Revision 2475c9e8
Added by Pierre-Loïc Garoche over 7 years ago
src/backends/EMF/EMF_backend.ml | ||
---|---|---|
10 | 10 |
|
11 | 11 |
|
12 | 12 |
In terms of algorithm, the process was initially based on printing normalized |
13 |
code. We now rely on machine code printing. The old code is preserved for |
|
14 |
reference. |
|
15 |
*) |
|
13 |
code. We now rely on machine code printing. The old code is available in old |
|
14 |
commits (eg in dd71e482a9d0). |
|
16 | 15 |
|
17 |
open LustreSpec |
|
18 |
open Machine_code |
|
19 |
open Format |
|
20 |
open Utils |
|
16 |
|
|
17 |
A (normalized) node becomes a JSON struct |
|
18 |
node foo (in1, in2: int) returns (out1, out2: int); |
|
19 |
var x : int; |
|
20 |
let |
|
21 |
x = bar(in1, in2); -- a stateful node |
|
22 |
out1 = x; |
|
23 |
out2 = in2; |
|
24 |
tel |
|
21 | 25 |
|
22 |
exception Unhandled of string |
|
23 |
|
|
26 |
Since foo contains a stateful node, it is stateful itself. Its prototype is |
|
27 |
extended with a reset input. When the node is reset, each of its "pre" expression |
|
28 |
is reset as well as all calls to stateful node it contains. |
|
24 | 29 |
|
25 |
(* Basic printing functions *) |
|
26 |
|
|
27 |
let pp_var_string fmt v = fprintf fmt "\"%s\"" v |
|
28 |
(*let pp_var_name fmt v = fprintf fmt "\"%a\"" Printers.pp_var_name v*) |
|
29 |
(*let pp_node_args = fprintf_list ~sep:", " pp_var_name*) |
|
30 |
|
|
31 |
let pp_emf_var_decl fmt v = |
|
32 |
fprintf fmt "@[{\"name\": \"%a\", \"type\":\"%a\"}@]" |
|
33 |
Printers.pp_var_name v |
|
34 |
Printers.pp_var_type v |
|
35 |
|
|
36 |
let pp_emf_vars_decl fmt vl = |
|
37 |
fprintf fmt "@["; |
|
38 |
fprintf_list ~sep:",@ " pp_emf_var_decl fmt vl; |
|
39 |
fprintf fmt "@]" |
|
40 |
|
|
41 |
let reset_name id = |
|
42 |
"reset_" ^ id |
|
43 |
|
|
44 |
|
|
45 |
(* Matlab starting counting from 1. |
|
46 |
simple function to extract the element id in the list. Starts from 1. *) |
|
47 |
let rec get_idx x l = |
|
48 |
match l with |
|
49 |
| hd::tl -> if hd = x then 1 else 1+(get_idx x tl) |
|
50 |
| [] -> assert false |
|
30 |
will produce the following JSON struct: |
|
31 |
"foo": {"kind": "stateful", |
|
32 |
inputs: [{name: "in1", type: "int"}, |
|
33 |
{name: "in2", type: "int"}, |
|
34 |
], |
|
35 |
outputs: [{name: "out1", type: "int"}, {name: "out2", type: "int"}], |
|
36 |
locals: [{name: "x", type: "int"}], |
|
37 |
instrs: { |
|
38 |
def_x: { lhs: ["x"], |
|
39 |
rhs: {type: "statefulcall", name: "bar", |
|
40 |
args: [in1, in2], reset: [ni4_reset] } |
|
41 |
} |
|
42 |
|
|
43 |
def_out1: { lhs: "out1", rhs: "x" } , |
|
44 |
def_out2: { lhs: "out2", rhs: "in2"} |
|
45 |
} |
|
46 |
} |
|
51 | 47 |
|
52 |
(**********************************************)
|
|
53 |
(* Old stuff: printing normalized code as EMF *)
|
|
54 |
(**********************************************)
|
|
48 |
Basically we have the following different definitions
|
|
49 |
1. local assign of a variable to another one:
|
|
50 |
def_out1: { kind: "local_assign", lhs: "out1", rhs: "x" },
|
|
55 | 51 |
|
56 |
(* |
|
57 |
let pp_expr vars fmt expr = |
|
58 |
let rec pp_expr fmt expr = |
|
59 |
match expr.expr_desc with |
|
60 |
| Expr_const c -> Printers.pp_const fmt c |
|
61 |
| Expr_ident id -> |
|
62 |
if List.mem id vars then |
|
63 |
Format.fprintf fmt "u%i" (get_idx id vars) |
|
64 |
else |
|
65 |
assert false (* impossible to find element id in var list *) |
|
66 |
| Expr_array a -> fprintf fmt "[%a]" pp_tuple a |
|
67 |
| Expr_access (a, d) -> fprintf fmt "%a[%a]" pp_expr a Dimension.pp_dimension d |
|
68 |
| Expr_power (a, d) -> fprintf fmt "(%a^%a)" pp_expr a Dimension.pp_dimension d |
|
69 |
| Expr_tuple el -> fprintf fmt "(%a)" pp_tuple el |
|
70 |
| Expr_ite (c, t, e) -> fprintf fmt "if %a; y=(%a); else y=(%a); end" pp_expr c pp_expr t pp_expr e |
|
71 |
| Expr_arrow (e1, e2) ->( |
|
72 |
match e1.expr_desc, e2.expr_desc with |
|
73 |
| Expr_const c1, Expr_const c2 -> if c1 = Corelang.const_of_bool true && c2 = Corelang.const_of_bool false then fprintf fmt "STEP" else assert false (* only handle true -> false *) |
