1
|
|
2
|
open Machine_code_types
|
3
|
open Lustre_types
|
4
|
(*
|
5
|
open Corelang
|
6
|
open Machine_code_common
|
7
|
*)
|
8
|
|
9
|
let is_machine_statefull m = m.mmemory != [] || m.mcalls != []
|
10
|
|
11
|
(** Return true if its the arrow machine
|
12
|
@param machine the machine to test
|
13
|
*)
|
14
|
let is_arrow machine = String.equal Arrow.arrow_id machine.mname.node_id
|
15
|
|
16
|
(** Extract a node from an instance.
|
17
|
@param instance the instance
|
18
|
**)
|
19
|
let extract_node instance =
|
20
|
let (_, (node, _)) = instance in
|
21
|
match node.top_decl_desc with
|
22
|
| Node nd -> nd
|
23
|
| _ -> assert false (*TODO*)
|
24
|
|
25
|
(** Extract from a machine list the one corresponding to the given instance.
|
26
|
assume that the machine is in the list.
|
27
|
@param machines list of all machines
|
28
|
@param instance instance of a machine
|
29
|
@return the machine corresponding to hte given instance
|
30
|
**)
|
31
|
let get_machine machines instance =
|
32
|
let id = (extract_node instance).node_id in
|
33
|
try
|
34
|
List.find (function m -> m.mname.node_id=id) machines
|
35
|
with
|
36
|
Not_found -> assert false (*TODO*)
|
37
|
|
38
|
(** Test if two types are the same.
|
39
|
@param typ1 the first type
|
40
|
@param typ2 the second type
|
41
|
**)
|
42
|
let pp_eq_type typ1 typ2 =
|
43
|
let get_basic typ = match (Types.repr typ).Types.tdesc with
|
44
|
| Types.Tbasic Types.Basic.Tint -> Types.Basic.Tint
|
45
|
| Types.Tbasic Types.Basic.Treal -> Types.Basic.Treal
|
46
|
| Types.Tbasic Types.Basic.Tbool -> Types.Basic.Tbool
|
47
|
| _ -> assert false (*TODO*)
|
48
|
in
|
49
|
get_basic typ1 = get_basic typ2
|
50
|
|
51
|
(** Extract all the inputs and outputs.
|
52
|
@param machine the machine
|
53
|
@return a list of all the var_decl of a macine
|
54
|
**)
|
55
|
let get_all_vars_machine m =
|
56
|
m.mmemory@m.mstep.step_inputs@m.mstep.step_outputs@m.mstatic
|
57
|
|
58
|
(** Check if a type is polymorphic.
|
59
|
@param typ the type
|
60
|
@return true if its polymorphic
|
61
|
**)
|
62
|
let is_Tunivar typ = (Types.repr typ).tdesc == Types.Tunivar
|
63
|
|
64
|
(** Find all polymorphic type : Types.Tunivar in a machine.
|
65
|
@param machine the machine
|
66
|
@return a list of id corresponding to polymorphic type
|
67
|
**)
|
68
|
let find_all_polymorphic_type m =
|
69
|
let vars = get_all_vars_machine m in
|
70
|
let extract id = id.var_type.tid in
|
71
|
let polymorphic_type_vars =
|
72
|
List.filter (function x-> is_Tunivar x.var_type) vars in
|
73
|
List.sort_uniq (-) (List.map extract polymorphic_type_vars)
|
74
|
|
75
|
|
76
|
(** Check if a submachine is statefull.
|
77
|
@param submachine a submachine
|
78
|
@return true if the submachine is statefull
|
79
|
**)
|
80
|
let is_submachine_statefull submachine =
|
81
|
not (snd (snd submachine)).mname.node_dec_stateless
|
82
|
|
83
|
(** Find a submachine step call in a list of instructions.
|
84
|
@param ident submachine instance ident
|
85
|
@param instr_list List of instruction sto search
|
86
|
@return a list of pair containing input types and output types for each step call found
|
87
|
**)
|
88
|
let rec find_submachine_step_call ident instr_list =
|
89
|
let search_instr instruction =
|
90
|
match instruction.instr_desc with
|
91
|
| MStep (il, i, vl) when String.equal i ident -> [
|
92
|
(List.map (function x-> x.value_type) vl,
|
93
|
List.map (function x-> x.var_type) il)]
|
94
|
| MBranch (_, l) -> List.flatten
|
95
|
(List.map (function x, y -> find_submachine_step_call ident y) l)
|
96
|
| _ -> []
|
97
|
in
|
98
|
List.flatten (List.map search_instr instr_list)
|
99
|
|
100
|
(** Check that two types are the same.
|
101
|
@param t1 a type
|
102
|
@param t2 an other type
|
103
|
@param return true if the two types are Tbasic or Tunivar and equal
|
104
|
**)
|
105
|
let rec check_type_equal (t1:Types.type_expr) (t2:Types.type_expr) =
|
106
|
match (Types.repr t1).Types.tdesc, (Types.repr t2).Types.tdesc with
|
107
|
| Types.Tbasic x, Types.Tbasic y -> x = y
|
108
|
| Types.Tunivar, Types.Tunivar -> t1.tid = t2.tid
|
109
|
| Types.Ttuple l, _ -> assert (List.length l = 1); check_type_equal (List.hd l) t2
|
110
|
| _, Types.Ttuple l -> assert (List.length l = 1); check_type_equal t1 (List.hd l)
|
111
|
| Types.Tstatic (_, t), _ -> check_type_equal t t2
|
112
|
| _, Types.Tstatic (_, t) -> check_type_equal t1 t
|
113
|
| _ -> assert false
|
114
|
|
115
|
(** Extend a substitution to unify the two given types. Only the
|
116
|
first type can be polymorphic.
