_xml_expr a Dimension.pp_dimension d
632
    | Expr_tuple el -> fprintf fmt "(%a)" pp_xml_tuple el
633
    | Expr_ite (c, t, e) -> fprintf fmt "@[<hov 1>(if %a then@ @[<hov 2>%a@]@ else@ @[<hov 2>%a@]@])" pp_xml_expr c pp_xml_expr t pp_xml_expr e
634
    | Expr_arrow (e1, e2) -> fprintf fmt "(%a -> %a)" pp_xml_expr e1 pp_xml_expr e2
635
    | Expr_fby (e1, e2) -> fprintf fmt "%a fby %a" pp_xml_expr e1 pp_xml_expr e2
636
    | Expr_pre e -> fprintf fmt "pre %a" pp_xml_expr e
637
    | Expr_when (e, id, l) -> fprintf fmt "%a when %s(%s)" pp_xml_expr e l id
638
    | Expr_merge (id, hl) -> 
639
      fprintf fmt "merge %s %a" id pp_xml_handlers hl
640
    | Expr_appl (id, e, r) -> pp_xml_app fmt id e r
641
    )
642
and pp_xml_tuple fmt el =
643
 Utils.fprintf_list ~sep:"," pp_xml_expr fmt el
644

    
645
and pp_xml_handler fmt (t, h) =
646
 fprintf fmt "(%s -> %a)" t pp_xml_expr h
647

    
648
and pp_xml_handlers fmt hl =
649
 Utils.fprintf_list ~sep:" " pp_xml_handler fmt hl
650

    
651
and pp_xml_app fmt id e r =
652
  match r with
653
  | None -> pp_xml_call fmt id e
654
  | Some c -> fprintf fmt "%t every (%a)" (fun fmt -> pp_xml_call fmt id e) pp_xml_expr c 
655

    
656
and pp_xml_call fmt id e =
657
  match id, e.expr_desc with
658
  | "+", Expr_tuple([e1;e2]) -> fprintf fmt "(%a + %a)" pp_xml_expr e1 pp_xml_expr e2
659
  | "uminus", _ -> fprintf fmt "(- %a)" pp_xml_expr e
660
  | "-", Expr_tuple([e1;e2]) -> fprintf fmt "(%a - %a)" pp_xml_expr e1 pp_xml_expr e2
661
  | "*", Expr_tuple([e1;e2]) -> fprintf fmt "(%a * %a)" pp_xml_expr e1 pp_xml_expr e2
662
  | "/", Expr_tuple([e1;e2]) -> fprintf fmt "(%a / %a)" pp_xml_expr e1 pp_xml_expr e2
663
  | "mod", Expr_tuple([e1;e2]) -> fprintf fmt "(%a mod %a)" pp_xml_expr e1 pp_xml_expr e2
664
  | "&&", Expr_tuple([e1;e2]) -> fprintf fmt "(%a and %a)" pp_xml_expr e1 pp_xml_expr e2
665
  | "||", Expr_tuple([e1;e2]) -> fprintf fmt "(%a or %a)" pp_xml_expr e1 pp_xml_expr e2
666
  | "xor", Expr_tuple([e1;e2]) -> fprintf fmt "(%a xor %a)" pp_xml_expr e1 pp_xml_expr e2
667
  | "impl", Expr_tuple([e1;e2]) -> fprintf fmt "(%a => %a)" pp_xml_expr e1 pp_xml_expr e2
668
  | "<", Expr_tuple([e1;e2]) -> fprintf fmt "(%a &lt; %a)" pp_xml_expr e1 pp_xml_expr e2
669
  | "<=", Expr_tuple([e1;e2]) -> fprintf fmt "(%a &lt;= %a)" pp_xml_expr e1 pp_xml_expr e2
670
  | ">", Expr_tuple([e1;e2]) -> fprintf fmt "(%a &gt; %a)" pp_xml_expr e1 pp_xml_expr e2
671
  | ">=", Expr_tuple([e1;e2]) -> fprintf fmt "(%a &gt;= %a)" pp_xml_expr e1 pp_xml_expr e2
672
  | "!=", Expr_tuple([e1;e2]) -> fprintf fmt "(%a != %a)" pp_xml_expr e1 pp_xml_expr e2
673
  | "=", Expr_tuple([e1;e2]) -> fprintf fmt "(%a = %a)" pp_xml_expr e1 pp_xml_expr e2
674
  | "not", _ -> fprintf fmt "(not %a)" pp_xml_expr e
675
  | _, Expr_tuple _ -> fprintf fmt "%s %a" id pp_xml_expr e
676
  | _ -> fprintf fmt "%s (%a)" id pp_xml_expr e
677

    
678
and pp_xml_eexpr fmt e =
679
  fprintf fmt "%a%t %a"
680
    (Utils.fprintf_list ~sep:"; " Printers.pp_quantifiers) e.eexpr_quantifiers
681
    (fun fmt -> match e.eexpr_quantifiers with [] -> () | _ -> fprintf fmt ";")
682
    pp_xml_expr e.eexpr_qfexpr
683

    
684
and  pp_xml_sf_value fmt e =
685
   fprintf fmt "%a"
686
     (* (Utils.fprintf_list ~sep:"; " pp_xml_quantifiers) e.eexpr_quantifiers *)
687
     (* (fun fmt -> match e.eexpr_quantifiers *)
688
     (*             with [] -> () *)
689
     (*                | _ -> fprintf fmt ";") *)
690
     pp_xml_expr e.eexpr_qfexpr
691

    
692
and pp_xml_s_function fmt expr_ann =
693
  let pp_xml_annot fmt (kwds, ee) =
694
    Format.fprintf fmt " %t : %a"
695
                   (fun fmt -> match kwds with
696
                               | [] -> assert false
697
                               | [x] -> Format.pp_print_string fmt x
698
                               | _ -> Format.fprintf fmt "%a" (Utils.fprintf_list ~sep:"/" Format.pp_print_string) kwds)
699
                   pp_xml_sf_value ee
700
  in
701
  Utils.fprintf_list ~sep:"@ " pp_xml_annot fmt expr_ann.annots
702

    
703
and pp_xml_expr_annot fmt expr_ann =
704
  let pp_xml_annot fmt (kwds, ee) =
705
    Format.fprintf fmt "(*! %t: %a; *)"
706
      (fun fmt -> match kwds with | [] -> assert false | [x] -> Format.pp_print_string fmt x | _ -> Format.fprintf fmt "/%a/" (Utils.fprintf_list ~sep:"/" Format.pp_print_string) kwds)
707
      pp_xml_eexpr ee
708
  in
709
  Utils.fprintf_list ~sep:"@ " pp_xml_annot fmt expr_ann.annots
710

    
711

    
712
(* Local Variables: *)
713
(* compile-command:"make -C ../../.." *)
714
(* End: *)
(4-4/5)