|
74 |
| _ -> assert false (* only handle true -> false *) |
|
75 |
) |
|
76 |
| Expr_fby (e1, e2) -> assert false (* not covered yet *) |
|
77 |
| Expr_pre e -> fprintf fmt "UNITDELAY" |
|
78 |
| Expr_when (e, id, l) -> assert false (* clocked based expressions are not handled yet *) |
|
79 |
| Expr_merge (id, hl) -> assert false (* clocked based expressions are not handled yet *) |
|
80 |
| Expr_appl (id, e, r) -> pp_app fmt id e r |
|
81 |
|
|
82 |
and pp_tuple fmt el = |
|
83 |
fprintf_list ~sep:"," pp_expr fmt el |
|
84 |
|
|
85 |
and pp_app fmt id e r = |
|
86 |
match r with |
|
87 |
| None -> pp_call fmt id e |
|
88 |
| Some c -> assert false (* clocked based expressions are not handled yet *) |
|
89 |
|
|
90 |
and pp_call fmt id e = |
|
91 |
match id, e.expr_desc with |
|
92 |
| "+", Expr_tuple([e1;e2]) -> fprintf fmt "(%a + %a)" pp_expr e1 pp_expr e2 |
|
93 |
| "uminus", _ -> fprintf fmt "(- %a)" pp_expr e |
|
94 |
| "-", Expr_tuple([e1;e2]) -> fprintf fmt "(%a - %a)" pp_expr e1 pp_expr e2 |
|
95 |
| "*", Expr_tuple([e1;e2]) -> fprintf fmt "(%a * %a)" pp_expr e1 pp_expr e2 |
|
96 |
| "/", Expr_tuple([e1;e2]) -> fprintf fmt "(%a / %a)" pp_expr e1 pp_expr e2 |
|
97 |
| "mod", Expr_tuple([e1;e2]) -> fprintf fmt "mod (%a, %a)" pp_expr e1 pp_expr e2 |
|
98 |
| "&&", Expr_tuple([e1;e2]) -> fprintf fmt "(%a & %a)" pp_expr e1 pp_expr e2 |
|
99 |
| "||", Expr_tuple([e1;e2]) -> fprintf fmt "(%a | %a)" pp_expr e1 pp_expr e2 |
|
100 |
| "xor", Expr_tuple([e1;e2]) -> fprintf fmt "xor (%a, %a)" pp_expr e1 pp_expr e2 |
|
101 |
| "impl", Expr_tuple([e1;e2]) -> fprintf fmt "((~%a) | %a)" pp_expr e1 pp_expr e2 |
|
102 |
| "<", Expr_tuple([e1;e2]) -> fprintf fmt "(%a < %a)" pp_expr e1 pp_expr e2 |
|
103 |
| "<=", Expr_tuple([e1;e2]) -> fprintf fmt "(%a <= %a)" pp_expr e1 pp_expr e2 |
|
104 |
| ">", Expr_tuple([e1;e2]) -> fprintf fmt "(%a > %a)" pp_expr e1 pp_expr e2 |
|
105 |
| ">=", Expr_tuple([e1;e2]) -> fprintf fmt "(%a >= %a)" pp_expr e1 pp_expr e2 |
|
106 |
| "!=", Expr_tuple([e1;e2]) -> fprintf fmt "(%a ~= %a)" pp_expr e1 pp_expr e2 |
|
107 |
| "=", Expr_tuple([e1;e2]) -> fprintf fmt "(%a == %a)" pp_expr e1 pp_expr e2 |
|
108 |
| "not", _ -> fprintf fmt "(~%a)" pp_expr e |
|
109 |
| _, Expr_tuple _ -> fprintf fmt "%s %a" id pp_expr e |
|
110 |
| _ -> fprintf fmt "%s (%a)" id pp_expr e |
|
52 |
2. pre construct over a variable (this is a state assign): |
|
53 |
def_pre_x: { kind: "pre", lhs: "pre_x", rhs: "x" }, |
|
54 |
|
|
55 |
3. arrow constructs, while there is not specific input, it could be reset |
|
56 |
by a specific signal. We register it as a fresh rhs var: |
|
57 |
def_arrow: { kind: "arrow", name: "ni4", lhs: "is_init", rhs: "reset_ni4"} |
|
58 |
|
|
59 |
2. call to a stateless function, typically an operator |
|
60 |
def_x: { kind: "statelesscall", lhs: ["x"], |
|
61 |
name: "bar", rhs: [in1, in2]} |
|
62 |
|
|
63 |
or in the operator version |
|
64 |
def_x: { kind: "operator", lhs: ["x"], |
|
65 |
name: "+", rhs: [in1, in2]} |
|
66 |
|
|
67 |
|
|
68 |
In Simulink this should introduce a subsystem in the first case or a |
|
69 |
regular block in the second with card(lhs) outputs and card{args} inputs. |
|
70 |
|
|
71 |
3. call to a stateful node. It is similar to the stateless above, |
|
72 |
with the addition of the reset argument |
|
73 |
{ def_x: { kind: "statefulcall", lhs: ["x"], |
|
74 |
name: "bar", rhs: [in1, in2], reset: [ni4_reset] } |
|
75 |
} |
|
76 |
|
|
77 |
In lustrec compilation phases, a unique id is associated to this specific |
|
78 |
instance of stateful node "bar", here ni4. |
|
79 |
Instruction such as reset(ni4) or noreset(ni4) may -- or not -- reset this |
|
80 |
specific node. This corresponds to "every c" suffix of a node call in lustre. |
|
81 |
|
|
82 |
In Simulink this should introduce a subsystem that has this extra reset input. |
|
83 |
The reset should be defined as an "OR" over (1) the input reset of the parent |
|
84 |
node, __reset in the present example and (2) any occurence of reset(ni4) in |
|
85 |
the instructions. |
|
86 |
|
|
87 |
4. branching construct: (guard expr, (tag, instr list) list) |