|
117
|
@param subsitution the base substitution
|
118
|
@param type_poly the type which can be polymorphic
|
119
|
@param typ the type to match type_poly with
|
120
|
**)
|
121
|
let unification (substituion:(int*Types.type_expr) list) ((type_poly:Types.type_expr), (typ:Types.type_expr)) =
|
122
|
assert(not (is_Tunivar typ));
|
123
|
(* If type_poly is polymorphic *)
|
124
|
if is_Tunivar type_poly then
|
125
|
(* If a subsitution exists for it *)
|
126
|
if List.mem_assoc type_poly.tid substituion then
|
127
|
begin
|
128
|
(* We check that the type corresponding to type_poly in the subsitution
|
129
|
match typ *)
|
130
|
(try
|
131
|
assert(check_type_equal (List.assoc type_poly.tid substituion) typ)
|
132
|
with
|
133
|
Not_found -> assert false);
|
134
|
(* We return the original substituion, it is already correct *)
|
135
|
substituion
|
136
|
end
|
137
|
(* If type_poly is not in the subsitution *)
|
138
|
else
|
139
|
(* We add it to the substituion *)
|
140
|
(type_poly.tid, typ)::substituion
|
141
|
(* iftype_poly is not polymorphic *)
|
142
|
else
|
143
|
begin
|
144
|
(* We check that type_poly and typ are the same *)
|
145
|
assert(check_type_equal type_poly typ);
|
146
|
(* We return the original substituion, it is already correct *)
|
147
|
substituion
|
148
|
end
|
149
|
|
150
|
(** Check that two calls are equal. A call is
|
151
|
a pair of list of types, the inputs and the outputs.
|
152
|
@param calls a list of pair of list of types
|
153
|
@param return true if the two pairs are equal
|
154
|
**)
|
155
|
let check_call_equal (i1, o1) (i2, o2) =
|
156
|
(List.for_all2 check_type_equal i1 i2)
|
157
|
&& (List.for_all2 check_type_equal i1 i2)
|
158
|
|
159
|
(** Check that all the elements of list of calls are equal to one.
|
160
|
A call is a pair of list of types, the inputs and the outputs.
|
161
|
@param call a pair of list of types
|
162
|
@param calls a list of pair of list of types
|
163
|
@param return true if all the elements are equal
|
164
|
**)
|
165
|
let check_calls call calls =
|
166
|
List.for_all (check_call_equal call) calls
|
167
|
|
168
|
(** Extract from a subinstance that can have polymorphic type the instantiation
|
169
|
of all its polymorphic type instanciation for a given machine. It searches
|
170
|
the step calls and extract a substitution for all polymorphic type from
|
171
|
it.
|
172
|
@param machine the machine which instantiate the subinstance
|
173
|
@param ident the identifier of the instance which permits to find the step call
|
174
|
@param submachine the machine corresponding to the subinstance
|
175
|
@return the correspondance between polymorphic type id and their instantiation
|
176
|
**)
|
177
|
let get_substitution machine ident submachine =
|
178
|
(* extract the calls to submachines from the machine *)
|
179
|
let calls = find_submachine_step_call ident machine.mstep.step_instrs in
|
180
|
(* extract the first call *)
|
181
|
let call = match calls with
|
182
|
(* assume that there is always one call to a subinstance *)
|
183
|
| [] -> assert(false)
|
184
|
| h::t -> h in
|
185
|
(* assume that all the calls to a subinstance are using the same type *)
|
186
|
assert(check_calls call calls);
|
187
|
(* make a list of all types from input and output vars *)
|
188
|
let call_types = (fst call)@(snd call) in
|
189
|
(* extract all the input and output vars from the submachine *)
|
190
|
let machine_vars = submachine.mstep.step_inputs@submachine.mstep.step_outputs in
|
191
|
(* keep only the type of vars *)
|
192
|
let machine_types = List.map (function x-> x.var_type) machine_vars in
|
193
|
(* assume that there is the same numer of input and output in the submachine
|
194
|
and the call *)
|
195
|
assert (List.length machine_types = List.length call_types);
|
196
|
(* Unify the two lists of types *)
|
197
|
let substitution = List.fold_left unification [] (List.combine machine_types call_types) in
|
198
|
(* Assume that our substitution match all the possible
|
199
|
polymorphic type of the node *)
|
200
|
let polymorphic_types = find_all_polymorphic_type submachine in
|
201
|
assert (List.length polymorphic_types = List.length substitution);
|
202
|
(try
|
203
|
assert (List.for_all (fun x -> List.mem_assoc x substitution) polymorphic_types)
|
204
|
with
|
205
|
Not_found -> assert false);
|
206
|
substitution
|
207
|
|
208
|
|
209
|
(** Extract from a machine the instance corresponding to the identifier,
|
210
|
assume that the identifier exists in the instances of the machine.
|
211
|
|
212
|
@param identifier the instance identifier
|
213
|
@param machine a machine
|
214
|
@return the instance of machine.minstances corresponding to identifier
|
215
|
**)
|
216
|
let get_instance identifier typed_submachines =
|
217
|
try
|
218
|
List.assoc identifier typed_submachines
|
219
|
with Not_found -> assert false
|
220
|
|