|
88 |
"merge_XX": { type: "branch", guard: "var_guard", |
|
89 |
inputs: ["varx", "vary"], |
|
90 |
outputs: ["vark", "varz"], |
|
91 |
branches: {"tag1": {liste_of_definitions (1-4)}, ...} |
|
92 |
} |
|
93 |
|
|
94 |
|
|
95 |
In Simulink, this should become one IF block to produce enable ports |
|
96 |
"var_guard == tag1", "var_guard == tag2", .... as well as one action |
|
97 |
block per branch: each of these action block shall |
|
111 | 98 |
|
112 |
in |
|
113 |
pp_expr fmt expr |
|
114 |
|
|
115 |
let pp_stmt fmt stmt = |
|
116 |
match stmt with |
|
117 |
| Eq eq -> ( |
|
118 |
match eq.eq_lhs with |
|
119 |
[var] -> ( |
|
120 |
(* first, we extract the expression and associated variables *) |
|
121 |
let vars = Utils.ISet.elements (Corelang.get_expr_vars eq.eq_rhs) in |
|
122 |
|
|
123 |
fprintf fmt "\"%s\": @[<v 2>{ \"expr\": \"%a\",@ \"vars\": [%a] @]}" |
|
124 |
var |
|
125 |
(pp_expr vars) eq.eq_rhs (* todo_pp_expr expr *) |
|
126 |
(fprintf_list ~sep:", " pp_var_string) vars |
|
127 |
) |
|
128 |
| _ -> assert false (* should not happen for input of EMF backend (cocospec generated nodes *) |
|
129 |
) |
|
130 |
| _ -> assert false (* should not happen with EMF backend *) |
|
131 |
|
|
132 |
let pp_node fmt nd = |
|
133 |
fprintf fmt "@[<v 2>\"%s\": {@ \"inputs\": [%a],@ \"outputs\": [%a],@ " |
|
134 |
nd.node_id |
|
135 |
pp_node_args nd.node_inputs |
|
136 |
pp_node_args nd.node_outputs; |
|
137 |
fprintf fmt "\"exprs\": {@[<v 1> %a@]@ }" |
|
138 |
(fprintf_list ~sep:",@ " pp_stmt ) nd.node_stmts; |
|
139 |
fprintf fmt "@]@ }" |
|
140 |
|
|
141 |
let pp_decl fmt decl = |
|
142 |
match decl.top_decl_desc with |
|
143 |
| Node nd -> fprintf fmt "%a@ " pp_node nd |
|
144 |
| ImportedNode _ |
|
145 |
| Const _ |
|
146 |
| Open _ |
|
147 |
| TypeDef _ -> eprintf "should not happen in EMF backend" |
|
148 | 99 |
*) |
149 | 100 |
|
101 |
open LustreSpec |
|
102 |
open Machine_code |
|
103 |
open Format |
|
104 |
open EMF_common |
|
105 |
exception Unhandled of string |
|
106 |
|
|
107 |
module ISet = Utils.ISet |
|
108 |
let fprintf_list = Utils.fprintf_list |
|
109 |
|
|
110 |
|
|
150 | 111 |
|
151 | 112 |
(**********************************************) |
152 | 113 |
(* Utility functions: arrow and lustre expr *) |
... | ... | |
156 | 117 |
-> false *) |
157 | 118 |
let is_arrow_fun m i = |
158 | 119 |
match Corelang.get_instr_desc i with |
159 |
| MStep ([var], i, vl) -> ( |
|
160 |
let name = try (Machine_code.get_node_def i m).node_id with Not_found -> Format.eprintf "Impossible to find node %s@.@?" i; raise Not_found in |
|
161 |
match name, vl with |
|
162 |
| "_arrow", [v1; v2] -> ( |
|
120 |
| MStep ([var], i, vl) -> ( |
|
121 |
try |
|
122 |
let name = (Machine_code.get_node_def i m).node_id in |
|
123 |
match name, vl with |
|
124 |
| "_arrow", [v1; v2] -> ( |
|
163 | 125 |
match v1.value_desc, v2.value_desc with |
164 | 126 |
| Cst c1, Cst c2 -> |
165 | 127 |
if c1 = Corelang.const_of_bool true && c2 = Corelang.const_of_bool false then |
... | ... | |
167 | 129 |
else |
168 | 130 |
assert false (* only handle true -> false *) |
169 | 131 |
| _ -> assert false |
170 |
) |
|
171 |
| _ -> false |
|
132 |
) |
|
133 |
|
|
134 |
| _ -> false |
|
135 |
with |
|
136 |
| Not_found -> false (* Not declared (should have been detected now, or imported node *) |
|
172 | 137 |
) |
173 | 138 |
| _ -> false |
174 | 139 |
|
175 |
let pp_original_lustre_expression m fmt i = |
|
176 |
match Corelang.get_instr_desc i with |
|
177 |
| MLocalAssign _ | MStateAssign _ |
|
178 |
| MBranch _ |
|
179 |
-> ( match i.lustre_eq with None -> () | Some e -> Printers.pp_node_eq fmt e) |
|
180 |
| MStep _ when is_arrow_fun m i -> () (* we print nothing, this is a STEP *) |
|
181 |
| MStep _ -> (match i.lustre_eq with None -> () | Some eq -> Printers.pp_node_eq fmt eq) |
|
182 |
| _ -> () |
|
183 |
|
|
184 |
(* |
|
185 |
let rec get_instr_lhs i = |
|
186 |
match Corelang.get_instr_desc i with |
|
187 |
| MLocalAssign (var,_) |
|
188 |
| MStateAssign (var,_) -> [var.var_id] |
|
189 |
| MStep (vars, _, _) -> List.map (fun v -> v.var_id) vars |
|
190 |
| MBranch (_,(_,case1)::_) -> |
|
191 |
get_instrs_lhs case1 (* assuming all cases define the same variables *) |
|
192 |
| MBranch _ -> assert false (* branch instruction should admit at least one case *) |
|
193 |
| MReset ni |
|
194 |
| MNoReset ni -> [reset_name ni] |
|
195 |
| MComment _ -> assert false (* not available for EMF output *) |
|
196 |
and get_instrs_lhs il = |
|
197 |
List.fold_left (fun accu i -> (get_instr_lhs i) @ accu ) [] il |
|
198 |
*) |
|
199 | 140 |
(**********************************************) |
200 | 141 |
(* Printing machine code as EMF *) |
201 | 142 |
(**********************************************) |
202 | 143 |
|
203 |
(******************* |
|
204 | 144 |
|
205 |
(* Print machine code values as matlab expressions. Variable identifiers are |
|
206 |
replaced by uX where X is the index of the variables in the list vars of input |
|
207 |
variables. *) |
|
208 |
let rec pp_matlab_val vars fmt v = |
|
209 |
match v.value_desc with |
|
210 |
| Cst c -> Printers.pp_const fmt c |
|
211 |
| LocalVar v |
|
212 |
| StateVar v -> |
|
213 |
let id = v.var_id in |
|
214 |
if List.mem id vars then |
|
215 |
Format.fprintf fmt "u%i" (get_idx id vars) |
|
216 |
else |
|
217 |
let _ = Format.eprintf "Error: looking for var %s in %a@.@?" id (Utils.fprintf_list ~sep:"," Format.pp_print_string) vars in assert false (* impossible to find element id in var list *) |
|
218 |
| Fun (n, vl) -> pp_fun vars n fmt vl |
|
219 |
| _ -> assert false (* not available in EMF backend *) |
|
220 |
and pp_fun vars id fmt vl = |
|
221 |
(* eprintf "print %s with %i args@.@?" id (List.length vl);*) |
|
222 |
match id, vl with |
|
223 |
| "+", [v1;v2] -> fprintf fmt "(%a + %a)" (pp_matlab_val vars) v1 (pp_matlab_val vars) v2 |
|
224 |
| "uminus", [v] -> fprintf fmt "(- %a)" (pp_matlab_val vars) v |
|
225 |
| "-", [v1;v2] -> fprintf fmt "(%a - %a)" (pp_matlab_val vars) v1 (pp_matlab_val vars) v2 |
|
226 |
| "*",[v1;v2] -> fprintf fmt "(%a * %a)" (pp_matlab_val vars) v1 (pp_matlab_val vars) v2 |
|
227 |
| "/", [v1;v2] -> fprintf fmt "(%a / %a)" (pp_matlab_val vars) v1 (pp_matlab_val vars) v2 |
|
228 |
| "mod", [v1;v2] -> fprintf fmt "mod (%a, %a)" (pp_matlab_val vars) v1 (pp_matlab_val vars) v2 |
|
229 |
| "&&", [v1;v2] -> fprintf fmt "(%a & %a)" (pp_matlab_val vars) v1 (pp_matlab_val vars) v2 |
|
230 |
| "||", [v1; v2] -> fprintf fmt "(%a | %a)" (pp_matlab_val vars) v1 (pp_matlab_val vars) v2 |
|
231 |
| "xor", [v1; v2] -> fprintf fmt "xor (%a, %a)" (pp_matlab_val vars) v1 (pp_matlab_val vars) v2 |
|
232 |
| "impl", [v1; v2] -> fprintf fmt "((~%a) | %a)" (pp_matlab_val vars) v1 (pp_matlab_val vars) v2 |
|
233 |
| "<", [v1; v2] -> fprintf fmt "(%a < %a)" (pp_matlab_val vars) v1 (pp_matlab_val vars) v2 |
|
234 |
| "<=", [v1; v2] -> fprintf fmt "(%a <= %a)" (pp_matlab_val vars) v1 (pp_matlab_val vars) v2 |
|
235 |
| ">", [v1; v2] -> fprintf fmt "(%a > %a)" (pp_matlab_val vars) v1 (pp_matlab_val vars) v2 |
|
236 |
| ">=", [v1; v2] -> fprintf fmt "(%a >= %a)" (pp_matlab_val vars) v1 (pp_matlab_val vars) v2 |
|
237 |
| "!=", [v1; v2] -> fprintf fmt "(%a != %a)" (pp_matlab_val vars) v1 (pp_matlab_val vars) v2 |
|
238 |
| "=", [v1; v2] -> fprintf fmt "(%a = %a)" (pp_matlab_val vars) v1 (pp_matlab_val vars) v2 |
|
239 |
| "not", [v] -> fprintf fmt "(~%a)" (pp_matlab_val vars) v |
|
240 |
| _ -> fprintf fmt "%s (%a)" id (Utils.fprintf_list ~sep:", " (pp_matlab_val vars)) vl |
|
241 |
|
|
242 |
|
|
243 |
|
|
244 |
(* pp_basic_instr prints regular instruction. These do not contain MStep which |
|
245 |
should have been already filtered out. Another restriction which is supposed |
|
246 |
to be enforced is that branching statement contain a single instruction (in |
|
247 |
practice it has to be an assign) *) |
|
248 |
let pp_matlab_basic_instr m vars fmt i = |
|
249 |
match Corelang.get_instr_desc i with |
|
250 |
| MLocalAssign (var,v) |
|
251 |
| MStateAssign (var,v) -> fprintf fmt "y = %a" (pp_matlab_val vars) v |
|
252 |
| MReset _ |
|
253 |
-> Format.eprintf "unhandled reset in EMF@.@?"; assert false |
|
254 |
| MNoReset _ |
|
255 |
-> Format.eprintf "unhandled noreset in EMF@.@?"; assert false |
|
256 |
| MBranch _ (* branching instructions already handled *) |
|
257 |
-> Format.eprintf "unhandled branch statement in EMF (should have been filtered out before)@.@?"; |
|
258 |
assert false |
|
259 |
| MStep _ (* function calls already handled, including STEP *) |
|
260 |
-> Format.eprintf "unhandled function call in EMF (should have been filtered out before)@.@?"; |
|
261 |
assert false |
|
262 |
| MComment _ |
|
263 |
-> Format.eprintf "unhandled comment in EMF@.@?"; assert false |
|
264 |
(* not available for EMF output *) |
|
265 |
|
|
266 |
|
|
267 |
|
|
268 |
let rec get_instr_lhs_var i = |
|
269 |
match Corelang.get_instr_desc i with |
|
270 |
| MLocalAssign (var,_) |
|
271 |
| MStateAssign (var,_) |
|
272 |
| MStep ([var], _, _) -> |
|
273 |
(* The only MStep instructions that filtered here |
|
274 |
should be arrows, ie. single var *) |
|
275 |
var |
|
276 |
| MBranch (_,(_,case1)::_) -> |
|
277 |
get_instrs_var case1 (* assuming all cases define the same variables *) |
|
278 |
| MStep (f,name,a) -> Format.eprintf "step %s@.@?" name; assert false (* no other MStep here *) |
|
279 |
| MBranch _ -> assert false (* branch instruction should admit at least one case *) |
|
280 |
| MReset _ |
|
281 |
| MNoReset _ |
|
282 |
| MComment _ -> assert false (* not available for EMF output *) |
|
283 |
and get_instrs_var il = |
|
284 |
match il with |
|
285 |
| i::_ -> get_instr_lhs_var i (* looking for the first instr *) |
|
286 |
| _ -> assert false |
|
287 |
|
|
288 |
|
|
289 |
let rec get_val_vars v = |
|
290 |
match v.value_desc with |
|
291 |
| Cst c -> Utils.ISet.empty |
|
292 |
| LocalVar v |
|
293 |
| StateVar v -> Utils.ISet.singleton v.var_id |
|
294 |
| Fun (n, vl) -> List.fold_left (fun res v -> Utils.ISet.union (get_val_vars v) res) Utils.ISet.empty vl |
|
295 |
| _ -> assert false (* not available in EMF backend *) |
|
296 |
|
|
297 |
let rec get_instr_rhs_vars i = |
|
298 |
match Corelang.get_instr_desc i with |
|
299 |
| MLocalAssign (_,v) |
|
300 |
| MStateAssign (_,v) -> get_val_vars v |
|
301 |
| MStep (_, _, vl) -> List.fold_left (fun res v -> Utils.ISet.union res (get_val_vars v)) Utils.ISet.empty vl |
|
302 |
| MBranch (c,[(_,[case1]);(_,[case2])]) -> |
|
303 |
Utils.ISet.union |
|
304 |
(get_val_vars c) |
|
305 |
( |
|
306 |
Utils.ISet.union |
|
307 |
(get_instr_rhs_vars case1) |
|
308 |
(get_instr_rhs_vars case2) |
|
309 |
) |
|
310 |
| MBranch (g, branches) -> |
|
311 |
List.fold_left |
|
312 |
(fun accu (_, il) -> Utils.ISet.union accu (get_instrs_vars il)) |
|
313 |
(get_val_vars g) |
|
314 |
branches |
|
315 |
| MReset id |
|
316 |
| MNoReset id -> Utils.ISet.singleton id |
|
317 |
| MComment _ -> Utils.ISet.empty |
|
318 |
and get_instrs_vars il = |
|
319 |
List.fold_left (fun res i -> Utils.ISet.union res (get_instr_rhs_vars i)) |
|
320 |
Utils.ISet.empty |
|
321 |
il |
|
322 |
|
|
323 |
|
|
324 |
|
|
325 |
let rec pp_emf_instr m fmt i = |
|
326 |
(* Either it is a Step function non arrow, then we have a dedicated treatment, |
|
327 |
or it has to be a single variable assigment *) |
|
328 |
let arguments_vars = Utils.ISet.elements (get_instr_rhs_vars i) in |
|
329 |
|
|
330 |
match Corelang.get_instr_desc i with |
|
331 |
(* Regular node call either a statuful node or a functional one *) |
|
332 |
| MStep (outputs, f, inputs) when not (is_arrow_fun m i) -> ( |
|
333 |
fprintf fmt "\"CALL\": @[<v 2>{ \"node\": \"%s\",@ \"inputs\": [%a],@ \"vars\": [%a]@ \"lhs\": [%a],@ \"original_lustre_expr\": [%a]@]}" |
|
334 |
((Machine_code.get_node_def f m).node_id) (* Node name *) |
|
335 |
(Utils.fprintf_list ~sep:", " (fun fmt _val -> fprintf fmt "\"%a\"" (pp_matlab_val arguments_vars) _val)) inputs (* inputs *) |
|
336 |
(fprintf_list ~sep:", " pp_var_string) arguments_vars |
|
337 |
(fprintf_list ~sep:", " (fun fmt v -> pp_var_string fmt v.var_id)) outputs (* outputs *) |
|
338 |
(pp_original_lustre_expression m) i (* original lustre expr *) |
|
339 |
) |
|
340 |
| MStep _ -> (* Arrow case *) ( |
|
341 |
let var = get_instr_lhs_var i in |
|
342 |
fprintf fmt "\"STEP\": @[<v 2>{ \"lhs\": \"%s\",@ \"vars\": [%a] @ \"original_lustre_expr\": [%a]@]}" |
|
343 |
var.var_id |
|
344 |
(fprintf_list ~sep:", " pp_var_string) arguments_vars |
|
345 |
(pp_original_lustre_expression m) i |
|
346 |
) |
|
347 |
| MBranch (g,[(tag1,[case1]);(tag2,[case2])]) when tag1 = Corelang.tag_true || tag2 = Corelang.tag_true -> |
|
348 |
(* Thanks to normalization with join_guards = false, branches shall contain |
|
349 |
a single expression *) |
|
350 |
let var = get_instr_lhs_var i in |
|
351 |
let then_case, else_case = |
|
352 |
if tag1 = Corelang.tag_true then |
|
353 |
case1, case2 |
|
354 |
else |
|
355 |
case2, case1 |
|
356 |
in |
|
357 |
fprintf fmt "\"ITE\": @[<v 2>{ \"lhs\": \"%s\",@ \"guard\": \"%a\",@ \"then_expr\": \"%a\",@ \"else_expr\": \"%a\",@ \"vars\": [%a],@ \"original_lustre_expr\": [%a]@]}" |
|
358 |
var.var_id |
|
359 |
(pp_matlab_val arguments_vars) g |
|
360 |
(pp_matlab_basic_instr m arguments_vars) then_case |
|
361 |
(pp_matlab_basic_instr m arguments_vars) else_case |
|
362 |
(fprintf_list ~sep:", " pp_var_string) arguments_vars |
|
363 |
(pp_original_lustre_expression m) i |
|
364 |
|
|
365 |
| MBranch (g, [single_tag, single_branch]) -> |
|
366 |
(* First case: it corresponds to a clocked expression: a MBranch with a |
|
367 |
single case. It shall become a subsystem with an enable port that depends on g = single_tag *) |
|
368 |
(* Thanks to normalization with join_guards = false, branches shall contain |
|
369 |
a single expression TODO REMOVE COMMENT THIS IS NOT TRUE *) |
|
370 |
let var = get_instr_lhs_var i in |
|
371 |
fprintf fmt "\"ENABLEDSUB\": @[<v 2>{ \"lhs\": \"%s\",@ \"enable_cond\": \"%a = %s\",@ \"subsystem\": {%a },@ \"vars\": [%a],@ \"original_lustre_expr\": [%a]@]}" |
|
372 |
var.var_id |
|
373 |
(pp_matlab_val arguments_vars) g |
|
374 |
single_tag |
|
375 |
(fprintf_list ~sep:",@ " (pp_emf_instr m)) single_branch |
|
376 |
(fprintf_list ~sep:", " pp_var_string) arguments_vars |
|
377 |
(pp_original_lustre_expression m) i |
|
378 |
|
|
379 |
| MBranch (g, hl) -> |
|
380 |
(* Thanks to normalization with join_guards = false, branches shall contain |
|
381 |
a single expression *) |
|
382 |
fprintf fmt "\"BRANCH\": @[<v 2>{ \"guard\": \"%a\",@ \"branches\": [@[<v 0>%a@]],@ \"vars\": [%a],@ \"original_lustre_expr\": [%a]@]}" |
|
383 |
(pp_matlab_val arguments_vars) g |
|
384 |
(fprintf_list ~sep:",@ " |
|
385 |
(fun fmt (tag, (is_tag: instr_t list)) -> |
|
386 |
fprintf fmt "\"%s\": [%a]" |
|
387 |
tag |
|
388 |
(fprintf_list ~sep:",@ " (fun fmt i_tag -> match Corelang.get_instr_desc i_tag with |
|
389 |
| MLocalAssign (var,v) |
|
390 |
| MStateAssign (var,v) -> |
|
391 |
fprintf fmt "{lhs= \"%s\", rhs= \"%a\"]" var.var_id (pp_matlab_val arguments_vars) v |
|
392 |
| _ -> Format.eprintf "unhandled instr: %a@." Machine_code.pp_instr i_tag; assert false |
|
393 |
)) is_tag |
|
394 |
)) hl |
|
395 |
(fprintf_list ~sep:", " pp_var_string) arguments_vars |
|
396 |
(pp_original_lustre_expression m) i |
|
397 |
|
|
398 |
|
|
399 |
|
|
400 |
| _ -> |
|
401 |
(* Other expressions, including "pre" *) |
|
402 |
( |
|
403 |
(* first, we extract the expression and associated variables *) |
|
404 |
let var = get_instr_lhs_var i in |
|
405 |
fprintf fmt "\"EXPR\": @[<v 2>{ \"lhs\": \"%s\",@ \"expr\": \"%a\",@ \"vars\": [%a] @ \"original_lustre_expr\": [%a]@]}" |
|
406 |
var.var_id |
|
407 |
(fun fmt i -> match Corelang.get_instr_desc i with |
|
408 |
| MStep _ -> fprintf fmt "STEP" |
|
409 |
| _ -> pp_matlab_basic_instr m arguments_vars fmt i) i |
|
410 |
(fprintf_list ~sep:", " pp_var_string) arguments_vars |
|
411 |
(pp_original_lustre_expression m) i |
|
412 |
) |
|
413 |
|
|
414 |
*********************) |
|
415 |
|
|
416 |
let pp_emf_cst_or_var fmt v = |
|
417 |
match v.value_desc with |
|
418 |
| Cst c -> |
|
419 |
fprintf fmt "{@[\"type\": \"constant\",@ \"value\": \"%a\"@ @]}" |
|
420 |
Printers.pp_const c |
|
421 |
| LocalVar v |
|
422 |
| StateVar v -> |
|
423 |
fprintf fmt "{@[\"type\": \"variable\",@ \"value\": \"%a\"@ @]}" |
|
424 |
Printers.pp_var_name v |
|
425 |
| _ -> assert false (* Invalid argument *) |
|
426 |
|
|
427 |
let rec get_expr_vars v = |
|
428 |
match v.value_desc with |
|
429 |
| Cst c -> VSet.empty |
|
430 |
| LocalVar v | StateVar v -> VSet.singleton v |
|
431 |
| Fun (_, args) -> List.fold_left (fun accu v -> VSet.union accu (get_expr_vars v)) VSet.empty args |
|
432 |
| _ -> assert false (* Invalid argument *) |
|
433 | 145 |
|
434 | 146 |
let branch_cpt = ref 0 |
435 | 147 |
let get_instr_id fmt i = |
... | ... | |
437 | 149 |
| MLocalAssign(lhs,_) | MStateAssign (lhs, _) -> Printers.pp_var_name fmt lhs |
438 | 150 |
| MReset i | MNoReset i -> fprintf fmt "%s" (reset_name i) |
439 | 151 |
| MBranch (g, _) -> incr branch_cpt; fprintf fmt "branch_%i" !branch_cpt |
440 |
| MStep (_, id, _) -> fprintf fmt "%s" id
|
|
152 |
| MStep (outs, id, _) -> fprintf fmt "%a_%s" (fprintf_list ~sep:"_" Printers.pp_var_name) outs id
|
|
441 | 153 |
| _ -> () (* No name *) |
442 | 154 |
|
443 | 155 |
let rec branch_block_vars il = |
... | ... | |
474 | 186 |
| MComment _ -> assert false (* not available for EMF output *) |
475 | 187 |
|
476 | 188 |
|
477 |
let pp_emf_cst_or_var_list = |
|
478 |
fprintf_list ~sep:",@ " pp_emf_cst_or_var |
|
479 |
|
|
480 |
let rec pp_emf_instr2 m fmt i = |
|
481 |
(* let arguments_vars = Utils.ISet.elements (get_instr_rhs_vars i) in *) |
|
189 |
|
|
190 |
let rec pp_emf_instr m fmt i = |
|
482 | 191 |
let pp_content fmt i = |
483 | 192 |
match Corelang.get_instr_desc i with |
484 | 193 |
| MLocalAssign(lhs, expr) |
... | ... | |
529 | 238 |
fprintf fmt "\"inputs\": [%a],@ " pp_emf_vars_decl |
530 | 239 |
(* (let guard_inputs = get_expr_vars g in |
531 | 240 |
VSet.elements (VSet.diff inputs guard_inputs)) -- previous version to |
532 |
removed guard's variable from inputs *)
|
|
241 |
remove guard's variable from inputs *) |
|
533 | 242 |
(VSet.elements inputs) |
534 | 243 |
; |
535 | 244 |
fprintf fmt "@[<v 2>\"branches\": {@ %a@]}@ " |
536 | 245 |
(fprintf_list ~sep:",@ " |
537 | 246 |
(fun fmt (tag, instrs_tag) -> |
538 |
let (*branch_outputs*) _, branch_inputs = branch_block_vars instrs_tag in |
|
539 |
|
|
247 |
let (*branch_outputs*) _, branch_inputs = branch_block_vars instrs_tag in |
|
540 | 248 |
fprintf fmt "@[<v 2>\"%s\": {@ " tag; |
541 | 249 |
fprintf fmt "\"inputs\": [%a],@ " pp_emf_vars_decl (VSet.elements branch_inputs); |
542 | 250 |
fprintf fmt "@[<v 2>\"instrs\": {@ "; |
543 |
fprintf_list ~sep:",@ " (pp_emf_instr2 m) fmt instrs_tag;
|
|
251 |
fprintf_list ~sep:",@ " (pp_emf_instr m) fmt instrs_tag; |
|
544 | 252 |
fprintf fmt "@]}@ "; |
545 | 253 |
fprintf fmt "@]}" |
546 | 254 |
|
... | ... | |
556 | 264 |
(reset_name f) |
557 | 265 |
) |
558 | 266 |
|
559 |
| MStep (outputs, f, inputs) -> ( |
|
267 |
| MStep (outputs, f, inputs) when not (is_imported_node f m) -> (
|
|
560 | 268 |
let node_f = Machine_code.get_node_def f m in |
561 | 269 |
let is_stateful = List.mem_assoc f m.minstances in |
562 | 270 |
fprintf fmt "\"kind\": \"%s\",@ \"name\": \"%s\",@ \"id\": \"%s\",@ " |
... | ... | |
569 | 277 |
if is_stateful then fprintf fmt ",@ \"reset\": \"%s\"" (reset_name f) else fprintf fmt "@ " |
570 | 278 |
) |
571 | 279 |
|
280 |
| MStep(outputs, f, inputs ) -> (* This is an imported node *) |
|
281 |
EMF_library_calls.pp_call fmt m f outputs inputs |
|
282 |
|
|
572 | 283 |
| MComment _ |
573 | 284 |
-> Format.eprintf "unhandled comment in EMF@.@?"; assert false |
574 | 285 |
(* not available for EMF output *) |
... | ... | |
576 | 287 |
in |
577 | 288 |
fprintf fmt "@[ @[<v 2>\"%a\": {@ " get_instr_id i; |
578 | 289 |
fprintf fmt "%a@ " pp_content i; |
579 |
(* fprintf fmt "@[<v 2>\"original_lustre_expr\": [@ \"%a\"@]]@]" (pp_original_lustre_expression m) i; *) |
|
580 | 290 |
fprintf fmt "}@]" |
581 | 291 |
|
582 | 292 |
|
583 |
|
|
584 |
(* A (normalized) node becomes a JSON struct |
|
585 |
node foo (in1, in2: int) returns (out1, out2: int); |
|
586 |
var x : int; |
|
587 |
let |
|
588 |
x = bar(in1, in2); -- a stateful node |
|
589 |
out1 = x; |
|
590 |
out2 = in2; |
|
591 |
tel |
|
592 |
|
|
593 |
Since foo contains a stateful node, it is stateful itself. Its prototype is |
|
594 |
extended with a reset input. When the node is reset, each of its "pre" expression |
|
595 |
is reset as well as all calls to stateful node it contains. |
|
596 |
|
|
597 |
will produce the following JSON struct: |
|
598 |
"foo": {"kind": "stateful", |
|
599 |
inputs: [{name: "in1", type: "int"}, |
|
600 |
{name: "in2", type: "int"}, |
|
601 |
], |
|
602 |
outputs: [{name: "out1", type: "int"}, {name: "out2", type: "int"}], |
|
603 |
locals: [{name: "x", type: "int"}], |
|
604 |
instrs: { |
|
605 |
def_x: { lhs: ["x"], |
|
606 |
rhs: {type: "statefulcall", name: "bar", |
|
607 |
args: [in1, in2], reset: [ni4_reset] } |
|
608 |
} |
|
609 |
|
|
610 |
def_out1: { lhs: "out1", rhs: "x" } , |
|
611 |
def_out2: { lhs: "out2", rhs: "in2"} |
|
612 |
} |
|
613 |
} |
|
614 |
|
|
615 |
Basically we have the following different definitions |
|
616 |
1. local assign of a variable to another one: |
|
617 |
def_out1: { kind: "local_assign", lhs: "out1", rhs: "x" }, |
|
618 |
|
|
619 |
2. pre construct over a variable (this is a state assign): |
|
620 |
def_pre_x: { kind: "pre", lhs: "pre_x", rhs: "x" }, |
|
621 |
|
|
622 |
3. arrow constructs, while there is not specific input, it could be reset |
|
623 |
by a specific signal. We register it as a fresh rhs var: |
|
624 |
def_arrow: { kind: "arrow", name: "ni4", lhs: "is_init", rhs: "reset_ni4"} |
|
625 |
|
|
626 |
2. call to a stateless function, typically an operator |
|
627 |
def_x: { kind: "statelesscall", lhs: ["x"], |
|
628 |
name: "bar", rhs: [in1, in2]} |
|
629 |
|
|
630 |
or in the operator version |
|
631 |
def_x: { kind: "operator", lhs: ["x"], |
|
632 |
name: "+", rhs: [in1, in2]} |
|
633 |
|
|
634 |
|
|
635 |
In Simulink this should introduce a subsystem in the first case or a |
|
636 |
regular block in the second with card(lhs) outputs and card{args} inputs. |
|
637 |
|
|
638 |
3. call to a stateful node. It is similar to the stateless above, |
|
639 |
with the addition of the reset argument |
|
640 |
{ def_x: { kind: "statefulcall", lhs: ["x"], |
|
641 |
name: "bar", rhs: [in1, in2], reset: [ni4_reset] } |
|
642 |
} |
|
643 |
|
|
644 |
In lustrec compilation phases, a unique id is associated to this specific |
|
645 |
instance of stateful node "bar", here ni4. |
|
646 |
Instruction such as reset(ni4) or noreset(ni4) may -- or not -- reset this |
|
647 |
specific node. This corresponds to "every c" suffix of a node call in lustre. |
|
648 |
|
|
649 |
In Simulink this should introduce a subsystem that has this extra reset input. |
|
650 |
The reset should be defined as an "OR" over (1) the input reset of the parent |
|
651 |
node, __reset in the present example and (2) any occurence of reset(ni4) in |
|
652 |
the instructions. |
|
653 |
|
|
654 |
4. branching construct: (guard expr, (tag, instr list) list) |
|
655 |
"merge_XX": { type: "branch", guard: "var_guard", |
|
656 |
inputs: ["varx", "vary"], |
|
657 |
outputs: ["vark", "varz"], |
|
658 |
branches: {"tag1": {liste_of_definitions (1-4)}, ...} |
|
659 |
} |
|
660 |
|
|
661 |
|
|
662 |
In Simulink, this should become one IF block to produce enable ports |
|
663 |
"var_guard == tag1", "var_guard == tag2", .... as well as one action |
|
664 |
block per branch: each of these action block shall |
|
665 |
*) |
|
666 | 293 |
let pp_machine fmt m = |
667 | 294 |
try |
668 | 295 |
fprintf fmt "@[<v 2>\"%s\": {@ " |
... | ... | |
676 | 303 |
pp_emf_vars_decl m.mstep.step_locals |
677 | 304 |
; |
678 | 305 |
fprintf fmt "\"instrs\": {@[<v 0> %a@]@ }" |
679 |
(fprintf_list ~sep:",@ " (pp_emf_instr2 m)) m.mstep.step_instrs;
|
|
306 |
(fprintf_list ~sep:",@ " (pp_emf_instr m)) m.mstep.step_instrs; |
|
680 | 307 |
fprintf fmt "@]@ }" |
681 | 308 |
with Unhandled msg -> ( |
682 | 309 |
eprintf "[Error] @[<v 0>EMF backend@ Issues while translating node %s@ " |
Also available in: Unified diff
Refactored EMF backend. Handle now the call to existing math and conv libraries